CSC418/CSCD18/CSC2504 Transformations

3 Transformations

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric cunecan use transformations for several
purposes:

1. Change coordinate frames (world, window, viewport, devetc).

2. Compose objects of simple parts with local scale/postioentation of one part defined
with regard to other parts. For example, for articulatectotsj.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:
1. Rigid body - Preserves distance and angles.
e Examples: translation and rotation.
2. Conformal - Preserves angles.
e Examples: translation, rotation, and uniform scaling.
3. Affine - Preserves parallelism. Lines remain lines.

e Examples: translation, rotation, scaling, shear, andatadie.

Examples of transformations:

e Translation by vectort: p, = po + t.

Y
Y

e Rotation counterclockwise by: p; = { Z?s((g)) _Czlsr(lég) } Do .

Copyright(© 2005 David Fleet and Aaron Hertzmann 10

CSC418/CSCD18/CSC2504 Transformations

Uniform scaling by scalara: p; = { a0]po.

A A

\4
Y

Nonuniform scaling by a« andb: p; = { 8 2]po.

A A

/—>

3>
>

Y

Shearby scalarh: p; = [(1) }f }ﬁo.

e

Reflectionabout they-axis: p; = { _01 (1)]po.

L~

Y

3.2 Affine Transformations

An affine transformation takes a poinp to ¢ according ta; = F(p) = Ap + t, a linear transfor-
mation followed by a translation. You should understandfétiewing proofs.

Copyright(© 2005 David Fleet and Aaron Hertzmann 11

CSC418/CSCD18/CSC2504 Transformations

e The inverse of an affine transformation is also affine, assgiiexists.

Proof:

Let§ = Ap+ ¢ and assumel ' exists, i.edet(A) # 0.

ThenAp = g — ¢, sop = A~1g — A~'f. This can be rewritten gs= Bg + d,
whereB = A~' andd = —A~'%,

Note:
The inverse of a 2D linear transformation is

qi_Jab o d —b
e d Cad—be| —¢ a |

¢ Lines and parallelism are preserved under affine transfoonsa

Proof:
To prove lines are preserved, we must show #tay = F(I())) is a line, where

F(p) = Ap+tandi(\) = py + Ad.

gN) = AN+t
= A(po+ M)+t
= (Apo+1) + \Ad

This is a parametric form of a line throughp, + ¢ with direction Ad.

e Given a closed region, the area under an affine transformaiio+ ¢ is scaled bylet(A).

Note:

— Rotations and translations hawvet(A) = 1.

a 0
0 b] hasdet(A) = ab.

— Singularities havelet(A) = 0.

— ScalingA = {

Example:

) 1
The matrixA = { 00

region will become zero. We havkt(A) = 0, which verifies that any closed
region’s area will be scaled by zero.

maps all points to the-axis, so the area of any closed

Copyright(© 2005 David Fleet and Aaron Hertzmann 12

CSC418/CSCD18/CSC2504 Transformations

e A composition of affine transformations is still affine.

Proof:
Let Fl(]j) — Alﬁ —|— tl andFQ(ﬁ) - Agp —|— t2.
Then,

F(p) = F(Fi(p))
Ay(Ap+1) + 1
= AAip+ (Aot +1o).

Letting A = A, A, andt = Aty + £5, we haveF(p) = Ap + t, and this is an
affine transformation.

3.3 Homogeneous Coordinates

Homogeneous coordinateare another way to represent points to simplify the way inclvhwe
express affine transformations. Normally, bookkeepingld/ecome tedious when affine trans-
formations of the formdp + ¢ are composed. With homogeneous coordinates, affine transfo
tions become matrices, and composition of transformat®@as simple as matrix multiplication.
In future sections of the course we exploit this in much mawerful ways.

Givenp in homogeneous coordinates, to getve dividep by its last component and discard the
last component.

— 3

With homogeneous coordinates, a pgirs augmented with a 1, to forfp= {

All points (ap, o) represent the same poinfor reala # 0.

Example:
The homogeneous pointg,4,2) and (1,2,1) both represent the Cartesian pa
(1,2). It's the orientation of that matters, not its length.

nt

Many transformations become linear in homogeneous coatebn including affine transforma-
tions:
qLB a b p.’L’ [t:E
= +
{qy] [Cd]{py} _ty}

B a b t, Pz
o c d t Py

= [A t]p

Copyright(© 2005 David Fleet and Aaron Hertzmann 13

CSC418/CSCD18/CSC2504 Transformations

To producej rather thang, we can add a row to the matrix:

8

CraAf] v
qzﬁTlpzcdtyp.
0 0 1

This is linear! Bookkeeping becomes simple under compasitio

Example:
Fg(FQ(Fl(ﬁ))), WherEFZQj) = Al(p) + t: becomeSMgMQMlﬁ, WhereMz =

o' 1|

With homogeneous coordinates, the following propertieaffafie transformations become appar-
ent:

o Affine transformations are associative.
For affine transformations;, 5, andF;,

(F3 o} FQ) O F1 = F3 @) (F2 o F1>

e Affine transformations areot commutative.
For affine transformations| and £,

FQOFI#FloFQ.

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representadr Cartesian coordinates, and cannot
be treated in quite the same way. For example, consider tlpaint between two pointg, =
(1,1) andp, = (5,5). The midpoint is(p; + p2)/2 = (3,3). We can represent these points
in homogeneous coordinates gas = (1,1,1) andp, = (5,5,1). Directly applying the same
computation as above gives the same resulting pgiht3, 1). However, we caralso represent
these points ag} = (2,2,2) andp, = (5,5,1). We then havep| + p,)/2 = (7/2,7/2,3/2),
which cooresponds to the Cartesian pgint3, 7/3). This is a different point, and illustrates that
we cannot blindly apply geometric operations to homogeseowrdinates. The simplest solution
is to always convert homogeneous coordinates to Cartesian coongtes. That said, there are
several important operations that can be performed cdyriederms of homogeneous coordinates,
as follows.

Copyright(© 2005 David Fleet and Aaron Hertzmann 14

CSC418/CSCD18/CSC2504 Transformations

Affine transformations. An important case in the previous section is applying an affians-
formation to a point in homogeneous coordinates:

—

F(p)=Ap+t 1)
g)" (2

= Ap= (2
It is easy to see that this operation is correct, since reggraldoes not change the result:

Ky K

Alap) = a(Ap) = a§ = (e, ayf/,)" 3)

which is the same geometric point@s- (', %/, 1)7

Vectors. We can represent a vector= (z,y) in homogeneous coordinates by setting the last
element of the vector to be zero= (z, y,0). However, when adding a vector to a point, the point
must have the third component be 1.
g = p+v (4)
@y,)" = (2p,yp, 1) + (2,9,0) (5)

The result is clearly incorrect if the third component of tleetor is not 0.

Aside:
Homogeneous coordinates are a representation of poiptsjective geometry.

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchicallyreerted parts. For example, a robot arm
might be made up of an upper arm, forearm, palm, and fingersatiRgtat the shoulder on the
upper arm would affect all of the rest of the arm, but rotatimgforearm at the elbow would affect
the palm and fingers, but not the upper arm. A reasonablerbigrahen, would have the upper
arm at the root, with the forearm as its only child, which imtaonnects only to the palm, and the
palm would be the parent to all of the fingers.

Each part in the hierarchy can be modeled in its own localdioates, independent of the other
parts. For a robot, a simple square might be used to modeladatle upper arm, forearm, and
so on. Rigid body transformations are then applied to eachrekative to its parent to achieve
the proper alignment and pose of the object. For exampldijrigers are positioned to be in the
appropriate places in the palm coordinates, the fingers alna jogether are positioned in forearm
coordinates, and the process continues up the hierarctgn ahransformation applied to upper
arm coordinates is also applied to all parts down the hiagarc

Copyright(© 2005 David Fleet and Aaron Hertzmann 15

CSC418/CSCD18/CSC2504 Transformations

3.6 Transformations in OpenGL

OpenGL manages twé x 4 transformation matrices: thmodelview matrix, and theprojection
matrix. Whenever you specify geometry (usiggVer t ex), the vertices are transformed by the
current modelview matrix and then the current projectiotrmaHence, you don’t have to perform
these transformations yourself. You can modify the entsfédbese matrices at any time. OpenGL
provides several utilities for modifying these matriceBeTmodelview matrix is normally used to
represent geometric transformations of objects; the ptioje matrix is normally used to store the
camera transformation. For now, we’ll focus just on the nivides matrix, and discuss the camera
transformation later.

To modify the current matrix, first specify which matrix isigg to be manipulated: ugg Mat r i xMbde(GL_MODE
to modify the modelview matrix. The modelview matrix canritie initialized to the identity with

gl Loadl denti ty(). The matrix can be manipulated by directly filling its valuesultiplying it

by an arbitrary matrix, or using the functions OpenGL pregido multiply the matrix by specific
transformation matriceg(Rot at e, gl Tr ansl at e, andgl Scal e). Note that these transforma-

tions right-multiply the current matrix; this can be confusing since it means ybat specify
transformations in the reverse of the obvious order. Egercivhy does OpenGL right-multiply

the current matrix?

OpenGL provides atacksto assist with hierarchical transformations. There is daeksfor the
modelview matrix and one for the projection matrix. OpenGbvides routines for pushing and
popping matrices on the stack.

The following example draws an upper arm and forearm withukley and elbow joints. The
current modelview matrix is pushed onto the stack and poppddde end of the rendering, so,
for example, another arm could be rendered without the fimamstions from rendering this arm
affecting its modelview matrix. Since each OpenGL transfation is applied by multiplying a
matrix on the right-hand side of the modelview matrix, tr@nsformations occur in reverse order.
Here, the upper arm is translated so that its shoulder possi at the origin, then it is rotated,
and finally it is translated so that the shoulder is in its appate world-space position. Similarly,
the forearm is translated to rotate about its elbow positiben it is translated so that the elbow
matches its position in upper arm coordinates.

gl PushiMatri x();

gl Transl at ef (wor | dShoul der X, wor | dShoul derY, 0. 0f);

dr awShoul der Joi nt () ;

gl Rot at ef (shoul derRot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- upper Ar nShoul der X, -upper Ar nShoul derY, 0.0f);
dr awUpper Ar nShape() ;

gl Transl at ef (upper Ar el bowX, upper Ar nEl bowy, 0. 0f);

Copyright(© 2005 David Fleet and Aaron Hertzmann 16

CSC418/CSCD18/CSC2504 Transformations

dr awEl bowdoi nt () ;

gl Rot at ef (el bowRot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- f or ear nEl bowX, - f orear nEl bowy, 0. 0f);
dr awFor ear nShape() ;

gl PopMat ri x();

Copyright(© 2005 David Fleet and Aaron Hertzmann 17

