
CSC418 / CSCD18 / CSC2504 Texture Mapping

10 Texture Mapping

10.1 Overview

We would like to give objects a more varied and realistic appearance through complex variations
in reflectance that convey textures. There are two main sources of natural texture:

• Surface markings — variations inalbedo (i.e. the total light reflected from ambient and
diffuse components of reflection), and

• Surface relief — variations in 3D shape which introduces local variability in shading.

We will focus only on surface markings.

Examples of surface markings and surface relief

These main issues will be covered:

• Where textures come from,

• How to map textures onto surfaces,

• How texture changes reflectance and shading,

• Scan conversion under perspective warping, and

• Aliasing

10.2 Texture Sources

10.2.1 Texture Procedures

Textures may be defined procedurally. As input, a procedure requires a point on the surface of
an object, and it outputs the surface albedo at that point. Examples of procedural textures include
checkerboards, fractals, and noise.

Copyright c© 2005 David Fleet and Aaron Hertzmann 59



CSC418 / CSCD18 / CSC2504 Texture Mapping

A procedural checkerboard pattern applied to a teapot. The checkerboard texture comes from the
OpenGL programming guide chapter on texture mapping.

10.2.2 Digital Images

To map an arbitrary digital image to a surface, we can define texture coordinates(u, v) ∈ [0, 1]2.
For each point[u0, v0] in texture space, we get a point in the corresponding image.

(0, 0) (1, 0)

(0, 1) (1, 1)

Texture coordinates of a digital image

10.3 Mapping from Surfaces into Texture Space

For each face of a mesh, specify a point(µi, νi) for vertexp̄i. Then define a continuous mapping
from the parametric form of the surfaces̄(α, β) onto the texture, i.e. definem such that(µ, ν) =
m(α, β).

Example:
For a planar patch̄s(α, β) = p̄0 + α~a + β~b, where0 ≤ α ≤ 1 and0 ≤ β ≤ 1.
Then we could useµ = α andν = β.

Copyright c© 2005 David Fleet and Aaron Hertzmann 60



CSC418 / CSCD18 / CSC2504 Texture Mapping

Example:
For a surface of revolution,̄s(α, β) = (cx(α) cos(β), cx(α) sin(β), cz(α)). So let
0 ≤ α ≤ 1 and0 ≤ β ≤ 2π.
Thenµ = α andν = β/2π.

(1, 1)

3D surface Texture space Image

10.4 Textures and Phong Reflectance

Scale texture values in the source image to be in the range0 ≤ τ ≤ 1 and use them to scale the
reflection coefficientsrd andra. That is,

r̃d = τrd,

r̃a = τra.

We could also multiplyτ by the specular reflection, in which case we are simply scaling E from
the Phong model.

10.5 Aliasing

A problem with high resolution texturing is aliasing, whichoccurs when adjacent pixels in a ren-
dered image are sampled from pixels that are far apart in a texture image. By down-sampling—
reducing the size of a texture—aliasing can be reduced for far away or small objects, but then
textured objects look blurry when close to the viewer. What wereally want is a high resolution
texture for nearby viewing, and down-sampled textures for distant viewing. A technique called
mipmapping gives us this by prerendering a texture image at several different scales. For example,
a 256x256 image might be down-sampled to 128x128, 64x64, 32x32, 16x16, and so on. Then it
is up to the renderer to select the correct mipmap to reduce aliasing artifacts at the scale of the
rendered texture.

Copyright c© 2005 David Fleet and Aaron Hertzmann 61



CSC418 / CSCD18 / CSC2504 Texture Mapping

An aliased high resolution texture image (left) and the sametexture after mipmapping (right)

10.6 Texturing in OpenGL

To use texturing in OpenGL, a texturing mode must be enabled.For displaying a 2D texture on
polygons, this is accomplished with

glEnable(GL_TEXTURE_2D);

The dimensions of texture in OpenGL must be powers of 2, and texture coordinates are normalized,
so that(0, 0) is the lower left corner, and(1, 1) is always the upper right corner. OpenGL 2.0,
however, does allow textures of arbitrary size, in which case texture coordinates are based on the
original pixel positions of the texture.

Since multiple textures can be present at any time, the texture to render with must be selected. Use
glGenTextures to create texture handles andglBindTexture to select the texture with a given
handle. A texture can then be loaded from main memory withglTexImage2D For example:

GLuint handles[2];
glGenTextures(2, handles);

glBindTexture(GL_TEXTURE_2D, handles[0]);
// Initialize texture parameters and load a texture with glTexImage2D

glBindTexture(GL_TEXTURE_2D, handles[1]);
// Initialize texture parameters and load another texture

Copyright c© 2005 David Fleet and Aaron Hertzmann 62



CSC418 / CSCD18 / CSC2504 Texture Mapping

There are a number of texture parameters that can be set to affect the behavior of a texture, using
glTexParameteri. For example, texture wrap repeating can be enabled to allowa texture to be
tiled at the borders, or the minifying and magnifying functions can be set to control the quality of
textures as they get very close or far away from the camera. The texture environment can be set
with glTexEnvi, which controls how a texture affects the rendering of the primitives it is attached
to. An example of setting parameters and loading an image follows:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, imageWidth, imageHeight,

0, GL_RGB, GL_UNSIGNED_BYTE, imagePointer);

Mipmaps can be generated automatically by using the GLU function gluBuild2DMipmaps in-
stead ofglTexImage2D.

Once a texture is bound and texturing is enabled, texture coordinates must be supplied for each
vertex, by callingglTexCoord beforeglVertex:

glTexCoord2f(u, v);
glVertex3f(x, y, z);

When textures are no longer needed, they can be removed from the graphics hardware memory
with

glDeleteTextures(2, handles);

Copyright c© 2005 David Fleet and Aaron Hertzmann 63


