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12 Radiometry and Reflection

Until now, we have considered highly simplified models ampbathms for computing lighting and
reflection. These algorithms are easy to understand andecamgdbemented very efficiently; how-
ever, they also lack realism and cannot achieve many impioviaual effects. In this chapter, we
introduce the fundamentals of radiometry and surface tefee that underly more sophisticated
models. In the following chapter, we will describe more athed ray tracing algorithms that take
advantage of these models to produce very realistic andaienmnany real-world phenomena.

12.1 Geometry of lighting

In our discussion of lighting and reflectance we will makeesal/simplifying assumptions. First,
we will ignore time delays in light propagation from one @do another. Second, we will assume
that light is not scattered nor absorbed by the median threwgch it travels, i.e., we will ignore
light scattering due to fog. These assumptions allow uscag®n thegeometryof lighting; i.e.,
we can assume that light travels along straight lines, aodriserved as it travels (e.g., see Fig. 1).

Light Tube

@ )

Figure 1: Given a set of rays within a tube, passing throdgind B but not the sides of the tube,
the flux (radiant power) atl along these rays is equal to thatfatlong the same set of rays.

Before getting into the details of lighting, it will be usefid introduce three key geometric con-

cepts, namelydifferential areassolid angleandforeshortening Each of these geometric concepts
is related to the dependence of light on the distance andtatien between surfaces in a scene
that receive or emit light.

Area differentials: We will need to be able describe the amount of lighting thtirfy an area
on a surface or passing through a region of space. Integratimctions over a surface requires
that we introduce aarea differentialover the surface, denotefl. Just as a 1D differentiatif)
represents an infinitesimal region of the real line, an arffarential represents an infinitesimal
region on a 2D surface.

Example:
Consider a rectangular patéhn thex — y plane. We can specify points in the patch
in terms of ane coordinate and a coordinate, withe € [z, 1],y € [vo, y1]. We ca
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divide the plane intaV M rectangular subpatches, thyeth subpatch bounded by

v <ax <z + Az (1)
v <y <y;+Ay (2)

wherei € [0...N —1],5 € [0...M — 1], Az = (21 — x0)/N andAy = (y1 — yo)/M.
The area of each subpatchds; = AzAy. In the limitasN — oo andM — oo,

dA = dxdy 3)

To compute the area of a smooth surféGeve can break the surface into many tiny
patcheq, j), each with area, ;, and add up these individual areas:

Area(S) = Z Ai,j (4)

In the planar patch above, the area of the patch is:

Area(S) = Z A j = NMAzAy = (1 — x0)(y1 — Yo) (5)

i7j

Computing these individual patch areas for other surfacédfisult. However, tak-
ing the infinite limit we get the general formula:

Area(S) :/sdA (6)

For the planar patch, this becomes:

[ aa- / / dudy = (21 — 20) (31 — 1) 7)

We can create area differentials for any smooth surfacaufately, in most radiometry applica-
tions, we do not actually need to be able to do so for anythihgrahan a plane. We will use area
differentials when we integrate light on the image sensabicky happily, is planar. However, area
differentials are essential to many key definitions and eptgin radiometry.

Solid angle: We need to have a measureasfgular extenin 3D. For example, we need to be
able to talk about what we mean by the field of view of a camerd vee need a way to quantitfy
the width of a directional light (e.g., a spot light).
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Let's consider the situation in 2D first. In 2@ngular extents just the angle between two direc-
tions, and we normally specify angular extentadlians In particular, the angular extent between
two rays emanating from a poigtcan be measured using a circle centereg #tat is, the angular
extent (in radians) is just the circular arc lengtbf the circle between the two directions, divided
by radiusr of the circle,l/r (see Fig. 2). For example, the angular extent of an entictediraving
circumferenc@rr is just27 radians. A half-circle has arclengihr and spans radians.

‘ l
Figure 2: Angular extent in 2D is given yr (radians).

In 3D, the corresponding quantity to 2D angular extent itedadolid angle Analogous to the 2D
case, solid angle is measured as the areba patch on a sphere, divided by the squared radius of
the sphere (Figure 3); i.e.,
a

w = 2 (8)
The unit of measure for solid angle is thteradian(sr). A solid angle oRr steradians corresponds
to a hemisphere of directions. The entire sphere has a sujjié @f 47 sr. As depicted in Figure
2, to find the solid angle of a surfacewith respect to a poing, one projectsS onto a sphere of
radiusr, centered af, along lines througly. This gives us:, so we then divide by? to find the
solid angle subtended by the surface. Note that the solittarig patch does not depend on the

radiusr, since the projected ar@ds proportional ta-2.

Figure 3: The solid angle of a patéhis given by the area of its projection onto a sphere of radius
r, divided by the squared radiug,

Note:
At a surface point with normat, we express the hemisphere of incident and emittant
directions in spherical coordinates. That is, directionge hemispheré are

d= (sin @ cos ¢, sin fsin ¢, cos )" (9)
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whered < [0,7/2] denotes the angle betwedrand the normal, ang € [—, )
measures the direction projected onto the surface.

With direction expressed in this way one can write the ingigiithal solid angle as
dw = sin 6 df do (20)
The infinitesimal solid angle is an area differential for thet sphere.

To see this, note that férheld fixed, if we vary) we trace out a circle of radiusn 0
that is perpendicular t@. For a small changéy, the circular arc has lengtin 6 d¢,
and therefore the area of a small ribbon of angular witdtis justsin 6 df de¢.

de
XK

sin0de

This also allows us to compute the finite solid angle for a @eaof visual direction,
such ag)y < 0 < 0, andgg < ¢ < ¢;. That is, to compute the solid angle we just
integrate the differential solid angle over this region amé sphere« = 1):

1 01
w = /% /90 sin@ df do (11)
b1
= / — cos 9\3; deo (12)
= (¢1 — ¢p)(cosby — cosb) (13)

(Assuming we are in the quadrant where this quantity is pe3it

Foreshortening: Another important geometric property fisreshorteningthe reduction in the
(projected) area of a surface patch as seen from a partipalat or viewer. When the surface
normal points directly at the viewer its effective size {dangle) is maximal. As the surface
normal rotates away from the viewer it appears smaller (€igl). Eventually when the normal
is pointing perpendicular to the viewing direction you dae patch “edge on”; so its projection is
just a line (with zero area).

Putting it all together:  Not surprisingly, the solid angle of a small surface patchhwespect
to a specific viewing location, depends on both on the digtdram the viewing location to the
patch, and on the orientation of the patch with respect toitwging direction.
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q da

~AcosB dA cos©

Figure 4: Foreshortening in 2eft: For a patch with areal, seen from a poing, the patch’s
foreshortened area is approximatelyos 6. This is an approximation, since the distamogaries
over the patch. The angteis the angle between the patch normal and the directign ®ight:

For an infinitesimal patch with are&, the foreshortened area is exactlyf cos 6.

Let g be the point (such as a light source or a viewer) about whictvarg to compute solid angle.
Let p be the location of a small planar surface pafctvith areaA at distance: = ||g — p|| from

¢. Additionally, suppose the surface normal points direatly (Figure 5). In this case, we can
imagine drawing a hemisphere abquwvith radiusr, and the projected areeof this patch will be
approximatelyA. Hence, the solid angle ~ A/r2. In other words, the solid angle is inversely
proportional to distance squared; a more distant objeatwbs less of’s “field of view.” This is

an approximation, however, since the distanwaries over the patch. Nevertheless, if we consider
the limit of an infinitesimal patch with are&4, then the solid angle is exactiipy = dA/r?.

When the surface normal does not point directlyj,atoreshortening plays a significant role. As
the surface normal rotates away from the directioq ef p, the surface, as viewed from poiat
becomes smaller; it projects onto a smaller area on a spkatered af. sphere. So, we say that
the area of the patch, as seen frgnis foreshortenedMore formally, letd be the angle between
the normali and directiong — p. Then, for our infinitesimal surface with aréd, the solid angle

subtended by the tilted patch is
dAcost

T2
The cosine term should look familiar; this is the same cogéme used in Lambertian shading
within the Phong model.

dw = (14)

)

Figure 5: Solid angle of a patch.eft: A patch with normal pointing at Right: A patch with
arbitrary orientation.
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12.2 Elements of Radiometry

The field of radiometry concerns the measurement of liglgciebmagnetic radiation), usually
restricted to the visible wavelengths, in the range 4004#00 Light is often measured in discrete
units called photons. It is difficult to talk about the numieérphotons that illuminate a point
on a surface at a particular time (as it is almost always zdrstead, we talk about the average
number of photons in small (infinitesimal) intervals of spac time, that is, we talk about photon
density, and thereby treat light as a continuous quantttyerahan a photon count. In effect, we
are assuming that there is enough light in the scene so thaiawereat light as a continuous
function of space-time. For example, we will talk about tigiat hitting a specific surface patch as
a continuous function over the patch, rather than disciesdigtrete photons of light.

12.2.1 Basic Radiometric Quantities

Formally, we describe light in terms eo&diant energy You can think of radiant energy as the

totality of the photons emitted from a body over its entirefate and over the entire period of

time it emits light. Radiant energy is denoted®y) and measured in Joules (J). You can think of
radiant energy as describing how much light has been enfitbed (or received by) a surface up

to a timet, starting from some initial timé. *

The main quantity of interest in radiometry power, that is, the rate at which light energy is
emitted or absorbed by an object. This time-varying quantisually calledflux, is measured in
Joules per second ($!). Here we denote flux b (¢):

dQ(t)

O(t) = T (15)

We can compute the total light that hits a surface up to tiae

Q) = / B(r) dr (16)

Flux is sufficiently important that we define a special uninoéasure for it, namely, watts (W).

One watt is one Joule per second; so a 50 watt light bulb dr@dbenergy per second. Most
of this radiant energy is emitted as visible light. The restonverted to thermal energy (heat).
Higher wattage means a brighter light bulb.

Not surprisingly, the light received or emitted by an objeaties over the surface of the object.
This is important since the appearance of an object is ofésed on how the light reflected from

10f course, radiant energy depends on waveleigg it is common to express energy as a function of wavelength
the resulting density functior®)()\), is called spectral energy. This is important since diffiergavelengths are seen
as different colours. Nevertheless, our next major singalifon will be to ignore the dependence of radiant energy on
wavelength. In computer graphics, colours are controliethk relative amounts of power in three separate spectral
bands, namely, Red, Green, and Blue. What we describe inttajger can be applied to each colour channel.
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its surface depends on surface position. Formally, lrgheivedat the surface of an object, as a
function of image position is calledradiance The lightemittedfrom a surface, as a function of
surface position, is often callgddiant exitancgor radiosity).

Irradiance, the incident flux, as a function of surface pasip, is denoted by (5). Remember,
we cannot talk about the amount of light received at a singletpn a surface because the number
of photons received at a single point is generally zero.ebu$tirradiance is the spatial density of
flux, i.e., the amount of light per unit surface area. Thegraeof irradiance over the surface of an
object gives us the total incident flux (i.e., received by dtibject. Accordingly, irradiance is the
spatial derivative of flux. For smooth surfaces we write

dd

- 17)

H(p)

whered A refers to differential surface area. Irradiance is just@oper unit surface area (\W—2).

Example:
For a planar patch in the — y plane, we can write irradiance as a function:ofy)
position on the patch. Also, we havel = dxdy. In this case:

d*®
dxdy

H(z,y) = (18)

These terms are all functions of timesince lighting® may change over time However, we will
leave the dependence on timinplicit in the equations that follow for notational simgliy.

Example:
What is the irradiance, owing to a point light source, on an irfinitesimal patch
S with area dA? Let's say we have a point light source laémitting / watts pe
steradian into all directions:

d® = Idw (29)

In other words, the amount of light from this source is prdijpoial to solid angle,
and independent of direction. Our goal is to compute theliareceH on the patch,
which can be done by subtitution of formulas from this chapte

dd Idw _ IdAcos0 _ I cos@ (20)

H = — =
dA dA dAr? r2

wherep is the position ofS, r = |l — p||, and@ is the angle between the surface
normal and the vector — p. This formula illustrates the importance of solid angle:
the amount of light hitting a surface is proportional to itdigl angle with respect t
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the light sourceA distant patch (with large) receives less light than a nearby patch,
and a foreshortened patch receives less light than a frpatah. Furthermore, the
amount of light hitting the patch is proportional to the mdgéy / of the light source.

12.2.2 Radiance

Of course the light emitted or received by an object dependssual direction as well as surface
position. For example, objects are often illuminated mooenfabove (the sky) than below (the
ground). As a consequence, when the direction of light pyapan is important, we will express
flux as a function of visual direction. This leads to the caintuantity in radiometry, namely,
radiance Radiance is a measure of the rate at which light energy isenmitom a surface in
a particular direction. It is a function of position and ditien, and it is often denoted b (or
L(p, d)). Formally, it is defined as power per steradian per surfeea @V- sr-! - m~2), where the
surface area is defined with respect to a surface patglthait is perpendicular to the directian

Normally, one might think of radiance as a measure of the kghitted from a particular surface

location into a particular direction. The definition abogemore general however. It allows us to
talk about the light travelling in a particular directiorrélngh an arbitrary point in space. In this
case we are measuring surface area with respectittual surface, but we can talk about surface
area nonetheless.

When we talk about the light (radiance) emitted from a paldicsurface into a particular emittant
directiond, we have to be a little more careful because radiance is deiiitbdespect to a surface
perpendicular to the emittant direction, which is usuathy the same orientation as the actual real
surface in question. Accordingly, often radiance is defiag@ower per unfioreshortenedurface
area per solid angle to make explicit the fact that we areguaimirtual surface and not the real
surface to measure area. That is, we are measuring surlscasseen by someone looking at the
surface from somewhere along a ray in the emittant direction

z

— ,

de nA VA = cos 0 dA;
dw 7 g d,
e/
dAS e 7
dA,

Note:
Computing radiant exitance (radiosity)As mentioned above, radiant exitance is
the total amount of flux leaving a surface into the entire tspmére of emittant dj-
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rections, as a function of surface position. Intuitivelyjsi the integral of surface
radiance, but we have to be careful; radiance is defined wghect to unit area on
a surface perpendicular to the emittant direction rathen timit area on the real sur-
face of interest. Before we can integrate radiance we needeaifg all radianc
guantities in terms of unit surface area on the real surfdoedo this one needs to
multiply radiance for emittant directiod, by the ratio of the surface area normal
to d, (i.e., dA), to the real surface area, denotéd,. As discussed above, for an
infinitesimal patch the ratio of these areas is just the fuvgening factor, i.e.,

dA = cosOdA, = 7i-d, dA, , (21)
whered is the angle between the unit vect@?andafe.

Taking this foreshortening factor into account, the relatoetween radiant exitance

-

E(p) and radiancé.(p, d) is given by

PG = | e dde (22)

€Qe

The domain of integratior)., is the hemisphere of possible emittant directions,

Note:
Computing Irradiance: Above we showed that the irradiance on an infinitesimal
surface patcld at pointp owing to a point light source atwith radiant intensity/
is given by
I cosf
H= -2 (23)

r2

wherer = ||g — p|| is the distance between the light source and the surfacé,patc
andd is the angle between the surface normal and the directioheolight source
from the surface patch; — p.

In this case, the radiance @from the point light source direction = p—q/r,ie.,
L(p,d), is simply I /r2. The factorcos § is the foreshortening factor to convert from
area perpendicular to the directidrto area on the surface:
Accordingly, if we consider radiance atfrom the entire hemisphere of possib
incident directions, then the total irradiancepas given by

e

-

H(ﬁ)z/dﬂp(p, —d) it d dw (24)

(Note that incident directions here are outward facing ffm
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Note:
Radiance vs. Irradiance.Radiance and irradiance are very similar concepts — both
describe an amount of light transmitted in space — but it gdrtant to recognize the
distinctions between them. There are several ways of thin&bout the difference;
e Radiance is a function of direction; it is power per foresboed surface area
per steradian in a specific direction. Irradiance is incigewer per surfac
area (not foreshortened); it is not a directional quantity.

[¢)

¢ Radiance (W sr!-m~2) and irradiance (Wm~2) have different units.

e Radiance describes light emitted from a surface. Irradigieseribes light in
cident on a surface. Indeed, from the radiance emitted froesarface we can
compute the incident irradiance at a nearby surface.

12.3 Bidirectional Reflectance Distribution Function

We are now ready to explore how to model the reflectance ptiepesf different materials. Dif-
ferent objects will interact with light in different waysoBe surfaces are mirror-like, while others
scatter light in a wide variety of directions. Surfaces #gtter light often look matte, and appear
similar from different viewing directions. Some objectssalb a significant amount of light; the
colour of an object is largely a result of which wavelengthalisorbs and which wavelengths it
reflects.

One simple model of surface reflectance is refered to as theebiional reflectance distribution
function BRDF). The BRDF describes how light interacts with a surface forlatikely wide
range of common materials. In intuitive terms, it specifiémtfraction of the incoming light from
a given incident direction will be reflected toward a giventtant direction. When multiplied by
the incident power (i.e., the irradiance), one obtains #erdd emittant (i.e., reflected) power.

More precisely, the BRDF is a function of emittant and incidginectionsd, andd;. It is defined
to be the ratio of radiance to irradiance:

e L

de,d;) = — 25

plde, d;) = — (25)

For most common materials the only way to determine the BRDFtls mveasurements. That is,
for a wide range of incident and emittant directions, a nialtés illuminated from one direction
while the reflected light is measured from another directi®his is often a tedious procedure.
In computer graphics it is more common to design (i.e., maReparametric BRDF formulae,
and then vary the parameters of such models to achieve tivedieppearance. Most parametric
models are based on analytic models of certain idealizedmatd, as discussed below.
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12.4 Computing Surface Radiance

When rendering an image of an object or scene, one wants to kaawnuch light is incident at
each pixel of the image plane. (In effect, one wants to comthg image irradiance.) Fortunately
it can be shown that this quantity is linearly related to tben® radiance. In particular, for a point
on an opaque object in a given visual direction, one simpBdseo compute the radiance from
that point on the surface in the direction of the camera. Basatie BRDF model of reflectance,
the surface radiance depends on the incident illuminaticedjance) at the surface, and the BRDF
of course.

Point Light Sources

For example, consider a single point source with radiamnisity /. To compute the irradiance
at a small surface patch we can compute the total flux arrigtrthe surface, and then divide by
the area of the surface to find flux per unit area. More pregisatliant intensity for the source is
given byl = d®/dw. We multiply by the solid angle subtended by the patetto obtain the flux
on the surface®, and then we divide by the surface ark&to obtaind®/dA, that is, irradiance
as in Eqn (17). For a point light source this was shown abce Egn. (20)) to be given by

n-d;

(26)

whereri is the unit surface normall; is the unit vector in the direction of hte light source frore th
surface patch, andis the distance from the patch to the light source.

We now want to compute the radiance from the surface (ewgartbthe camera). Toward this end,
we multiply the irradiancé{ by the BRDF,o(d,, d;), in order to find radiance as a function of the
emittant direction:

(27)

This perspective generalizes naturally to multiple lightrees. That is, the radiance from a point
p on a surface in the direction of the camera is the sum of radmdue to individual light sources.
For J point light sources, at locatiodg with intensities/;, the radiance is given by

.o ﬁ.j
=>" plde, d;) - (28)

Jj=1

wherer; = ||I; — p|| is the distance to thg” source, and; = (I, — p)/r; is the incident direction
of the j*" source.
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Extended Light Sources

Many light sources are not infinitesimal point sources. Raihehe general case we need to be
able to work with extended light sources for which the inaidigght is a continuous function of
incident direction. One way to think of this is to let the nuenlof discrete light sources go to
infinity so that the sum in Eqn (28) becomes an integral.

Here we take a slightly different, but equivalent approaék.discussed above, radiance can be
used to express the light energy transport through any pospace, in any direction of interest.
Thus, given a poing on a surface with unit normal, we can express the radiance throggiiong
the hemisphere of possible incident directiond.§s d_;) for cZ; € ; where); denotes the domain
of plausible incident directions at

Note:

As above, we can erect a spherical coordinate systemm @bward this end, let;
denote an angle measured from the surface normal, ang le¢ an angle in th
surface tangent plane about the normal relative to some Siamte — y coordinate
system in the plane. Then all directions

[¢)

d, = (sin 0; cos ¢;, sin 6; sin ¢;, cos 6;)" (29)

contained i, satisfyd; € [0, /2] and¢; € [—m, 7).

One problem with radiance is the fact that it expresses ¢t fiux in terms of power per unit
area on a surface perpendicular to the direction of inteiésis, for each incident direction we are
using a different plane orientation. In our case we want fress the power per unit area on our
surfaceS, and therefore we need to rescale the radiance in dire@;ibylthe ratio of foreshortened
surface area to surface area. One can show that this is alisbetpby multiplyingZ(p, J;-) by
cosb; = d; - ii, for normalf. The result is now the incident power per unit surface ared (n
foreshortened) per solid angle. We multiply this by soliglanriw to obtain irradiance:

H = L(p, —d_;) cos 0; dw; (30)
Therefore, the resulting surface radiance in the direaidhe camera due to this irradiance is just
p(de, di) L(p, —d;) cost; dw;

If we then accumulate the total radiance from the incidéuairilnation over the entire hemisphere
of possible incident directions we obtain

L(d) = / o, &) L(p, —d) cos b dw, (31)

1 €82
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where, as above, the infinitesimal solid anglé.s = sin 0; df; d¢;.

Light sources vary greatly from scene to scene. In effecermyou take a photograph you are
measuring irradiance at the image plane of the camera fanitetl field of view (angular extent).
This shows how complex illumination sources can be.

Note:

The ideal point light source can also be cast in the framewbik continuous, ex
tended source. To do this we assume that the distributionaadient light can b
modeled by a scaled Dirac delta function. A Dirac delta fiorcé(x) is defined by

D

d(z)=0 for . #0 , and /5(3:) f(x)dx = f(0) (32)

With the light source defined as a delta function, Egn (31yiced to Eqn (27).

12.5 Idealized Lighting and Reflectance Models

We now consider several important special instances of BRDéefso In particular, we are in-
terested in combinations of lighting and BRDF models thatitate efficient shading algorithms.
We discuss how diffuse and specular surfaces can be repedsenBRDFs.

12.5.1 Diffuse Reflection

A diffuse (or matte) surface is one for which the pattern aidihg over the surface appears the
same from different viewpoints. The ideal diffusely reflegtsurface is known as a perfect Lam-
bertian surface. Its radiance is independent of the enitiaection, its BRDF is a constant, and
it reflects all of the incident light (i.e., it absorbs zerongw). The only factor that determines the
appearance (radiance) of a Lambertian surface is therdfergradiance (the incident light). In
this case, with the BRDF constap(Je, dZ) = po, the (constant) radiande. has the form:

La(p.d.) = po / L(p, —d) cos b, des (33)
d

1€8;

Note:

A perfect Lambertian surface reflects all incident lightsatbing none. Thereforg,
the total irradiance over the hemisphere of incident dioestmust equal the radiant
exitance. Setting these quantities to be equal, one can 8taw, = 1/7. The
BRDF for any diffuse surface must therefore have a value betWedl1 /7.

Despite the simplicity of the BRDF, it is not that simple to cartgothe radiance because we still
have an integral over the hemisphere of incident directid®s let's simplify the model further.
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Let's assume a single point light source with intengityt locationl. This gives us

. ii-d,

La(p,de) = po 1 (34)

r2

wherer = ||l — p]| is the distance to the light source frgmandd; = (I — p)/r is the direction of
the source fronp. Of course, the surface normaklso changes witp.

Eqn (34) is much easier to compute, but we can actually makedmputation even easier. Let's
assume that the point source is sufficiently far away tretdd; do not change much with points
p on the object surface. That is, let’s treat them as constdr@n we can simplify Eqn (34) to

Ly(p) =ral5-ii (35)

wherer, is often called the diffuse reflection coefficient, afid the direction of the source. Then
the only quantity that depends on surface posifiesthe surface normai.

Note:
The values - 77 should actually benax(0, 5'- 77). Why? Consider the relationship |of
the light source and surface when this dot product is negativ

12.5.2 Ambient lllumination

The diffuse shading model in Eqn (34) is easy to compute, heh@ppears artificial. The biggest
issue is the point light source assumption, the most obvammsequence of which is that any
surface normal pointing away from the light source (i.ex vihich s 77 < 0) will have a radiance
of zero. A better approximation to the light source is a umf@mbientterm plus a point light
source. This is a still a remarkably crude model, but it's mietter than the point source by itself.

With a uniform illuminant and a constant BRDF, it is easy to d&# the integral in Eqn (33)
becomes a constant. That is, the radiance does not depehe ondntation of the surface because
the illumination is invariant to surface orientation. Asesult we can write the radiance under a
uniform illuminant as

L,(p) =141, (36)

wherer, is often called the ambient reflection coefficient, dpdenotes the integral of the uniform
illuminant.

Note:
If the illuminant is the sum of a point source and a uniformrseuthen the resulting
radiance is the sum of the radiances to the individual seutbat is, the sum of Eqns
(36) and (35).
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12.5.3 Specular Reflection

For specular (mirror) surfaces, the incident light fromtegident direction; is reflected toward
Qunique emittant directiaf.. The emittant direction Iiesjn the same plane as the in¢idigex:tion
d; and the surface normal and the angle betweehandd, is equal to that betweenandd;. One

n

d; d,

can show that the emittant direction is given (ﬁ,y: 2(m - d?)ﬁ - d: For all power fromd:- be
reflected into a single emittant direction the BRDF for a perfeicror must be proportional to a
delta functionp(d,, d;) o< 6(d; — (2(7i - d)7i — d.)).

In particular, if we choose the constant of proportionaditythat the radiant emittance is equal to
the total incident power, then the BRDF becomes:

oo, d) = — 8(d; — (207 - d)7i — ) (37)
7 - d;
In this case, Eqn (31) reduces to
Ls(p7d;> :L(ﬁa_(2<ﬁd;>ﬁ_d;)) (38)

This equation plays a major role in ray tracing.

Off-Axis Specularity:  Many materials exhibit a significant specular componenthirtre-
flectance. But few are perfect mirrors. First, most speculdiases do not reflect all light, and
that is easily handled by introducing a scalar constant imB8§) to attenuate surface radiance
Second, most specular surfaces exhibit some formwiffedxis specular reflectionThat is, many
polished and shiny surfaces (like plastics and metals) kghitin the perfect mirror direction and
in some nearby directions as well. These off-axis spedidaiook a little blurred. Good examples
arehighlightson plastics and metals.

The problem with off-axis specularities is that the BRDF isaroger a simple delta function. The
radiance into a particular emittant direction will now béeated from the incident power over a
range of incident directions about the perfect specul@&ction. This means that, unlike the simple
radiance function in Eqn (38) for perfect measures, we needttrn to the integral in Eqn (31).
Therefore it is not easy to compute radiance in this case.

Like the diffuse case above, one way to simplify the modehwit-axis specularities is to assume
a point light source. With a point light source we can do awity the integral. In that case the
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light from a distant point source in the direction ofs reflected into a range of directions about
the perfect mirror directions: = 2(7i - §)7i — 5. One common model for this is the following:

—

Ly(d,) = r,I max(0,m - d,)°, (39)

wherer, is called the specular reflection coefficient (often equaltor,), I is the incident power
from the point source, and > 0 is a constant that determines the width of the specular ilgigs!.
As « increases, the effective width of the specular reflectiarekeses. In the limit as increases,
this becomes a mirror.

12.5.4 Phong Reflectance Model

The above components, taken together, give us the well-kritivong reflectance model that was
introduced earlier:

- —

L(p,d.) = 141y max(0,5- 1) + ro I, + rslsmax(0,m - de)?, (40)
where

e [,, I;, andl, are parameters that correspond to the power of the lightseedior the ambient,
diffuse, and specular terms;

r., 74 andr, are scalar constants, called reflection coefficients, thtgrchine the relative
magnitudes of the three reflection terms;

« determines the spread of the specurlar highlights;

7 is the surface normal at

s'is the direction of the distant point source;

m is the perfect mirror direction, givemands’; and

andd, is the emittant direction of interest (usually the direotad the camera).
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