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Conventions and Notation

Vectors have an arrow over their variable name:~v. Points are denoted with a bar instead:p̄.
Matrices are represented by an uppercase letter.

When written with parentheses and commas separating elements, consider a vector to be a column

vector. That is,(x, y) =

[

x
y

]

. Row vectors are denoted with square braces and no commas:

[

x y
]

= (x, y)T =

[

x
y

]T

.

The set of real numbers is represented byR. The real Euclidean plane isR2, and similarly Eu-
clidean three-dimensional space isR

3. The set of natural numbers (non-negative integers) is rep-
resented byN.

There are some notable differences between the conventionsused in these notes and those found
in the course text. Here, coordinates of a pointp̄ are written aspx, py, and so on, where the book
uses the notationxp, yp, etc. The same is true for vectors.

Aside:
Text in “aside” boxes provide extra background or information that you are not re-
quired to know for this course.

Acknowledgements

Thanks to Tina Nicholl for feedback on these notes. Alex Kolliopoulos assisted with electronic
preparation of the notes, with additional help from PatrickColeman.

Copyright c© 2005 David Fleet and Aaron Hertzmann v



CSC418 / CSCD18 / CSC2504 Introduction to Graphics

1 Introduction to Graphics

1.1 Raster Displays

The screen is represented by a 2D array of locations calledpixels.

Zooming in on an image made up of pixels

The convention in these notes will follow that of OpenGL, placing the origin in the lower left
corner, with that pixel being at location(0, 0). Be aware that placing the origin in the upper left is
another common convention.

One of2N intensities or colors are associated with each pixel, whereN is the number of bits per
pixel. Greyscale typically has one byte per pixel, for28 = 256 intensities. Color often requires
one byte per channel, with three color channels per pixel: red, green, and blue.

Color data is stored in aframe buffer . This is sometimes called an image map or bitmap.

Primitive operations:

• setpixel(x, y, color)

Sets the pixel at position(x, y) to the given color.

• getpixel(x, y)

Gets the color at the pixel at position(x, y).

Scan conversionis the process of converting basic, low level objects into their corresponding
pixel map representations. This is often an approximation to the object, since the frame buffer is a
discrete grid.

Copyright c© 2005 David Fleet and Aaron Hertzmann 1
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Scan conversion of a circle

1.2 Basic Line Drawing

Set the color of pixels to approximate the appearance of a line from(x0, y0) to (x1, y1).
It should be

• “straight” and pass through the end points.

• independent of point order.

• uniformly bright, independent of slope.

The explicit equation for a line isy = mx + b.

Note:
Given two points(x0, y0) and(x1, y1) that lie on a line, we can solve form andb for
the line. Considery0 = mx0 + b andy1 = mx1 + b.
Subtracty0 from y1 to solve form = y1−y0

x1−x0

andb = y0 −mx0.
Substituting in the value forb, this equation can be written asy = m(x− x0) + y0.

Consider this simple line drawing algorithm:

int x
float m, y
m = (y1 - y0) / (x1 - x0)
for (x = x0; x <= x1; ++x) {

y = m * (x - x0) + y0
setpixel(x, round(y), linecolor)

}

Copyright c© 2005 David Fleet and Aaron Hertzmann 2
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Problems with this algorithm:

• If x1 < x0 nothing is drawn.
Solution:Switch the order of the points ifx1 < x0.

• Consider the cases whenm < 1 andm > 1:

(a) m < 1 (b) m > 1

A different number of pixels are on, which implies differentbrightness between the two.
Solution:Whenm > 1, loop overy = y0 . . . y1 instead ofx, thenx = 1

m
(y − y0) + x0.

• Inefficient because of the number of operations and the use offloating point numbers.
Solution:A more advanced algorithm, called Bresenham’s Line Drawing Algorithm.

1.3 Bresenham’s Algorithm

stay tuned.

1.4 Triangle Rasterization

stay tuned.
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2 Curves

2.1 Parametric Curves

There are multiple ways to represent curves in two dimensions:

• Explicit: y = f(x), givenx, find y.

Example:
The explicit form of a line isy = mx + b. There is a problem with this
representation–what about vertical lines?

• Implicit: f(x, y) = 0, or in vector form,f(p̄) = 0.

Example:
The implicit equation of a line through̄p0 andp̄1 is

(x− x0)(y1 − y0)− (y − y0)(x1 − x0) = 0.

Intuition:
– The direction of the line is the vector~d = p̄1 − p̄0.

– So a vector from̄p0 to any point on the line must be parallel to~d.

– Equivalently, any point on the line must have direction fromp̄0 perpendic-
ular to ~d⊥ = (dy,−dx) ≡ ~n.
This can be checked with~d · ~d⊥ = (dx, dy) · (dy,−dx) = 0.

– The vector~n = (y1 − y0, x0 − x1) is called anormal vector.

– So, putting it all together, for any point̄p on the line, we know that(p̄− p̄0) ·
~n = 0. This is the general form for a line through̄p0 that is perpendicular
(normal) to~n. If you then substitute~n = (y1−y0, x0−x1) into this implicit
equation and simplify the dot product, you get the implicit equation above.

Example:
The implicit equation for a circle of radiusr and center̄pc = (xc, yc) is

(x− xc)
2 + (y − yc)

2 = r2,

or in vector form,
‖p̄− p̄c‖2 = r2.
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• Parametric: p̄ = f̄(λ) wheref̄ : R→ R
2, may be written as̄p(λ) or (x(λ), y(λ)).

Example:
A parametric line through̄p0 andp̄1 is

p̄(λ) = p̄0 + λ~d,

where~d = p̄1 − p̄0.
Note that bounds onλ must be specified:

– Line segment from̄p0 to p̄1: 0 ≤ λ ≤ 1.

– Ray fromp̄0 in the direction of̄p1: 0 ≤ λ <∞.

– Line passing through̄p0 andp̄1: −∞ < λ <∞

Example:
What’s the perpendicular bisector of the line segment between p̄0 andp̄1?

– The midpoint isp̄(λ) whereλ = 1
2
, that is,p̄0 + 1

2
~d = p̄0+p̄1

2
.

– The line perpendicular tōp(λ) has direction parallel to the normal ofp̄(λ),
which is~n = (y1 − y0,−(x1 − x0)).

Hence, the perpendicular bisector is the lineℓ(α) =
(

p̄0 + 1
2
~d
)

+ α~n.

Example:
Find the intersection of the lines̄l(λ) = p̄0 + λ~d0 andf(p̄) = (p̄− p̄1) · ~n1 = 0.

Substitute l̄(λ) into the implicit equationf(p̄) to see what value ofλ
satisfies it:

f
(

l̄(λ)
)

=
(

p̄0 + λ~d0 − p̄1

)

· ~n1

= λ~d0 · ~n1 − (p̄1 − p̄0) · ~n1

= 0

Therefore, if~d0 · ~n1 6= 0,

λ∗ =
(p̄1 − p̄0) · ~n1

~d0 · ~n1

,

and the intersection point is̄l(λ∗). If ~d0 · ~n1 = 0, then the two lines are parallel
with no intersection or they are the same line.
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Example:
The parametric form of a circle with radiusr for 0 ≤ λ < 1 is

p̄(λ) = (r cos(2πλ), r sin(2πλ)).

This is the polar coordinate representation of a circle. There are an infinite
number of parametric representations of most curves, such as circles. Can you
think of others?

An important property of parametric curves is that it is easyto generate points along a curve
by evaluatinḡp(λ) at a sequence ofλ values.

2.1.1 Tangents and Normals

The tangent to a curve at a point is the instantaneous direction of the curve. The line containing
the tangent intersects the curve at a point. It is given by thederivative of the parametric form̄p(λ)
with regard toλ. That is,

~τ(λ) =
dp̄(λ)

dλ
=

(

dx(λ)

dλ
,
dy(λ)

dλ

)

.

Thenormal is perpendicular to the tangent direction. Often we normalize the normal to have unit
length. For closed curves we often talk about an inward-facing and an outward-facing normal.
When the type is unspecified, we are usually dealing with an outward-facing normal.

tangent
normal
n(λ)

τ(λ)

p(λ)

curve

We can also derive the normal from the implicit form. The normal at a point̄p = (x, y) on a curve
defined byf(p̄) = f(x, y) = 0 is:

~n(p̄) = ∇f(p̄)|p̄ =

(

∂f(x, y)

∂x
,
∂f(x, y)

∂y

)

Derivation:
For any curve in implicit form, there also exists a parametric representation̄p(λ) =

Copyright c© 2005 David Fleet and Aaron Hertzmann 6
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(x(λ), y(λ)). All points on the curve must satisfyf(p̄) = 0. Therefore, for any
choice ofλ, we have:

0 = f(x(λ), y(λ))

We can differentiate both side with respect toλ:

0 =
d

dλ
f(x(λ), y(λ)) (1)

0 =
∂f

∂x

dx(λ)

dλ
+

∂f

∂y

dy(λ)

dλ
(2)

0 =

(

∂f

∂x
,
∂f

∂y

)

·
(

dx(λ)

dλ
,
dy(λ)

dλ

)

(3)

0 = ∇f(p̄)|p̄ · ~τ(λ) (4)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of a circle at the origin is:f(x, y) = x2+y2−R2 = 0. The normal
at a point(x, y) on the circle is:∇f = (2x, 2y).

Exercise: show that the normal computed for a line is the same, regardless of whether it is com-
puted using the parametric or implicit forms. Try it for another surface.

2.2 Ellipses

• Implicit: x2

a2 + y2

b2
= 1. This is only for the special case where the ellipse is centered at the

origin with the major and minor axes aligned withy = 0 andx = 0.

a

b

• Parametric: x(λ) = a cos(2πλ), y(λ) = b sin(2πλ), or in vector form

p̄(λ) =

[

a cos(2πλ)
b sin(2πλ)

]

.
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The implicit form of ellipses and circles is common because there is no explicit functional form.
This is becausey is a multifunction ofx.

2.3 Polygons

A polygon is a continuous, piecewise linear, closed planar curve.

• A simplepolygon is non self-intersecting.

• A regular polygon is simple, equilateral, and equiangular.

• An n-gon is a regular polygon withn sides.

• A polygon isconvex if, for any two points selected inside the polygon, the line segment
between them is completely contained within the polygon.

Example:
To find the vertices of ann-gon, findn equally spaced points on a circle.

r

θ

In polar coordinates, each vertex(xi, yi) = (r cos(θi), r sin(θi)), whereθi = i2π
n

for
i = 0 . . . n− 1.

• To translate: Add(xc, yc) to each point.

• To scale: Changer.

• To rotate: Add∆θ to eachθi.

2.4 Rendering Curves in OpenGL

OpenGL does not directly support rendering any curves otherthat lines and polylines. However,
you can sample a curve and draw it as a line strip, e.g.,:

float x, y;
glBegin(GL_LINE_STRIP);
for (float t=0 ; t <= 1 ; t += .01)
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computeCurve( t, &x, &y);
glVertex2f(x, y);

}
glEnd();

You can adjust the step-size to determine how many line segments to draw. Adding line segments
will increase the accuracy of the curve, but slow down the rendering.

The GLU does have some specialized libraries to assist with generating and rendering curves. For
example, the following code renders a disk with a hole in its center, centered about thez-axis.

GLUquadric q = gluNewQuadric();
gluDisk(q, innerRadius, outerRadius, sliceCount, 1);
gluDeleteQuadric(q);

See the OpenGL Reference Manual for more information on theseroutines.
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3 Transformations

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several
purposes:

1. Change coordinate frames (world, window, viewport, device, etc).

2. Compose objects of simple parts with local scale/position/orientation of one part defined
with regard to other parts. For example, for articulated objects.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:

1. Rigid body - Preserves distance and angles.

• Examples: translation and rotation.

2. Conformal - Preserves angles.

• Examples: translation, rotation, and uniform scaling.

3. Affine - Preserves parallelism. Lines remain lines.

• Examples: translation, rotation, scaling, shear, and reflection.

Examples of transformations:

• Translation by vector~t: p̄1 = p̄0 + ~t.

• Rotation counterclockwise byθ: p̄1 =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

p̄0.

Copyright c© 2005 David Fleet and Aaron Hertzmann 10



CSC418 / CSCD18 / CSC2504 Transformations

• Uniform scaling by scalara: p̄1 =

[

a 0
0 a

]

p̄0.

• Nonuniform scaling by a andb: p̄1 =

[

a 0
0 b

]

p̄0.

• Shearby scalarh: p̄1 =

[

1 h
0 1

]

p̄0.

• Reflectionabout they-axis: p̄1 =

[

−1 0
0 1

]

p̄0.

3.2 Affine Transformations

An affine transformation takes a point̄p to q̄ according tōq = F (p̄) = Ap̄ + ~t, a linear transfor-
mation followed by a translation. You should understand thefollowing proofs.
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• The inverse of an affine transformation is also affine, assuming it exists.

Proof:
Let q̄ = Ap̄ + ~t and assumeA−1 exists, i.e.det(A) 6= 0.
ThenAp̄ = q̄ − ~t, so p̄ = A−1q̄ − A−1~t. This can be rewritten as̄p = Bq̄ + ~d,
whereB = A−1 and~d = −A−1~t.

Note:
The inverse of a 2D linear transformation is

A−1 =

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

.

• Lines and parallelism are preserved under affine transformations.

Proof:
To prove lines are preserved, we must show thatq̄(λ) = F (l̄(λ)) is a line, where
F (p̄) = Ap̄ + ~t andl̄(λ) = p̄0 + λ~d.

q̄(λ) = Al̄(λ) + ~t

= A(p̄0 + λ~d) + ~t

= (Ap̄0 + ~t) + λA~d

This is a parametric form of a line throughAp̄0 + ~t with directionA~d.

• Given a closed region, the area under an affine transformation Ap̄ + ~t is scaled bydet(A).

Note:

– Rotations and translations havedet(A) = 1.

– ScalingA =

[

a 0
0 b

]

hasdet(A) = ab.

– Singularities havedet(A) = 0.

Example:

The matrixA =

[

1 0
0 0

]

maps all points to thex-axis, so the area of any closed

region will become zero. We havedet(A) = 0, which verifies that any closed
region’s area will be scaled by zero.
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• A composition of affine transformations is still affine.

Proof:
Let F1(p̄) = A1p̄ + ~t1 andF2(p̄) = A2p̄ + ~t2.
Then,

F (p̄) = F2(F1(p̄))

= A2(A1p̄ + ~t1) + ~t2

= A2A1p̄ + (A2
~t1 + ~t2).

Letting A = A2A1 and~t = A2
~t1 + ~t2, we haveF (p̄) = Ap̄ + ~t, and this is an

affine transformation.

3.3 Homogeneous Coordinates

Homogeneous coordinatesare another way to represent points to simplify the way in which we
express affine transformations. Normally, bookkeeping would become tedious when affine trans-
formations of the formAp̄ + ~t are composed. With homogeneous coordinates, affine transforma-
tions become matrices, and composition of transformationsis as simple as matrix multiplication.
In future sections of the course we exploit this in much more powerful ways.

With homogeneous coordinates, a pointp̄ is augmented with a 1, to form̂p =

[

p̄
1

]

.

All points (αp̄, α) represent the same pointp̄ for realα 6= 0.

Given p̂ in homogeneous coordinates, to getp̄, we dividep̂ by its last component and discard the
last component.

Example:
The homogeneous points(2, 4, 2) and (1, 2, 1) both represent the Cartesian point
(1, 2). It’s the orientation of̂p that matters, not its length.

Many transformations become linear in homogeneous coordinates, including affine transforma-
tions:

[

qx

qy

]

=

[

a b
c d

] [

px

py

]

+

[

tx
ty

]

=

[

a b tx
c d ty

]





px

py

1





=
[

A ~t
]

p̂
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To producêq rather than̄q, we can add a row to the matrix:

q̂ =

[

A ~t
~0T 1

]

p̂ =





a b tx
c d ty
0 0 1



p̂.

This is linear! Bookkeeping becomes simple under composition.

Example:
F3(F2(F1(p̄))), where Fi(p̄) = Ai(p̄) + ~ti becomesM3M2M1p̄, where Mi =
[

Ai
~ti

~0T 1

]

.

With homogeneous coordinates, the following properties ofaffine transformations become appar-
ent:

• Affine transformations are associative.
For affine transformationsF1, F2, andF3,

(F3 ◦ F2) ◦ F1 = F3 ◦ (F2 ◦ F1).

• Affine transformations arenot commutative.
For affine transformationsF1 andF2,

F2 ◦ F1 6= F1 ◦ F2.

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot
be treated in quite the same way. For example, consider the midpoint between two points̄p1 =
(1, 1) and p̄2 = (5, 5). The midpoint is(p̄1 + p̄2)/2 = (3, 3). We can represent these points
in homogeneous coordinates asp̂1 = (1, 1, 1) and p̂2 = (5, 5, 1). Directly applying the same
computation as above gives the same resulting point:(3, 3, 1). However, we canalso represent
these points aŝp′1 = (2, 2, 2) and p̂′2 = (5, 5, 1). We then have(p̂′1 + p̂′2)/2 = (7/2, 7/2, 3/2),
which cooresponds to the Cartesian point(7/3, 7/3). This is a different point, and illustrates that
we cannot blindly apply geometric operations to homogeneous coordinates. The simplest solution
is to always convert homogeneous coordinates to Cartesian coordinates. That said, there are
several important operations that can be performed correctly in terms of homogeneous coordinates,
as follows.
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Affine transformations. An important case in the previous section is applying an affine trans-
formation to a point in homogeneous coordinates:

q̄ = F (p̄) = Ap̄ + ~t (5)

q̂ = Âp̂ = (x′, y′, 1)T (6)

It is easy to see that this operation is correct, since rescaling p̂ does not change the result:

Â(αp̂) = α(Âp̂) = αq̂ = (αx′, αy′, α)T (7)

which is the same geometric point asq̂ = (x′, y′, 1)T

Vectors. We can represent a vector~v = (x, y) in homogeneous coordinates by setting the last
element of the vector to be zero:v̂ = (x, y, 0). However, when adding a vector to a point, the point
must have the third component be 1.

q̂ = p̂ + v̂ (8)

(x′, y′, 1)T = (xp, yp, 1) + (x, y, 0) (9)

The result is clearly incorrect if the third component of thevector is not 0.

Aside:
Homogeneous coordinates are a representation of points inprojective geometry.

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchically connected parts. For example, a robot arm
might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the
upper arm would affect all of the rest of the arm, but rotatingthe forearm at the elbow would affect
the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper
arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the
palm would be the parent to all of the fingers.

Each part in the hierarchy can be modeled in its own local coordinates, independent of the other
parts. For a robot, a simple square might be used to model eachof the upper arm, forearm, and
so on. Rigid body transformations are then applied to each part relative to its parent to achieve
the proper alignment and pose of the object. For example, thefingers are positioned to be in the
appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm
coordinates, and the process continues up the hierarchy. Then a transformation applied to upper
arm coordinates is also applied to all parts down the hierarchy.
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3.6 Transformations in OpenGL

OpenGL manages two4 × 4 transformation matrices: themodelview matrix, and theprojection
matrix. Whenever you specify geometry (usingglVertex), the vertices are transformed by the
current modelview matrix and then the current projection matrix. Hence, you don’t have to perform
these transformations yourself. You can modify the entriesof these matrices at any time. OpenGL
provides several utilities for modifying these matrices. The modelview matrix is normally used to
represent geometric transformations of objects; the projection matrix is normally used to store the
camera transformation. For now, we’ll focus just on the modelview matrix, and discuss the camera
transformation later.

To modify the current matrix, first specify which matrix is going to be manipulated: useglMatrixMode(GL MODELVIEW)

to modify the modelview matrix. The modelview matrix can then be initialized to the identity with
glLoadIdentity(). The matrix can be manipulated by directly filling its values, multiplying it
by an arbitrary matrix, or using the functions OpenGL provides to multiply the matrix by specific
transformation matrices (glRotate, glTranslate, andglScale). Note that these transforma-
tions right-multiply the current matrix; this can be confusing since it means thatyou specify
transformations in the reverse of the obvious order. Exercise: why does OpenGL right-multiply
the current matrix?

OpenGL provides astacksto assist with hierarchical transformations. There is one stack for the
modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and
popping matrices on the stack.

The following example draws an upper arm and forearm with shoulder and elbow joints. The
current modelview matrix is pushed onto the stack and poppedat the end of the rendering, so,
for example, another arm could be rendered without the transformations from rendering this arm
affecting its modelview matrix. Since each OpenGL transformation is applied by multiplying a
matrix on the right-hand side of the modelview matrix, the transformations occur in reverse order.
Here, the upper arm is translated so that its shoulder position is at the origin, then it is rotated,
and finally it is translated so that the shoulder is in its appropriate world-space position. Similarly,
the forearm is translated to rotate about its elbow position, then it is translated so that the elbow
matches its position in upper arm coordinates.

glPushMatrix();

glTranslatef(worldShoulderX, worldShoulderY, 0.0f);
drawShoulderJoint();
glRotatef(shoulderRotation, 0.0f, 0.0f, 1.0f);
glTranslatef(-upperArmShoulderX, -upperArmShoulderY, 0.0f);
drawUpperArmShape();

glTranslatef(upperArmElbowX, upperArmElbowY, 0.0f);
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drawElbowJoint();
glRotatef(elbowRotation, 0.0f, 0.0f, 1.0f);
glTranslatef(-forearmElbowX, -forearmElbowY, 0.0f);
drawForearmShape();

glPopMatrix();
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4 Coordinate Free Geometry

Coordinate free geometry(CFG) is a style of expressing geometric objects and relations that
avoids unnecessary reliance on any specific coordinate system. Representing geometric quantities
in terms of coordinates can frequently lead to confusion, and to derivations that rely on irrelevant
coordinate systems.

We first define the basic quantities:

1. A scalar is just a real number.

2. A point is a location in space. Itdoes nothave any intrinsic coordinates.

3. A vector is a direction and a magnitude. Itdoes nothave any intrinsic coordinates.

A point is not a vector: we cannot add two points together. We cannot compute the magnitude of
a point, or the location of a vector.
Coordinate free geometry defines a restricted class of operations on points and vectors, even though
both are represented as vectors in matrix algebra. The following operations are theonly operations
allowed in CFG.

1. ‖~v‖: magnitude of a vector.

2. p̄1 + ~v1 = p̄2, or~v1 = p̄2 − p̄1.: point-vector addition.

3. ~v1 + ~v2 = ~v3.: vector addition

4. α~v1 = ~v2: vector scaling. Ifα > 0, then~v2 is a new vector with the same direction as~v1, but
magnitudeα‖~v1‖. If α < 0, then the direction of the vector is reversed.

5. ~v1 · ~v2: dot product= ‖~v1‖‖~v2‖ cos(θ), whereθ is the angle between the vectors.

6. ~v1 × ~v2: cross product, where~v1 and~v2 are 3D vectors. Produces a new vector perpedicular
to ~v1 and to~v2, with magnitude‖~v1‖‖~v2‖ sin(θ). The orientation of the vector is determined
by the right-hand rule (see textbook).

7.
∑

i αi~vi = ~v: Linear combination of vectors

8.
∑

i αip̄i = p̄, if
∑

i αi = 1: affine combination of points.

9.
∑

i αip̄i = ~v, if
∑

i αi = 0
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Example:

• p̄1 + (p̄2 − p̄3) = p̄1 + ~v = p̄4.

• αp̄2 − αp̄1 = α~v1 = ~v2.

• 1
2
(p1 + p2) = p1 + 1

2
(p̄2 − p̄1) = p̄1 + 1

2
~v = p̄3.

Note:
In order to understand these formulas, try drawing some pictures to illustrate different
cases (like the ones that were drawn in class).

Note that operations that arenot in the list are undefined.
These operations have a number of basic properties, e.g., commutivity of dot product:~v1 · ~v2 =
~v2 · ~v1, distributivity of dot product:~v1 · (~v2 + ~v3) = ~v1 · ~v2 + ~v1 · ~v3.
CFG helps us reason about geometry in several ways:

1. When reasoning about geometric objects, we only care aboutthe intrinsic geometric prop-
erties of the objects, not their coordinates. CFG prevents usfrom introducing irrelevant
concepts into our reasoning.

2. CFG derivations usually provide much more geometric intuition for the steps and for the
results. It is often easy to interpret the meaning of a CFG formula, whereas a coordinate-
based formula is usually quite opaque.

3. CFG derivations are usually simpler than using coordinates, since introducing coordinates
often creates many more variables.

4. CFG provides a sort of “type-checking” for geometric reasoning. For example, if you derive
a formula that includes a term̄p · ~v, that is, a “point dot vector,” then there may be a bug
in your reasoning. In this way, CFG is analogous to type-checking in compilers. Although
you could do all programming in assembly language — which does not do type-checking
and will happily led you add, say, a floating point value to a function pointer — most people
would prefer to use a compiler which performs type-checkingand can thus find many bugs.

In order toimplementgeometric algorithms we need to use coordinates. These coordinates are part
of the representation of geometry — they are not fundamentalto reasoning about geometry itself.

Example:
CFG says that we cannot add two points; there is no meaning to this operation. But
what happens if we try to do so anyway, using coordinates?
Suppose we have two points:p̄0 = (0, 0) andp̄1 = (1, 1), and we add them together
coordinate-wise:p̄2 = p̄0 + p̄1 = (1, 1). This is not a valid CFG operation, but
we have done it anyway just to tempt fate and see what happens.We see that the
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resulting point is the same as one of the original points:p̄2 = p̄1.
Now, on the other hand, suppose the two points were represented in a different coor-
dinate frame:̄q0 = (1, 1) andq̄1 = (2, 2). The points̄q0 andq̄1 are thesamepoints as
p̄0 andp̄1, with the same vector between them, but we have just represented them in
a different coordinate frame, i.e., with a different origin. Adding together the points
we getq̄2 = q̄0 + q̄1 = (3, 3). This is adifferentpoint from q̄0 andq̄1, whereas before
we got the same point.
The geometric relationship of the result of adding two points depends on the coordi-
nate system. There is no clear geometric interpretation foradding two points.

Aside:
It is actually possible to define CFG with far fewer axioms thanthe ones listed above.
For example, the linear combination of vectors is simply addition and scaling of
vectors.
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5 3D Objects

5.1 Surface Representations

As with 2D objects, we can represent 3D objects inparametric and implicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “height fields” — but we will not cover
them here).

5.2 Planes

• Implicit: (p̄ − p̄0) · ~n = 0, wherep̄0 is a point inR
3 on the plane, and~n is a normal vector

perpendicular to the plane.

n

p
0

A plane can be defined uniquely by three non-colinear pointsp̄1, p̄2, p̄3. Let~a = p̄2− p̄1 and
~b = p̄3 − p̄1, so~a and~b are vectors in the plane. Then~n = ~a ×~b. Since the points are not
colinear,‖~n‖ 6= 0.

• Parametric: s̄(α, β) = p̄0 + α~a + β~b, for α, β ∈ R.

Note:
This is similar to the parametric form of a line:l̄(α) = p̄0 + α~a.

A planar patch is a parallelogram defined by bounds onα andβ.

Example:
Let 0 ≤ α ≤ 1 and0 ≤ β ≤ 1:

a

bp
0
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5.3 Surface Tangents and Normals

Thetangent to a curve at̄p is the instantaneous direction of the curve atp̄.

The tangent plane to a surface at̄p is analogous. It is defined as the plane containing tangent
vectors to all curves on the surface that go throughp̄.

A surface normalat a pointp̄ is a vector perpendicular to a tangent plane.

5.3.1 Curves on Surfaces

The parametric form̄p(α, β) of a surface defines a mapping from 2D points to 3D points: every
2D point (α, β) in R

2 corresponds to a 3D point̄p in R
3. Moreover, consider a curvēl(λ) =

(α(λ), β(λ)) in 2D — there is a corresponding curve in 3D contained within the surface:̄l∗(λ) =
p̄(l̄(λ)).

5.3.2 Parametric Form

For a curvēc(λ) = (x(λ), y(λ), z(λ))T in 3D, the tangent is

dc̄(λ)

dλ
=

(

dx(λ)

dλ
,
dy(λ)

dλ
,
dz(λ)

dλ

)

. (10)

For a surface point̄s(α, β), two tangent vectors can be computed:

∂s̄

∂α
and

∂s̄

∂β
. (11)

Derivation:
Consider a point(α0, β0) in 2D which corresponds to a 3D points̄(α0, β0). Define
two straight lines in 2D:

d̄(λ1) = (λ1, β0)
T (12)

ē(λ2) = (α0, λ2)
T (13)

These lines correspond to curves in 3D:

d̄∗(λ1) = s̄(d̄(λ1)) (14)

ē∗(λ2) = s̄(d̄(λ2)) (15)
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Using the chain rule for vector functions, the tangents of these curves are:

∂d̄∗

∂λ1

=
∂s̄

∂α

∂d̄α

∂λ1

+
∂s̄

∂β

∂d̄β

∂λ1

=
∂s̄

∂α
(16)

∂ē∗

∂λ2

=
∂s̄

∂α

∂ēα

∂λ2

+
∂s̄

∂β

∂ēβ

∂λ2

=
∂s̄

∂β
(17)

The normal of̄s atα = α0, β = β0 is

~n(α0, β0) =

(

∂s̄

∂α

∣

∣

∣

∣

α0,β0

)

×
(

∂s̄

∂β

∣

∣

∣

∣

α0,β0

)

. (18)

The tangent plane is a plane containing the surface ats̄(α0, β0) with normal vector equal to the
surface normal. The equation for the tangent plane is:

~n(α0, β0) · (p̄− s̄(α0, β0)) = 0. (19)

What if we used different curves in 2D to define the tangent plane? It can be shown that we get the
same tangent plane; in other words, tangent vectors of all 2Dcurves through a given surface point
are contained within a single tangent plane. (Try this as an exercise).

Note:
The normal vector is not unique. If~n is a normal vector, then any vectorα~n is also
normal to the surface, forα ∈ R. What this means is that the normal can be scaled,
and the direction can be reversed.

5.3.3 Implicit Form

In the implicit form, a surface is defined as the set of pointsp̄ that satisfyf(p̄) = 0 for some
functionf . A normal is given by the gradient off ,

~n(p̄) = ∇f(p̄)|p̄ (20)

where∇f =
(

∂f(p̄)
∂x

, ∂f(p̄)
∂y

, ∂f(p̄)
∂z

)

.

Derivation:
Consider a 3D curvēc(λ) that is contained within the 3D surface, and that passes
throughp̄0 atλ0. In other words,̄c(λ0) = p̄0 and

f(c̄(λ)) = 0 (21)
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for all λ. Differentiating both sides gives:

∂f

∂λ
= 0 (22)

Expanding the left-hand side, we see:

∂f

∂λ
=

∂f

∂x

∂c̄x

∂λ
+

∂f

∂y

∂c̄y

∂λ
+

∂f

∂z

∂c̄z

∂λ
(23)

= ∇f(p̄)|p̄ ·
dc̄

dλ
= 0 (24)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of a sphere is:f(p̄) = ‖p̄ − c̄‖2 − R2 = 0. The normal at a point
p̄ is: ∇f = 2(p̄− c̄).

Exercise: show that the normal computed for a plane is the same, regardless of whether it is
computed using the parametric or implicit forms. (This was done in class). Try it for another
surface.

5.4 Parametric Surfaces

5.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.

α

β

p
01 p

11

p
00

p
10

l
1
(α)

l
0
(α)

Given p̄00, p̄01, p̄10, p̄11, define

l̄0(α) = (1− α)p̄00 + αp̄10,

l̄1(α) = (1− α)p̄01 + αp̄11.
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Then connect̄l0(α) andl̄1(α) with a line:

p̄(α, β) = (1− β)l̄0(α) + βl̄1(α),

for 0 ≤ α ≤ 1 and0 ≤ β ≤ 1.

Question: when is a bilinear patch not equivalent to a planarpatch? Hint: a planar patch is defined
by 3 points, but a bilinear patch is defined by 4.

5.4.2 Cylinder

A cylinder is constructed by moving a point on a linel along a planar curvep0(α) such that the
direction of the line is held constant.

If the direction of the linel is ~d, the cylinder is defined as

p̄(α, β) = p0(α) + β~d.

A right cylinder has~d perpendicular to the plane containingp0(α).

A circular cylinder is a cylinder wherep0(α) is a circle.

Example:
A right circular cylinder can be defined byp0(α) = (r cos(α), r sin(α), 0), for 0 ≤
α < 2π, and~d = (0, 0, 1).

Sop0(α, β) = (r cos(α), r sin(α), β), for 0 ≤ β ≤ 1.

To find the normal at a point on this cylinder, we can use the implicit form
f(x, y, z) = x2 + y2 − r2 = 0 to find∇f = 2(x, y, 0).

Using the parametric form directly to find the normal, we have

∂p̄

∂α
= r(− sin(α), cos(α), 0), and

∂p̄

∂β
= (0, 0, 1), so

∂p̄

∂α
× ∂p̄

∂β
= (r cos(α)r sin(α), 0).

Note:
The cross product of two vectors~a = (a1, a2, a3) and~b = (b1, b2, b3) can
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be found by taking the determinant of the matrix,




i j k
a1 a2 a3

b1 b2 b3



.

5.4.3 Surface of Revolution

To form asurface of revolution, we revolve a curve in thex-z plane, c̄(β) = (x(β), 0, z(β)),
about thez-axis.

Hence, each point on̄c traces out a circle parallel to thex-y plane with radius|x(β)|. Circles then
have the form(r cos(α), r sin(α)), whereα is the parameter of revolution. So the rotated surface
has the parametric form

s̄(α, β) = (x(β) cos(α), x(β) sin(α), z(β)).

Example:
If c̄(β) is a line perpendicular to thex-axis, we have a right circular cylinder.

A torus is a surface of revolution:

c̄(β) = (d + r cos(β), 0, r sin(β)).

5.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicit form of a quadric in the
standard position is

ax2 + by2 + cz2 + d = 0,

ax2 + by2 + ez = 0,

for a, b, c, d, e ∈ R. There are six basic types of quadric surfaces, which dependon the signs of the
parameters.
They are the ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All but the hyperbolic paraboloid may be ex-
pressed as a surface of revolution.
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Example:
An ellipsoid has the implicit form

x2

a2
+

y2

b2
+

z2

c2
− 1 = 0.

In parametric form, this is

s̄(α, β) = (a sin(β) cos(α), b sin(β) sin(α), c cos(β)),

for β ∈ [0, π] andα ∈ (−π, π].

5.4.5 Polygonal Mesh

A polygonal meshis a collection of polygons (vertices, edges, and faces). Aspolygons may be
used to approximate curves, a polygonal mesh may be used to approximate a surface.

vertex

edge

face

A polyhedron is a closed, connected polygonal mesh. Each edge must be shared by two faces.

A facerefers to a planar polygonal patch within a mesh.

A mesh issimplewhen its topology is equivalent to that of a sphere. That is, it has no holes.

Given a parametric surface,s̄(α, β), we can sample values ofα andβ to generate a polygonal mesh
approximatinḡs.

5.5 3D Affine Transformations

Three dimensional transformations are used for many different purposes, such as coordinate trans-
forms, shape modeling, animation, and camera modeling.
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An affine transform in 3D looks the same as in 2D:F (p̄) = Ap̄ + ~t for A ∈ R
3×3, p̄,~t ∈ R

3. A
homogeneous affine transformation is

F̂ (p̂) = M̂p̂, wherep̂ =

[

p̄
1

]

, M̂ =

[

A ~t
~0T 1

]

.

Translation:A = I, ~t = (tx, ty, tz).

Scaling:A = diag(sx, sy, sz), ~t = ~0.

Rotation:A = R, ~t = ~0, anddet(R) = 1.

3D rotations are much more complex than 2D rotations, so we will consider only elementary
rotations about thex, y, andz axes.

For a rotation about thez-axis, thez coordinate remains unchanged, and the rotation occurs in the
x-y plane. So if̄q = Rp̄, thenqz = pz. That is,

[

qx

qy

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

px

py

]

.

Including thez coordinate, this becomes

Rz(θ) =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



.

Similarly, rotation about thex-axis is

Rx(θ) =





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



.

For rotation about they-axis,

Ry(θ) =





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)



.
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5.6 Spherical Coordinates

Any three dimensional vector~u = (ux, uy, uz) may be represented inspherical coordinates.
By computing a polar angleφ counterclockwise about they-axis from thez-axis and an azimuthal
angleθ counterclockwise about thez-axis from thex-axis, we can define a vector in the appropriate
direction. Then it is only a matter of scaling this vector to the correct length(u2

x + u2
y + u2

z)
−1/2 to

match~u.

x

y

z

u

uxy

θ

φ

Given anglesφ andθ, we can find a unit vector as~u = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Given a vector~u, its azimuthal angle is given byθ = arctan
(

uy

ux

)

and its polar angle isφ =

arctan
(

(u2
x+u2

y)1/2

uz

)

. This formula does not require that~u be a unit vector.

5.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in finding the rotation of apoint about an arbitrary line. Let
l̄(λ) = λ~u with ‖~u‖ = 1, and~u having azimuthal angleθ and polar angleφ. We may compose
elementary rotations to get the effect of rotating a pointp̄ aboutl̄(λ) by a counterclockwise angle
ρ:

1. Align ~u with thez-axis.

• Rotate by−θ about thez-axis so~u goes to thexz-plane.

• Rotate up to thez-axis by rotating by−φ about they-axis.

Hence,̄q = Ry(−φ)Rz(−θ)p̄

2. Apply a rotation byρ about thez-axis:Rz(ρ).
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3. Invert the first step to move thez-axis back to~u: Rz(θ)Ry(φ) = (Ry(−φ)Rz(−θ))−1.

Finally, our formula is̄q = R~u(ρ)p̄ = Rz(θ)Ry(φ)Rz(ρ)Ry(−φ)Rz(−θ)p̄.

5.7 Nonlinear Transformations

Affine transformations are a first-order model of shape deformation. With affine transformations,
scaling and shear are the simplest nonrigid deformations. Common higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scaling in x andy for all z, as in

q̄ =





a 0 0
0 b 0
0 0 1



p̄,

let a andb be functions ofz, so

q̄ =





a(p̄z) 0 0
0 b(p̄z) 0
0 0 1



p̄.

A linear taper looks likea(z) = α0 + α1z.
A quadratic taper would bea(z) = α0 + α1z + α2z

2.

x

y

z

(c) Linear taper

x

y

z

(d) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with a list of vertices and a list of triangle faces. Each vertex
consists of three floating point values for thex, y, andz positions, and a face consists of three
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indices of vertices in the vertex list. Representing a mesh this way reduces memory use, since each
vertex needs to be stored once, rather than once for every face it is on; and this gives us connectivity
information, since it is possible to determine which faces share a common vertex. This can easily
be extended to represent polygons with an arbitrary number of vertices, but any polygon can be
decomposed into triangles. A tetrahedron can be represented with the following lists:

Vertex index x y z
0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1

Face index Vertices
0 0, 1, 2
1 0, 3, 1
2 1, 3, 2
3 2, 3, 0

Notice that vertices are specified in a counter-clockwise order, so that the front of the face and
back can be distinguished. This is the default behavior for OpenGL, although it can also be set
to take face vertices in clockwise order. Lists of normals and texture coordinates can also be
specified, with each face then associated with a list of vertices and corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled to generate a polygonal mesh. Consider the
surface of revolution

S̄(α, β) = [x(α) cos β, x(α) sin β, z(α)]T

with the profileC̄(α) = [x(α), 0, z(α)]T andβ ∈ [0, 2π].

To take a uniform sampling, we can use

∆α =
α1 − α0

m
, and∆β =

2π

n
,

wherem is the number of patches to take along thez-axis, andn is the number of patches to take
around thez-axis.

Each patch would consist of four vertices as follows:

Sij =









S̄(i∆α, j∆β)
S̄((i + 1)∆α, j∆β)
S̄((i + 1)∆α, (j + 1)∆β)
S̄(i∆α, (j + 1)∆β)









=









S̄i,j

S̄i+1,j

S̄i+1,j+1

S̄i,j+1









, for
i ∈ [0,m− 1],
j ∈ [0, n− 1]

To render this as a triangle mesh, we musttesselatethe sampled quads into triangles. This is
accomplished by defining trianglesPij andQij givenSij as follows:

Pij = (S̄i,j, S̄i+1,j, S̄i+1,j+1), andQij = (S̄i,j, S̄i+1,j+1, S̄i,j+1)
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6 Camera Models

Goal: To model basic geometry of projection of 3D points, curves, and surfaces onto a 2D surface,
theview planeor image plane.

6.1 Thin Lens Model

Most modern cameras use a lens to focus light onto the view plane (i.e., the sensory surface). This
is done so that one can capture enough light in a sufficiently short period of time that the objects do
not move appreciably, and the image is bright enough to show significant detail over a wide range
of intensities and contrasts.

Aside:
In a conventional camera, the view plane contains either photoreactive chemicals;
in a digital camera, the view plane contains a charge-coupled device (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). In the human eye, the
view plane is a curved surface called theretina, and and contains a dense array of
cells with photoreactive molecules.

Lens models can be quite complex, especially for compound lens found in most cameras. Here we
consider perhaps the simplist case, known widely as the thinlens model. In the thin lens model,
rays of light emitted from a point travel along paths throughthe lens, convering at a point behind
the lens. The key quantity governing this behaviour is called the focal lengthof the lens. The
focal length,,|f |, can be defined as distance behind the lens to which rays from an infinitely distant
source converge in focus.

view plane
lens

z
0

surface point

optical axis

z
1

More generally, for the thin lens model, ifz1 is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for a focal length|f |, the rays from that surface
point will be in focus at a distancez0 behind the lens center, wherez1 andz0 satisfy the thin lens
equation:

1

|f | =
1

z0

+
1

z1

(25)
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6.2 Pinhole Camera Model

A pinhole camera is an idealization of the thin lens as aperture shrinks to zero.

view plane

infinitesimal

pinhole

Light from a point travels along a single straight path through a pinhole onto the view plane. The
object is imaged upside-down on the image plane.

Note:
We use a right-handed coordinate system for the camera, withthex-axis as the hor-
izontal direction and they-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negativez-axis.

-z

y

z

x

Here is another way of thinking about the pinhole model. Suppose you view a scene with one eye
looking through a square window, and draw a picture of what you see through the window:

(Engraving by Albrecht D̈urer, 1525).
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The image you’d get corresponds to drawing a ray from the eye position and intersecting it with
the window. This is equivalent to the pinhole camera model, except that the view plane is in front
of the eye instead of behind it, and the image appears rightside-up, rather than upside down. (The
eye point here replaces the pinhole). To see this, consider tracing rays from scene points through a
view plane behind the eye point and one in front of it:

For the remainder of these notes, we will consider this camera model, as it is somewhat easier to
think about, and also consistent with the model used by OpenGL.

Aside:
The earliest cameras were room-sized pinhole cameras, calledcamera obscuras. You
would walk in the room and see an upside-down projection of the outside world on
the far wall. The wordcamerais Latin for “room;” camera obscurameans “dark
room.”

18th-century camera obscuras. The camera on the right uses amirror in the roof to
project images of the world onto the table, and viewers may rotate the mirror.

6.3 Camera Projections

Consider a point̄p in 3D space oriented with the camera at the origin, which we want to project
onto the view plane. To projectpy to y, we can use similar triangles to gety = f

pz
py. This is

perspective projection.

Note thatf < 0, and the focal length is|f |.

In perspective projection, distant objects appear smallerthan near objects:
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pinhole image

f

y

z

p
y

p
z

Figure 1: *
Perspective projection

The man without the hat appears to be two different sizes, even though the two images of him have
identical sizes when measured in pixels. In 3D, the man without the hat on the left is about 18
feet behind the man with the hat. This shows how much you mightexpect size to change due to
perspective projection.

6.4 Orthographic Projection

For objects sufficiently far away, rays are nearly parallel,and variation inpz is insignificant.
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Here, the baseball players appear to be about the same heightin pixels, even though the batter
is about 60 feet away from the pitcher. Although this is an example of perspective projection, the
camera is so far from the players (relative to the camera focal length) that they appear to be roughly
the same size.

In the limit, y = αpy for some real scalarα. This isorthographic projection :

y

z

image

6.5 Camera Position and Orientation

Assume camera coordinates have their origin at the “eye” (pinhole) of the camera,̄e.

y

z

x

g
e

w

u

v

Figure 2:

Let ~g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera
z-axis) is

~w =
−~g

‖~g‖ (26)
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We need two more orthogonal vectors~u and~v to specify a camera coordinate frame, with~u and
~v parallel to the view plane. It may be unclear how to choose them directly. However, we can
instead specify an “up” direction. Of course this up direction will not be perpendicular to the gaze
direction.

Let~t be the “up” direction (e.g., toward the sky so~t = (0, 1, 0)). Then we want~v to be the closest
vector in the viewplane to~t. This is really just the projection of~t onto the view plane. And of
course,~u must be perpendicular to~v and ~w. In fact, with these definitions it is easy to show that~u
must also be perpendicular to~t, so one way to compute~u and~v from~t and~g is as follows:

~u =
~t× ~w

‖~t× ~w‖
~v = ~w × ~u (27)

Of course, we could have use many different “up” directions,so long as~t× ~w 6= 0.

Using these three basis vectors, we can define acamera coordinate system, in which 3D points are
represented with respect to the camera’s position and orientation. The camera coordinate system
has its origin at the eye point̄e and has basis vectors~u, ~v, and~w, corresponding to thex, y, andz
axes in the camera’s local coordinate system. This explainswhy we chose~w to point away from
the image plane: the right-handed coordinate system requires thatz (and, hence,~w) point away
from the image plane.
Now that we know how to represent the camera coordinate framewithin the world coordinate
frame we need to explicitly formulate the rigid transformation from world to camera coordinates.
With this transformation and its inverse we can easily express points either in world coordinates or
camera coordinates (both of which are necessary).
To get an understanding of the transformation, it might be helpful to remember the mapping from
points in camera coordinates to points in world coordinates. For example, we have the following
correspondences between world coordinates and camera coordinates: Using such correspondences

Camera coordinates(xc, yc, zc) World coordinates(x, y, z)
(0, 0, 0) ē
(0, 0, f) ē + f ~w
(0, 1, 0) ē + ~v
(0, 1, f) ē + ~v + f ~w

it is not hard to show that for a general point expressed in camera coordinates as̄pc = (xc, yc, zc),
the corresponding point in world coordinates is given by

p̄w = ē + xc~u + yc~v + zc ~w (28)

=
[

~u ~v ~w
]

p̄c + ē (29)

= Mcwp̄c + ē. (30)
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where

Mcw =
[

~u ~v ~w
]

=





u1 v1 w1

u2 v2 w2

u3 v3 w3



 (31)

Note: We can define the same transformation for points in homogeneous coordinates:

M̂cw =

[

Mcw ē
~0T 1

]

.

Now, we also need to find the inverse transformation, i.e., from world to camera coordinates.
Toward this end, note that the matrixMcw is orthonormal. To see this, note that vectors~u, ~v
and, ~w are all of unit length, and they are perpendicular to one another. You can also verify this
by computingMT

cwMcw. BecauseMcw is orthonormal, we can express the inverse transformation
(from camera coordinates to world coordinates) as

p̄c = MT
cw(p̄w − ē)

= Mwcp̄
w − d̄ ,

whereMwc = MT
cw =





~uT

~vT

~wT



. (why?), andd̄ = MT
cwē.

In homogeneous coordinates,p̂c = M̂wcp̂
w, where

M̂v =

[

Mwc −Mwcē
~0T 1

]

=

[

Mwc
~0

~0T 1

][

I −ē
~0T 1

]

.

This transformation takes a point from world to camera-centered coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection using the idea of similar triangles. Here we
consider a complementary algebraic formulation. To begin,we are given

• a pointp̄c in camera coordinates (uvw space),

• center of projection (eye or pinhole) at the origin in cameracoordinates,

• image plane perpendicular to thez-axis, through the point(0, 0, f), with f < 0, and
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• line of sight is in the direction of the negativez-axis (in camera coordinates),

we can find the intersection of the ray from the pinhole top̄c with the view plane.

The ray from the pinhole tōpc is r̄(λ) = λ(p̄c − 0̄).

The image plane has normal(0, 0, 1) = ~n and contains the point(0, 0, f) = f̄ . So a point̄xc is on
the plane when(x̄c − f̄) · ~n = 0. If x̄c = (xc, yc, zc), then the plane satisfieszc − f = 0.

To find the intersection of the planezc = f and ray~r(λ) = λp̄c, substitute~r into the plane equation.
With p̄c = (pc

x, p
c
y, p

c
z), we haveλpc

z = f , soλ∗ = f/pc
z, and the intersection is

~r(λ∗) =

(

f
pc

x

pc
z

, f
pc

y

pc
z

, f

)

= f

(

pc
x

pc
z

,
pc

y

pc
z

, 1

)

≡ x̄∗. (32)

The first two coordinates of this intersectionx̄∗ determine the image coordinates.

2D points in the image plane can therefore be written as
[

x∗

y∗

]

=
f

pc
z

[

pc
x

pc
y

]

=

[

1 0 0
0 1 0

]

f

pc
z

p̄c.

The mapping from̄pc to (x∗, y∗, 1) is calledperspective projection.

Note:
Two important properties of perspective projection are:
• Perspective projection preserves linearity. In other words, the projection of a

3D line is a line in 2D. This means that we can render a 3D line segment by
projecting the endpoints to 2D, and then draw a line between these points in
2D.

• Perspective projection does not preserve parallelism: twoparallel lines in 3D
do not necessarily project to parallel lines in 2D. When the projected lines inter-
sect, the intersection is called avanishing point, since it corresponds to a point
infinitely far away. Exercise: when do parallel lines project to parallel lines and
when do they not?

Aside:
The discovery of linear perspective, including vanishing points, formed a corner-
stone of Western painting beginning at the Renaissance. On the other hand, defying
realistic perspective was a key feature of Modernist painting.

To see that linearity is preserved, consider that rays from points on a line in 3D through a pinhole
all lie on a plane, and the intersection of a plane and the image plane is a line. That means to draw
polygons, we need only to project the vertices to the image plane and draw lines between them.

Copyright c© 2005 David Fleet and Aaron Hertzmann 39



CSC418 / CSCD18 / CSC2504 Camera Models

6.7 Homogeneous Perspective

The mapping of̄pc = (pc
x, p

c
y, p

c
z) to x̄∗ = f

pc
z
(pc

x, p
c
y, p

c
z) is just a form of scaling transformation.

However, the magnitude of the scaling depends on the depthpc
z. So it’s not linear.

Fortunately, the transformation can be expressed linearly(ie as a matrix) in homogeneous coordi-
nates. To see this, remember thatp̂ = (p̄, 1) = α(p̄, 1) in homogeneous coordinates. Using this
property of homogeneous coordinates we can writex̄∗ as

x̂∗ =

(

pc
x, p

c
y, p

c
z,

pc
z

f

)

.

As usual with homogeneous coordinates, when you scale the homogeneous vector by the inverse
of the last element, when you get in the first three elements isprecisely the perspective projection.
Accordingly, we can expresŝx∗ as a linear transformation of̂pc:

x̂∗ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0









p̂c ≡ M̂pp̂
c.

Try multiplying this out to convince yourself that this all works.
Finally, M̂p is called the homogeneous perspective matrix, and sincep̂c = M̂wcp̂

w, we havex̂∗ =

M̂pM̂wcp̂
w.

6.8 Pseudodepth

After dividing by its last element,̂x∗ has its first two elements as image plane coordinates, and its
third element isf . We would like to be able to alter the homogeneous perspective matrixM̂p so
that the third element ofp

c
z

f
x̂∗ encodes depth while keeping the transformation linear.

Idea: Let x̂∗ =









1 0 0 0
0 1 0 0
0 0 a b
0 0 1/f 0









p̂c, soz∗ = f
pc

z
(apc

z + b).

What shoulda andb be? We would like to have the following two constraints:

z∗ =

{

−1 whenpc
z = f

1 whenpc
z = F

,

wheref gives us the position of thenear plane, andF gives us thez coordinate of thefar plane.
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So−1 = af + b and1 = af + b f
F

. Then2 = b f
F
− b = b

(

f
F
− 1
)

, and we can find

b =
2F

f − F
.

Substituting this value forb back in, we get−1 = af + 2F
f−F

, and we can solve fora:

a = − 1

f

(

2F

f − F
+ 1

)

= − 1

f

(

2F

f − F
+

f − F

f − F

)

= − 1

f

(

f + F

f − F

)

.

These values ofa and b give us a functionz∗(pc
z) that increases monotonically aspc

z decreases
(sincepc

z is negative for objects in front of the camera). Hence,z∗ can be used to sort points by
depth.

Why did we choose these values fora andb? Mathematically, the specific choices do not matter,
but they are convenient for implementation. These are also the values that OpenGL uses.

What is the meaning of the near and far planes? Again, for convenience of implementation, we will
say that only objects between the near and far planes are visible. Objects in front of the near plane
are behind the camera, and objects behind the far plane are too far away to be visible. Of course,
this is only a loose approximation to the real geometry of theworld, but it is very convenient
for implementation. The range of values between the near andfar plane has a number of subtle
implications for rendering in practice. For example, if youset the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in the course) will be very inaccurate due to
numerical precision problems. On the other hand, moving them too close will make distant objects
disappear. However, these issues will generally not affectrendering simple scenes. (For homework
assignments, we will usually provide some code that avoids these problems).

6.9 Projecting a Triangle

Let’s review the steps necessary to project a triangle from object space to the image plane.

1. A triangle is given as three vertices in an object-based coordinate frame:̄po
1, p̄o

2, p̄o
3.
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y

z

x
p

1

p
2

p
3

A triangle in object coordinates.

2. Transform to world coordinates based on the object’s transformation: p̂w
1 , p̂w

2 , p̂w
3 , where

p̂w
i = M̂owp̂o

i .

y

z

x

p
1
w

p
3
w

p
2
w

c

The triangle projected to world coordinates, with a camera at c̄.

3. Transform from world to camera coordinates:p̂c
i = M̂wcp̂

w
i .
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y
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p
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c

The triangle projected from world to camera coordinates.

4. Homogeneous perspective transformation:x̂∗
i = M̂pp̂

c
i , where

M̂p =









1 0 0 0
0 1 0 0
0 0 a b
0 0 1/f 0









, sox̂∗
i =









pc
x

pc
y

apc
z + b
pc

z

f









.

5. Divide by the last component:





x∗

y∗

z∗



 = f







pc
x

pc
z

pc
y

pc
z

apc
z+b
pc

z






.

p
1
*

p
3
*

p
2
*

(-1, -1, -1)

(1, 1, 1)

The triangle in normalized device coordinates after perspective division.
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Now (x∗, y∗) is an image plane coordinate, andz∗ is pseudodepth for each vertex of the
triangle.

6.10 Camera Projections in OpenGL

OpenGL’s modelview matrix is used to transform a point from object or world space to camera
space. In addition to this, aprojection matrixis provided to perform the homogeneous perspective
transformation from camera coordinates toclip coordinatesbefore performing perspective divi-
sion. After selecting the projection matrix, theglFrustum function is used to specify a viewing
volume, assuming the camera is at the origin:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, near, far);

For orthographic projection,glOrtho can be used instead:

glOrtho(left, right, bottom, top, near, far);

The GLU library provides a function to simplify specifying aperspective projection viewing frus-
tum:

gluPerspective(fieldOfView, aspectRatio, near, far);

The field of view is specified in degrees about thex-axis, so it gives the vertical visible angle. The
aspect ratio should usually be the viewport width over its height, to determine the horizontal field
of view.
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7 Visibility

We have seen so far how to determine how 3D points project to the camera’s image plane. Ad-
ditionally, we can render a triangle by projecting each vertex to 2D, and then filling in the pixels
of the 2D triangle. However, what happens if two triangles project to the same pixels, or, more
generally, if they overlap? Determining which polygon to render at each pixel isvisibility. An
object is visible if there exists a direct line-of-sight to that point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible because theyare behind the camera, outside of the
field-of-view, or too far away.

7.1 The View Volume and Clipping

Theview volumeis made up of the space between the near plane,f , and far plane,F . It is bounded
by B, T , L, andR on the bottom, top, left, and right, respectively.

The angular field of view is determined byf , B, T , L, andR:

α
e f

T

B

From this figure, we can find thattan(α) = 1
2

T−B
|f |

.

Clipping is the process of removing points and parts of objects that are outside the view volume.

We would like to modify our homogeneous perspective transformation matrix to simplify clipping.
We have

M̂p =











1 0 0 0
0 1 0 0

0 0 − 1
f

(

f+F
f−F

)

2F
f−F

0 0 −1/f 0











.

Since this is a homogeneous transformation, it may be multiplied by a constant without changing
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its effect. MultiplyingM̂p by f gives us











f 0 0 0
0 f 0 0

0 0 −
(

f+F
f−F

)

2fF
f−F

0 0 1 0











.

If we alter the transform in thex andy coordinates to be

x̂∗ =











2f
R−L

0 R+L
R−L

0

0 2f
T−B

T+B
T−B

0

0 0 −
(

f+F
f−F

)

2fF
f−F

0 0 1 0











p̂c,

then, after projection, the view volume becomes a cube with sides at−1 and+1. This is called
thecanonical view volumeand has the advantage of being easy to clip against.

Note:
The OpenGL command glFrustum(l, r, b, t, n, f) takes the distance to the near and
far planes rather than the position on thez-axis of the planes. Hence, the n used by
glFrustum is our−f and the f used by glFrustum is−F . Substituting these values
into our matrix gives exactly the perspective transformation matrix used by OpenGL.

7.2 Backface Removal

Consider a closed polyhedral object. Because it is closed, farside of the object will always be invis-
ible, blocked by the near side. This observation can be used to accelerate rendering, by removing
back-faces.

Example:
For this simple view of a cube, we have three backfacing polygons, the left side,
back, and bottom:

Only the near faces are visible.

We can determine if a face is back-facing as follows. Supposewe compute a normals~n for a mesh
face, with the normal chosen so that it points outside the object For a surface point̄p on a planar
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patch and eye point̄e, if (p̄ − ē) · ~n > 0, then the angle between the view direction and normal
is less than90◦, so the surface normal points away from̄e. The result will be the same no matter
which face point̄p we use.

Hence, if(p̄ − ē) · ~n > 0, the patch is backfacing and should be removed. Otherwise, it mightbe
visible. This should be calculated in world coordinates so the patch can be removed as early as
possible.

Note:
To compute~n, we need three vertices on the patch, in counterclockwise order, as
seen from the outside of the object,p̄1, p̄1, andp̄3. Then the unit normal is

(p̄2 − p̄1)× (p̄3 − p̄1)

‖(p̄2 − p̄1)× (p̄3 − p̄1)‖
.

Backface removal is a “quick reject” used to accelerate rendering. It must still be used together
with another visibility method. The other methods are more expensive, and removing backfaces
just reduces the number of faces that must be considered by a more expensive method.

7.3 The Depth Buffer

Normally when rendering, we compute an image bufferI(i,j) that stores the color of the object
that projects to pixel(i, j). The depthd of a pixel is the distance from the eye point to the object.
The depth buffer is an arrayzbuf(i, j) which stores, for each pixel(i, j), the depth of the
nearest point drawn so far. It is initialized by setting all depth buffer values to infinite depth:
zbuf(i,j)=∞.

To draw colorc at pixel(i, j) with depthd:

if d < zbuf(i, j) then
putpixel(i, j, c)
zbuf(i, j) = d

end

When drawing a pixel, if the new pixel’s depth is greater than the current value of the depth buffer
at that pixel, then there must be some object blocking the newpixel, and it is not drawn.

Advantages

• Simple and accurate

• Independent of order of polygons drawn
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Disadvantages

• Memory required for depth buffer

• Wasted computation on drawing distant points that are drawnover with closer points that
occupy the same pixel

To represent the depth at each pixel, we can use pseudodepth,which is available after the homo-
geneous perspective transformation.1 Then the depth buffer should be initialized to 1, since the
pseudodepth values are between−1 and 1. Pseudodepth gives a number of numerical advantages
over true depth.

To scan convert a triangular polygon with verticesx̄1, x̄2, andx̄3, pseudodepth valuesd1, d2, and
d3, and fill colorc, we calculate thex values and pseudodepths for each edge at each scanline. Then
for each scanline, interpolate pseudodepth between edges and compare the value at each pixel to
the value stored in the depth buffer.

7.4 Painter’s Algorithm

Thepainter’s algorithm is an alternative to depth buffering to attempt to ensure that the closest
points to a viewer occlude points behind them. The idea is to draw the most distant patches of a
surface first, allowing nearer surfaces to be drawn over them.

In the heedless painter’s algorithm, we first sort faces according to depth of the vertex furthest from
the viewer. Then faces are rendered from furthest to nearest.

There are problems with this approach, however. In some cases, a face that occludes part of another
face can still have its furthest vertex further from the viewer than any vertex of the face it occludes.
In this situation, the faces will be rendered out of order. Also, polygons cannot intersect at all as
they can when depth buffering is used instead. One solution is to split triangles, but doing this
correctly is very complex and slow. Painter’s algorithm is rarely used directly in practice; however,
a data-structure called BSP trees can be used to make painter’s algorithm much more appealing.

7.5 BSP Trees

The idea ofbinary space partitioning trees (BSP trees) is to extend the painter’s algorithm to
make back-to-front ordering of polygons fast for any eye location and to divide polygons to avoid
overlaps.

Imagine two patches,T1 andT2, with outward-facing normals~n1 and~n2.

1The OpenGL documentation is confusing in a few places — “depth” is used to mean pseudodepth, in commands
like glReadPixels andgluUnProject.
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If the eye point,̄e, andT2 are on the same side ofT1, then we drawT1 beforeT2. Otherwise,T2

should be drawn beforeT1.

We know if two points are on the same side of a plane containingT1 by using the implicit equation
for T1,

f1(x̄) = (x̄− p̄1) · ~n. (33)

If x̄ is on the plane,f1(x̄) = 0. Otherwise, iff1(x̄) > 0, x̄ is on the “outside” ofT1, and if
f1(x̄) < 0, x̄ is “inside.”

Before any rendering can occur, the scene geometry must be processed to build a BSP tree to
represent the relative positions of all the facets with respect to their inside/outside half-planes. The
same BSP tree can be used for any eye position, so the tree only has to be constructed once if
everything other than the eye is static. For a single scene, there are many different BSP trees that
can be used to represent it — it’s best to try to construct balanced trees.

The tree traversal algorithm to draw a tree with rootF is as follows:

if eye is in the outside half-space of F
draw faces on the inside subtree of F
draw F
draw faces on the outside subtree of F

else
draw faces on the outside subtree of F
draw F (if backfaces are drawn)
draw faces on the inside subtree of F

end

7.6 Visibility in OpenGL

OpenGL directly supports depth buffering, but it is often used in addition to other visibility tech-
niques in interactive applications. For example, many games use a BSP tree to prune the amount
of static map geometry that is processed that would otherwise not be visible anyway. Also, when
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dealing with blended, translucent materials, these objects often must be drawn from back to front
without writing to the depth buffer to get the correct appearance. For simple scenes, however, the
depth buffer alone is sufficient.

To use depth buffering in OpenGL with GLUT, the OpenGL context must be initialized with mem-
ory allocated for a depth buffer, with a command such as

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

Next, depth writing and testing must be enabled in OpenGL:

glEnable(GL_DEPTH_TEST);

OpenGL will automatically write pseudodepth values to the depth buffer when a primitive is ren-
dered as long as the depth test is enabled. TheglDepthMask function can be used to disable depth
writes, so depth testing will occur without writing to the depth buffer when rendering a primitive.

When clearing the display to render a new frame, the depth buffer should also be cleared:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
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8 Basic Lighting and Reflection

Up to this point, we have considered only the geometry of how objects are transformed and pro-
jected to images. We now discuss (briefly) theshadingof objects: how the appearance of objects
depends, among other things, on the lighting that illuminates the scene, and on the interaction of
light with the objects in the scene. Some of the basic qualitative properties of lighting and object
reflectance that we need to be able to model include:

Light source - There are different types of sources of light, such as pointsources (e.g., a small
light at a distance), extended sources (e.g., the sky on a cloudy day), and secondary reflections
(e.g., light that bounces from one surface to another).

Reflectance- Different objects reflect light in different ways. For example, diffuse surfaces ap-
pear the same when viewed from different directions, whereas a mirror looks very different from
different points of view.

In this chapter, we will develop simplified model of lightingthat is easy to implement and fast to
compute, and used in many real-time systems such as OpenGL. This model will be an approxima-
tion and does not fully capture all of the effects we observe in the real world. In later chapters, we
will discuss more sophisticated and realistic models.

8.1 Simple Reflection Models

8.1.1 Diffuse Reflection

We begin with the diffuse reflectance model. A diffuse surface is one that appears similarly bright
from all viewing directions. That is, the emitted light appears independent of the viewing location.
(We will formalize terms like emitted light later in the course when we discuss radiometry.) Letp̄
be a point on a diffuse surface with normal~n, light by a point light source in direction~s from the
surface. The reflected intensity of light is given by:

Ld(p̄) = rd I max(0, ~s · ~n) (34)

whereI is the intensity of the light source,rd is the diffuse reflectance (or albedo) of the surface,
and~s is the direction of the light source. This equation requiresthe vectors to be normalized, i.e.,
||~s|| = 1, ||~n = 1||.

The~s · ~n term is called theforeshortening term. When a light source projects light obliquely at
a surface, that light is spread over a large area, and less of the light hits any specific point. For
example, imagine pointing a flashlight directly at a wall versus in a direction nearly parallel: in the
latter case, the light from the flashlight will spread over a greater area, and individual points on the
wall will not be as bright.
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For color rendering, we would specify the reflectance in color (as(rd,R, rd,G, rd,B)), and specify
the light source in color as well(IR, IG, IB). The reflected color of the surface is then:

Ld,R(p̄) = rd,R IR max(0, ~s · ~n) (35)

Ld,G(p̄) = rd,G IG max(0, ~s · ~n) (36)

Ld,B(p̄) = rd,B IB max(0, ~s · ~n) (37)

8.1.2 Perfect Specular Reflection

For pure specular (mirror) surfaces, the incident light from each incident direction~di is reflected
toward a unique emittant direction~de. The emittant direction lies in the same plane as the incident
direction~di and the surface normal~n, and the angle between~n and~de is equal to that between~n and
~di. One can show that the emittant direction is given by~de = 2(~n · ~di)~n− ~di. (The derivation was

ded i

n

covered in class). In perfect specular reflection, the lightemitted in direction~de can be computed
by reflecting~de across the normal (as2(~n · ~de)~n− ~de), and determining the incoming light in this
direction. (Again, all vectors are required to be normalized in these equations).

8.1.3 General Specular Reflection

Many materials exhibit a significant specular component in their reflectance. But few are perfect
mirrors. First, most specular surfaces do not reflect all light, and that is easily handled by intro-
ducing a scalar constant to attenuate intensity. Second, most specular surfaces exhibit some form
of off-axis specular reflection. That is, many polished and shiny surfaces (like plastics and metals)
emit light in the perfect mirror direction and in some nearbydirections as well. These off-axis
specularities look a little blurred. Good examples arehighlightson plastics and metals.

More precisely, the light from a distant point source in the direction of~s is reflected into a range
of directions about the perfect mirror directions~m = 2(~n ·~s)~n−~s. One common model for this is
the following:

Ls(~de) = rsI max(0, ~m · ~de)
α, (38)

wherers is called the specular reflection coefficient (often equal to1− rd), I is the incident power
from the point source, andα ≥ 0 is a constant that determines the width of the specular highlights.
As α increases, the effective width of the specular reflection decreases. In the limit asα increases,
this becomes a mirror.
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Figure 3: Plot of specular intensity as a function of viewingangleφ.

The intensity of the specular region is proportional tomax(0, cos φ)α, whereφ is the angle between
~m and~de. One way to understand the nature of specular reflection is toplot this function, see Figure
3.

8.1.4 Ambient Illumination

The diffuse and specular shading models are easy to compute,but often appear artificial. The
biggest issue is the point light source assumption, the mostobvious consequence of which is that
any surface normal pointing away from the light source (i.e., for which ~s · ~n < 0) will have a
radiance of zero. A better approximation to the light sourceis a uniformambientterm plus a point
light source. This is a still a remarkably crude model, but it’s much better than the point source by
itself. Ambient illumintation is modeled simply by:

La(p̄) = ra Ia (39)

wherera is often called the ambient reflection coefficient, andIa denotes the integral of the uniform
illuminant.

8.1.5 Phong Reflectance Model

The Phong reflectance modelis perhaps the simplest widely used shading model in computer
graphics. It comprises a diffuse term (Eqn (81)), an ambientterm (Eqn (82)), and a specular term
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(Eqn (85)):

L(p̄, ~de) = rd Id max(0, ~s · ~n) + ra Ia + rsIs max(0, ~m · ~de)
α, (40)

where

• Ia, Id, andIr are parameters that correspond to the power of the light sources for the ambient,
diffuse, and specular terms;

• ra, rd andrs are scalar constants, called reflection coefficients, that determine the relative
magnitudes of the three reflection terms;

• α determines the spread of the specurlar highlights;

• ~n is the surface normal at̄p;

• ~s is the direction of the distant point source;

• ~m is the perfect mirror direction, given~n and~s ; and

• and~de is the emittant direction of interest (usually the direction of the camera).

In effect, this is a model in which the diffuse and specular components of reflection are due to
incident light from a point source. Extended light sources and the bouncing of light from one
surface to another are not modeled except through the ambient term. Also, arguably this model
has more parameters than the physics might suggest; for example, the model does not constrain
the parameters to conserve energy. Nevertheless it is sometimes useful to give computer graphics
practitioners more freedom in order to acheive the appearance they’re after.

8.2 Lighting in OpenGL

OpenGL provides a slightly modified version of Phong lighting. Lighting and any specific lights
to use must be enabled to see its effects:

glEnable(GL_LIGHTING); // enable Phong lighting
glEnable(GL_LIGHT0); // enable the first light source
glEnable(GL_LIGHT1); // enable the second light source
...

Lights can be directional (infinitely far away) or positional. Positional lights can be either point
lights or spotlights. Directional lights have thew component set to 0, and positional lights havew
set to 1. Light properties are specified with theglLight functions:
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GLfloat direction[] = {1.0f, 1.0f, 1.0f, 0.0f};
GLfloat position[] = {5.0f, 3.0f, 8.0f, 1.0f};
Glfloat spotDirection[] = {0.0f, 3.0f, 3.0f};
Glfloat diffuseRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};
Glfloat specularRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};

// A directional light
glLightfv(GL_LIGHT0, GL_POSITION, direction);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuseRGBA);
glLightfv(GL_LIGHT0, GL_SPECULAR, specularRGBA);

// A spotlight
glLightfv(GL_LIGHT1, GL_POSITION, position);
glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseRGBA);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spotDirection);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0f);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 30.0f);

OpenGL requires you to specify both diffuse and specular components for the light source. This
has no physical interpretation (real lights do not have “diffuse” or “specular” properties), but may
be useful for some effects. TheglMaterial functions are used to specify material properties, for
example:

GLfloat diffuseRGBA = {1.0f, 0.0f, 0.0f, 1.0f};
GLfloat specularRGBA = {1.0f, 1.0f, 1.0f, 1.0f};
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseRGBA);
glMaterialfv(GL_FRONT, GL_SPECULAR, specularRGBA);
glMaterialf(GL_FRONT, GL_SHININESS, 3.0f);

Note that both lights and materials have ambient terms. Additionally, there is a global ambient
term:

glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLight);
glMaterialfv(GL_FRONT, GL_AMBIENT, ambientMaterial);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientGlobal);

The material has an emission term as well, that is meant to model objects that can give off their
own light. However, no light is actually cast on other objects in the scene.

glMaterialfv(GL_FRONT, GL_EMISSION, em);

The global ambient term is multiplied by the current material ambient value and added to the
material’s emission value. The contribution from each light is then added to this value.

When rendering an object, normals should be provided for eachface or for each vertex so that
lighting can be computed:
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glNormal3f(nx, ny, nz);
glVertex3f(x, y, z);
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9 Shading

Goal: To use the lighting and reflectance model to shade facets of a polygonal mesh — that is, to
assign intensities to pixels to give the impression of opaque surfaces rather than wireframes.

Assume we’re given the following:

• ēw - center of projection in world coordinates

• l̄w - point light source location

• Ia, Id - intensities of ambient and directional light sources

• ra, rd, rs - coefficients for ambient, diffuse, and specular reflections

• α - exponent to control width of highlights

9.1 Flat Shading

With flat shading, each triangle of a mesh is filled with a single color.

For a triangle with counterclockwise verticesp̄1, p̄2, and p̄3, as seen from the outside, let the
midpoint bep̄ = 1

3
(p̄1 + p̄2 + p̄3) with normal~n = (p̄2−p̄1)×(p̄3−p̄1)

‖(p̄2−p̄1)×(p̄3−p̄1)‖
. Then we may find the

intensity atp̄ using the Phong model and fill the polygon with that:

E = Ĩara + rdĨd max(0, ~n · ~s) + rsĨd max(0, ~r · ~c)α, (41)

where~s = l̄w−p̄
‖l̄w−p̄‖

, ~c = ēw−p̄
‖ēw−p̄‖

, and~r = −~s + 2(~s · ~n)~n.

Flat shading is a simple approach to filling polygons with color, but can be inaccurate for smooth
surfaces, and shiny surfaces. For smooth surfaces—which are often tesselated and represented as
polyhedra, using flat shading can lead to a very strong faceting effect. In other words, the surface
looks very much like a polyhedron, rather than the smooth surface it’s supposed to be. This is
because our visual system is very sensitive to variations inshading, and so using flat shading
makes faces really look flat.

9.2 Interpolative Shading

The idea ofinterpolative shading is to avoid computing the full lighting equation at each pixel by
interpolating quantites at the vertices of the faces.

Given vertices̄p1, p̄2, andp̄3, we need to compute the normals for each vertex, compute the radi-
ances for each vertex, project onto the window in device coordinates, and fill the polygon using
scan conversion.
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There are two methods used for interpolative shading:

Gouraud Shading The radiance values are computed at the vertices and then linearly interpo-
lated within each triangle.

Phong shading The normal values at each vertex are linearly interpolated within each triangle,
and the radiance is computed at each pixel.

Gouraud shading is more efficient, but Phong shading is more accurate. When will Gouraud shad-
ing give worse results?

9.3 Shading in OpenGL

OpenGL only directly supports Gouraud shading or flat shading. Gouraud is enabled by default,
computing vertex colors, and interpolating colors across triangle faces. Flat shading can be enabled
with glShadeModel(GL FLAT). This renders an entire face with the color of a single vertex,
giving a faceted appearance.

Left: Flat shading of a triangle mesh in OpenGL.Right: Gouraud shading. Note that the mesh
appears smooth, although the coarseness of the geometry is visible at the silhouettes of the mesh.

With pixel shaderson programmable graphics hardware, it is possible to achieve Phong shading
by using a small program to compute the illumination at each pixel with interpolated normals. It
is even possible to use anormal mapto assign arbitrary normals within faces, with a pixel shader
using these normals to compute the illumination.
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10 Texture Mapping

10.1 Overview

We would like to give objects a more varied and realistic appearance through complex variations
in reflectance that convey textures. There are two main sources of natural texture:

• Surface markings — variations inalbedo(i.e. the total light reflected from ambient and
diffuse components of reflection), and

• Surface relief — variations in 3D shape which introduces local variability in shading.

We will focus only on surface markings.

Examples of surface markings and surface relief

These main issues will be covered:

• Where textures come from,

• How to map textures onto surfaces,

• How texture changes reflectance and shading,

• Scan conversion under perspective warping, and

• Aliasing

10.2 Texture Sources

10.2.1 Texture Procedures

Textures may be defined procedurally. As input, a procedure requires a point on the surface of
an object, and it outputs the surface albedo at that point. Examples of procedural textures include
checkerboards, fractals, and noise.
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A procedural checkerboard pattern applied to a teapot. The checkerboard texture comes from the
OpenGL programming guide chapter on texture mapping.

10.2.2 Digital Images

To map an arbitrary digital image to a surface, we can define texture coordinates(u, v) ∈ [0, 1]2.
For each point[u0, v0] in texture space, we get a point in the corresponding image.

(0, 0) (1, 0)

(0, 1) (1, 1)

Texture coordinates of a digital image

10.3 Mapping from Surfaces into Texture Space

For each face of a mesh, specify a point(µi, νi) for vertexp̄i. Then define a continuous mapping
from the parametric form of the surfaces̄(α, β) onto the texture, i.e. definem such that(µ, ν) =
m(α, β).

Example:
For a planar patch̄s(α, β) = p̄0 + α~a + β~b, where0 ≤ α ≤ 1 and0 ≤ β ≤ 1.
Then we could useµ = α andν = β.
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Example:
For a surface of revolution,̄s(α, β) = (cx(α) cos(β), cx(α) sin(β), cz(α)). So let
0 ≤ α ≤ 1 and0 ≤ β ≤ 2π.
Thenµ = α andν = β/2π.

(1, 1)

3D surface Texture space Image

10.4 Textures and Phong Reflectance

Scale texture values in the source image to be in the range0 ≤ τ ≤ 1 and use them to scale the
reflection coefficientsrd andra. That is,

r̃d = τrd,

r̃a = τra.

We could also multiplyτ by the specular reflection, in which case we are simply scaling E from
the Phong model.

10.5 Aliasing

A problem with high resolution texturing is aliasing, whichoccurs when adjacent pixels in a ren-
dered image are sampled from pixels that are far apart in a texture image. By down-sampling—
reducing the size of a texture—aliasing can be reduced for far away or small objects, but then
textured objects look blurry when close to the viewer. What wereally want is a high resolution
texture for nearby viewing, and down-sampled textures for distant viewing. A technique called
mipmappinggives us this by prerendering a texture image at several different scales. For example,
a 256x256 image might be down-sampled to 128x128, 64x64, 32x32, 16x16, and so on. Then it
is up to the renderer to select the correct mipmap to reduce aliasing artifacts at the scale of the
rendered texture.
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An aliased high resolution texture image (left) and the sametexture after mipmapping (right)

10.6 Texturing in OpenGL

To use texturing in OpenGL, a texturing mode must be enabled.For displaying a 2D texture on
polygons, this is accomplished with

glEnable(GL_TEXTURE_2D);

The dimensions of texture in OpenGL must be powers of 2, and texture coordinates are normalized,
so that(0, 0) is the lower left corner, and(1, 1) is always the upper right corner. OpenGL 2.0,
however, does allow textures of arbitrary size, in which case texture coordinates are based on the
original pixel positions of the texture.

Since multiple textures can be present at any time, the texture to render with must be selected. Use
glGenTextures to create texture handles andglBindTexture to select the texture with a given
handle. A texture can then be loaded from main memory withglTexImage2D For example:

GLuint handles[2];
glGenTextures(2, handles);

glBindTexture(GL_TEXTURE_2D, handles[0]);
// Initialize texture parameters and load a texture with glTexImage2D

glBindTexture(GL_TEXTURE_2D, handles[1]);
// Initialize texture parameters and load another texture
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There are a number of texture parameters that can be set to affect the behavior of a texture, using
glTexParameteri. For example, texture wrap repeating can be enabled to allowa texture to be
tiled at the borders, or the minifying and magnifying functions can be set to control the quality of
textures as they get very close or far away from the camera. The texture environment can be set
with glTexEnvi, which controls how a texture affects the rendering of the primitives it is attached
to. An example of setting parameters and loading an image follows:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, imageWidth, imageHeight,

0, GL_RGB, GL_UNSIGNED_BYTE, imagePointer);

Mipmaps can be generated automatically by using the GLU function gluBuild2DMipmaps in-
stead ofglTexImage2D.

Once a texture is bound and texturing is enabled, texture coordinates must be supplied for each
vertex, by callingglTexCoord beforeglVertex:

glTexCoord2f(u, v);
glVertex3f(x, y, z);

When textures are no longer needed, they can be removed from the graphics hardware memory
with

glDeleteTextures(2, handles);
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11 Basic Ray Tracing

11.1 Basics

• So far, we have considered onlylocal models of illumination; they only account for incident
light coming directly from the light sources.

• Global models include incident light that arrives from other surfaces, and lighting effects
that account for global scene geometry. Such effects include:

– Shadows

– Secondary illumination (such as color bleeding)

– Reflections of other objects, in mirrors, for example

• Ray Tracing was developed as one approach to modeling the properties of global illumina-
tion.

• The basic idea is as follows:

For each pixel:

– Cast a ray from the eye of the camera through the pixel, and find the first surface hit by
the ray.

– Determine the surface radiance at the surface intersectionwith a combination of local
and global models.

– To estimate the global component, cast rays from the surfacepoint to possible incident
directions to determine how much light comes from each direction. This leads to a
recursive form for tracing paths of light backwards from thesurface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Tracing, after its inventor,
Turner Whitted.

Computational Issues

• Form rays.

• Find ray intersections with objects.

• Find closest object intersections.

• Find surface normals at object intersection.

• Evaluate reflectance models at the intersection.
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11.2 Ray Casting

We want to find the ray from the eye through pixel(i, j).

• Camera Model
ēW is the origin of the camera, in world space.
~u, ~v, and~w are the world space directions corresponding to the~x, ~y, and~z axes in eye space.
The image plane is defined by(p̄− r̄) · ~w = 0, or r̄ + a~u + b~v, wherer̄ = ēW + f ~w.

• Window
A window in the view-plane is defined by its boundaries in camera coordinates:wl, wr, wt,
andwb. (In other words, the left-most edge is the line(wl, λ, f).)

• Viewport
Let the viewport (i.e., output image) have columns0...nc − 1 and rows0...nr − 1. (0, 0) is
the upper left entry.
The camera coordinates of pixel(i, j) are as follows:

p̄C
i,j = (wl + i∆u,wt + j∆v, f)

∆u =
wr − wl

nc − 1

∆v =
wb − wt

nr − 1

In world coordinates, this is:

p̄W
i,j =





| | |
~u ~v ~w
| | |



 p̄C
i,j + ēW

• Ray: Finally, the ray is then defined in world coordinates as follows:

r̄(λ) = p̄W
i,j + λ~di,j

where~di,j = p̄W
i,j − ēW . Forλ > 0, all points on the ray lie in front of the viewplane along a

single line of sight.

11.3 Intersections

In this section, we denote a ray asr̄(λ) = ā + λ~d, λ > 0.
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11.3.1 Triangles

Define a triangle with three points,p̄1, p̄2, andp̄3. Here are two ways to solve for the ray-triangle
intersection.

• Intersect̄r(λ) with the plane(p̄− p̄1) · ~n = 0 for ~n = (p̄2 − p̄1)× (p̄3 − p̄1) by substituting
r̄(λ) for p̄ and solving forλ. Then test the half-planes for constraints. For example:

(ā + λ~d− p̄1) · ~n = 0

λ∗ =
(p̄1 − ā) · ~n

~d · ~n

What does it mean when~d · ~n = 0? What does it mean when~d · ~n = 0 and(p̄1− ā) · ~n = 0?

• Solve forα andβ where p̄(α, β)p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1), i.e. r̄(λ) = ā + λ~d =
p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1). This leads to the 3x3 system





| | |
−(p̄2 − p̄1) −(p̄3 − p̄1) ~d

| | |









α
β
λ



 = (p̄1 − ā)

Invert the matrix and solve forα, β, andλ. The intersection is in the triangle when the
following conditions are all true:

α ≥ 0
β ≥ 0

α + β ≤ 1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersection with the plane. Then form a rays(t) in
the plane, starting at the intersectionp̄(λ∗). Measure the number of intersections with the polygon
sides fort > 0. If there is an even number of intersections, the intersection is inside. If the number
of intersection is odd, it is outside.

Aside:
This is a consequence of the Jordan Curve Theorem. As related to this problem, it
states that two points are both inside or both outside when the number of intersections
on a line between them is even.
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11.3.3 Spheres

Define the unit sphere centered atc̄ by ||p̄− c̄||2 = 1.
Substitute a point on the raȳr(λ) into this equation:

(ā + λ~d− c̄) · (ā + λ~d− c̄)− 1 = 0

Expand this equation and write it in terms of the quadratic form:

Aλ2 + 2Bλ + C = 0

A = ~d · ~d
B = (ā− c̄) · ~d

C = (ā− c̄) · (ā− c̄)− 1

The solution is then:

λ =
−2B ±

√
4B2 − 4AC

2A
= −B

A
±
√

D

A
,D = B2 − AC

If D < 0, there are no intersections. IfD = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values forλ, λ1 andλ2.

WhenD > 0, three cases of interest exist:

• λ1 < 0 andλ2 < 0. Both intersections are behind the view-plane, and are not visible.

• λ1 > 0 andλ2 < 0. Thep̄(λ1) is a visible intersection, but̄p(λ1) is not.

• λ1 > λ2 andλ2 > 0. Both intersections are in front of the view-plane.p̄(λ2) is the closest
intersection.

11.3.4 Affinely Deformed Objects

Proposition: Given an intersection method for an object, it is easy to intersect rays with affinely
deformed versions of the object. We assume here that the affine transformation is invertible.

• Let F (ȳ) = 0 be the deformed version off(x̄) = 0, whereȳ = Ax̄ + ~t.
i.e. F (ȳ) = f(A−1(ȳ − ~t)) = 0, soF (ȳ) = 0 iff f(x̄) = 0.

• Given an intersection method forf(x̄) = 0, find the intersection of̄r(λ) = ā + λ~d and
F (ȳ) = 0, whereλ > 0.

• Solution: Substitutēr(λ) into the implicit equationf = F (ȳ):

F (r̄(λ)) = f
(

A−1
(

r̄ (λ)− ~t
))

= f(A−1(ā + λ~d− ~t))

= f(ā′ + λ~d′)
= f(r̄′(λ))
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where
ā′ = A−1(ā− ~t)

~d′ = A−1~d

i.e. intersectingF (ȳ) with r̄(λ) is like intersectingf(x) with r̄′(λ) = ā′ + λ~d′ whereλ > 0.
The value ofλ found is the same in both cases.

• Exercise: Verify that, at the solutionλ∗, with an affine deformation̄y = Ax̄ + ~t, that
r̄(λ∗) = Ar̄′(λ∗) + ~t.

11.3.5 Cylinders and Cones

A right-circular cylinder may be defined byx2 + y2 = 1 for |z| ≤ 1. A cone may be defined by
x2 + y2 − 1

4
(1− z2) = 0 for 0 ≤ z ≤ 1.

• Find intersection with ”quadratic wall,” ignoring constraints onz, e.g. usingx2 + y2 = 1 or
x2 + y2 − 1

4
(1 − z2) = 0. Then test thez component of̄p(λ∗) against the constraint onz,

e.g.z ≤ 1 or z < 1.

• Intersect the ray with the planes containing the base or cap (e.g. z = 1 for the cylinder).
Then test thex andy components of̄p(λ∗) to see if they satisfy interior constraints (e.g.
x2 + y2 < 1 for the cylinder).

• If there are multiple intersections, then take the intersection with the smallest positiveλ (i.e.,
closest to the start of the ray).
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11.4 The Scene Signature

The scene signature is a simple way to test geometry intersection methods.

• Create an image in which pixel(i, j) has intensityk if object k is first object hit from ray
through(i, j).

• Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Construct scene model ={ obj, (A,~t), objID } >
sig: array[nc, nr] of objID
for j = 0 to nr-1 (loop over rows)

for i = 0 to nc-1 (loop over columns)
< Construct ray~rij(λ) = p̄ij + λ(p̄ij − ē) through pixelp̄ij >
λi,j ←∞
loop over all objects in scene, with object identifiers objIDk

< find λ∗ for the closest intersection of the ray~rij(λ) and the object>
if λ∗ > 0 and λ∗ < λi,j then

λi,j ← λ∗

sig[i,j].objID ← objIDk

endif
endloop

endfor
endfor

11.5 Efficiency

Intersection tests are expensive when there are large numbers of objects, and when the objects are
quite complex! Fortunately, data structures can be used to avoid testing intersections with objects
that are not likely to be significant.

Example: We could bound a 3D mesh or object with a simple bounding volume (e.g. sphere or
cube). Then we would only test intersections with objects ifthere exists a positive intersection
with the bounding volume.

Example: We could project the extent onto the image plane so you don’t need to cast rays to
determine potential for intersections.
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11.6 Surface Normals at Intersection Points

Once we find intersections of rays and scene surfaces, and we select the first surface hit by the ray,
we want to compute the shading of the surface as seen from the ray. That is, we cast a ray out from
a pixel and find the first surface hit, and then we want to know how much light leave the surface
along the same ray but in the reverse direction, back to the camera.
Toward this end, one critical property of the surface geometry that we need to compute is the
surface normal at the hit point.

• For mesh surfaces, we might interpolate smoothly from face normals (like we did to get
normals at a vertex). This assumes the underlying surface issmooth.

• Otherwise we can just use the face normal.

• For smooth surfaces (e.g. with implicit formsf(p̄) = 0 or parametric formss(α, β)), either
take

~n =
∇f(p̄)

||∇f(p̄)||
or

~n =

∂s

∂α
× ∂s

∂β

|| ∂s

∂α
× ∂s

∂β
|| .

11.6.1 Affinely-deformed surfaces.

Let f(p̄) = 0 be an implicit surface, and letQ(p̄) = Ap̄ + ~t be an affine transformation, whereA
is invertible. The affinely-deformed surface is

F (q̄) = f(Q−1(p̄)) = f(A−1(p̄− ~t)) = 0 (42)

A normal ofF at a pointq̄ is given by
A−T~n

||A−T~n|| (43)

whereA−T = (A−1)T and~n is the normal off at p̄ = Q−1(q̄).

Derivation:
Let s̄ = r̄(λ∗) be the intersection point, and let(p̄ − s̄) · ~n = 0 be the tangent plane
at the intersection point. We can also write this as:

(p̄− s̄)T~n = 0 (44)

Substituting inq̄ = Ap̄ + ~t and solving gives:

(p̄− s̄)T~n = (A−1(q̄ − ~t)− s̄)T~n (45)

Copyright c© 2005 David Fleet and Aaron Hertzmann 70



CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

= (q̄ − (As̄ + ~t))TA−T~n (46)

In other words, the tangent plane at the transformed point has normalA−T~n and
passes through point(As̄ + ~t).
preserved so the tangent plane on the deformed surface is given by(A−1(q̄−~t))T~n =
D.

This is the equation of a plane withunit normal A−T ~n
||A−T ~n||

.

11.7 Shading

Once we have cast a ray through pixelp̄i,j in the direction~di,j, and we’ve found the closest hit
point p̄ with surface normal~n, we wish to determine how much light leaves the surface atp̄ into
the direction−~di,j (i.e., back towards the camera pixel). Further we want reflect both the light
from light sources that directly illuminate the surface as well as secondary illumination, where
light from other surfaces shines on the surface atp̄. This is a complex task since it involves all of
the ways in which light could illuminate the surface from alldifferent directions, and the myriad
ways such light interacts with the surface and it then emitted or reflected by the surface. Here we
will deal first with the simplest case, known widely as WhittedRay Tracing.

Aside:
First, note that if we were to ignore all secondary reflection, then we could just com-
pute the Phong reflectance model atp̄ and then color the pixel with that value. Such
scenes would look similar to those that we have rendered using shading techniques
seen earlier in the course. The main differences from earlier rendering techniques are
the way in which hidden surfaces are handled and the lack of interpolation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light reflected from the surface is a combination of
the reflection computed by the Phong model, along with one component due to specular secondary
reflection. That is, the only reflection we consider is that due to perfect mirror reflection. We
only consider perfect specular reflection for computational efficiency; i.e., rather than consider
secondary illumination at̄p from all different directions, with perfect specular reflection we know
that the only incoming light at̄p that will be reflected in the direction−~di,j will be that coming from
the corresponding mirror direction (i.e.,~ms = −2(~di,j · ~n))~n + ~di,j). We can find out how much
light is incoming from direction~ms be casting another ray into that direction fromp̄ and calculating
the light reflected from the first surface hit. Note that we have just described a recursive ray tracer;
i.e., in order to calculate the reflectance at a hit point we need to cast more rays and compute the
reflectance at the new hit points so we can calculate the incoming light at the original hit point.

In summary, for basic (Whitted) ray tracing, the reflectance model calculation comprises:
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• A local model (e.g., Phong) to account for diffuse and off-axis specular reflection (highlights)
due to light sources.

• An ambient term to approximate the global diffuse components.

• Cast rays from̄p into direction~ms = −2(~di,j ·~n))~n+ ~di,j to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reflection).

For a rayr(λ) = ā + λ~d which hits a surface point point̄p with normal~n, the reflectance is given
by

E = raIa + rdId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α + rgIspec

wherera, rd, andrs are the reflection coefficients of the Phong model,Ia, Id, andIs are the light
source intensities for the ambient, diffuse and specular terms of the Phong model,~s is the light
source direction from̄p, the emittant direction of interest is~c = −~di,j, and~m = 2(~s · ~n))~n − ~s is
the perfect mirror direction for the local specular reflection. Finally,Ispec is the light obtained from
the recursive ray cast into the direction~ms to find secondary illumination, andrg is the reflection
coefficient that determines the fraction of secondary illumination that is reflected by the surface at
p̄

11.7.2 Texture

• Texture can be used to modulate diffuse and a mbient reflection coefficients, as with Gouraud
shading.

• We simply need a way to map each point on the surface to a point in texture space, as above,
e.g. given an intersection pointp̄(λ∗), convert into parametric forms(α, β) and use(α, β) to
find texture coordinates(µ, ν).

• Unlike Gouraud shading, we don’t need to interpolate(µ, ν) over polygons. We get a new
(µ, ν) for each intersection point.

• Anti-aliasing and super-sampling are covered in the Distribution Ray Tracing notes.

11.7.3 Transmission/Refraction

• Light that penetrates a (partially or wholly) transparent surface/material is refracted (bent),
owing to a change in the speed of light in different media.

• Snell’s Law governs refraction:
sin θ1

sin θ2

=
c1

c2
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• The index of refraction is the ratio of light speedsc1/c2. For example, the index of refraction
for passing from air to water iscair

cwater
= 1.33, and for passing from air to glass, it iscair

cglass
=

1.8.
Note: There is also a wavelength dependence. We ignore this here.

• Example:

– If c2 < c1, light bends towards the normal (e.g. air to water). Ifc2 < c1, light bends
away from the normal (e.g. water to air).

– The critical angleθc, whenc2 > c1, is whenθ1 → θc andθ2 → 90. Beyondθc, θ1 > θc,
and total internal reflection occurs. No light enters the material.

• Remarks:

– The outgoing direction is in the plane of the incoming direction and~n. This is similar
to the perfect specular direction.

– Whenθ1 = 0, thenθ2 = 0, i.e. there is no bending.

• For ray tracing:

– Treat global transmission like global specular, i.e. cast one ray.

– Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

• A simple way to include some global effects with minimal workis to turn off local reflection
when the surface point̄p cannot see light sources, i.e. whenp̄ is in shadow.

• When computingE at p̄, cast a ray toward the light source, i.e. in the directions = (l− p̄).

p̄W (λ) = p̄W + λ(lW − p̄W )

• Find the first intersection with a surface in the scene. Ifλ∗ at the first intersection point is
0 ≤ λ ≤ 1, then there exists a surface that occludes the light source from p̄.

– We should omit diffuse and specular terms from the local Phong model.

– The surface radiance atp̄ becomes

E = raIa + rgIspec
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Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i,j)
< compute ray~rij(λ) = p̄ij + λ~dij where~dij = p̄ij − ~e >

I = rayTrace(̄pij, ~dij, 1);
setpixel(i, j,I)

endfor

rayTrace( ā, ~b, depth)
findFirstHit( ā, ~b, output varobj, λ, p̄, ~n)
if λ > 0 then

I = rtShade(obj,̄p, ~n,−~b, depth)
else

I = background;
endif
return(I)

findFirstHit ( ā, ~b, output varOBJ,λh, p̄h, ~nh)
λh = −1;
loop over all objects in scene, with object identifiers objIDk

< find λ∗ for the closest legitimate intersection of ray~rij(λ) and object>
if ( λh < 0 or λ∗ < λh) and λ∗ > 0 then

λh = λ∗

p̄h = ā + λ∗~b;
< determine normal at hit point~nh >
OBJ = objIDk

endif
endloop

rtShade(OBJ,p̄, ~n, ~de, depth)
/* Local Component */
findFirstHit( p̄,~lw − p̄, output vartemp,λh);
if 0 < λh < 1 then

Il = ambientTerm;
else

Il = phongModel(̄p, ~n, ~de, OBJ.localparams)
endif
/* Global Component */
if depth< maxDepth then
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if OBJ has specular reflection then
< calculate mirror direction~ms = −~de + 2~n · ~de~n >
Ispec = rayTrace(̄p, ~ms, depth+1)
< scaleIspec by OBJ.specularReflCoef>

endif
if OBJ is refractive then

< calculate refractive direction~t >
if not total internal reflection then

Irefr = rayTrace(̄p,~t, depth+1)
< scaleIrefr by OBJ.refractiveReflCoef>

endif
endif
Ig = Ispec + Irefr

else
Ig = 0

endif
return(Il + Ig)
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12 Radiometry and Reflection

Until now, we have considered highly simplified models and algorithms for computing lighting and
reflection. These algorithms are easy to understand and can be implemented very efficiently; how-
ever, they also lack realism and cannot achieve many important visual effects. In this chapter, we
introduce the fundamentals of radiometry and surface reflectance that underly more sophisticated
models. In the following chapter, we will describe more advanced ray tracing algorithms that take
advantage of these models to produce very realistic and simulate many real-world phenomena.

12.1 Geometry of lighting

In our discussion of lighting and reflectance we will make several simplifying assumptions. First,
we will ignore time delays in light propagation from one place to another. Second, we will assume
that light is not scattered nor absorbed by the median through which it travels, i.e., we will ignore
light scattering due to fog. These assumptions allow us to focus on thegeometryof lighting; i.e.,
we can assume that light travels along straight lines, and isconserved as it travels (e.g., see Fig. 1).

Light Tube

A

B

Figure 4: Given a set of rays within a tube, passing throughA andB but not the sides of the tube,
the flux (radiant power) atA along these rays is equal to that atB along the same set of rays.

Before getting into the details of lighting, it will be usefulto introduce three key geometric con-
cepts, namely,differential areas, solid angleandforeshortening. Each of these geometric concepts
is related to the dependence of light on the distance and orientation between surfaces in a scene
that receive or emit light.

Area differentials: We will need to be able describe the amount of lighting that hitting an area
on a surface or passing through a region of space. Integrating functions over a surface requires
that we introduce anarea differentialover the surface, denoteddA. Just as a 1D differential (dx)
represents an infinitesimal region of the real line, an area differential represents an infinitesimal
region on a 2D surface.

Example:
Consider a rectangular patchS in thex− y plane. We can specify points in the patch
in terms of anx coordinate and ay coordinate, withx ∈ [x0, x1], y ∈ [y0, y1]. We can
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divide the plane intoNM rectangular subpatches, theij-th subpatch bounded by

xi ≤ x ≤ xi + ∆x (47)

yj ≤ y ≤ yj + ∆y (48)

wherei ∈ [0...N − 1], j ∈ [0...M − 1], ∆x = (x1 − x0)/N and∆y = (y1 − y0)/M .
The area of each subpatch isAi,j = ∆x∆y. In the limit asN →∞ andM →∞,

dA = dxdy (49)

To compute the area of a smooth surfaceS, we can break the surface into many tiny
patches(i, j), each with areaAi,j, and add up these individual areas:

Area(S) =
∑

i,j

Ai,j (50)

In the planar patch above, the area of the patch is:

Area(S) =
∑

i,j

Ai,j = NM∆x∆y = (x1 − x0)(y1 − y0) (51)

Computing these individual patch areas for other surfaces isdifficult. However, tak-
ing the infinite limit we get the general formula:

Area(S) =

∫

S

dA (52)

For the planar patch, this becomes:
∫

S

dA =

∫ y1

y0

∫ x1

x0

dxdy = (x1 − x0)(y1 − y0) (53)

We can create area differentials for any smooth surface. Fortunately, in most radiometry applica-
tions, we do not actually need to be able to do so for anything other than a plane. We will use area
differentials when we integrate light on the image sensor, which, happily, is planar. However, area
differentials are essential to many key definitions and concepts in radiometry.

Solid angle: We need to have a measure ofangular extentin 3D. For example, we need to be
able to talk about what we mean by the field of view of a camera, and we need a way to quantitfy
the width of a directional light (e.g., a spot light).
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Let’s consider the situation in 2D first. In 2D,angular extentis just the angle between two direc-
tions, and we normally specify angular extent inradians. In particular, the angular extent between
two rays emanating from a pointq̄ can be measured using a circle centered atq̄; that is, the angular
extent (in radians) is just the circular arc lengthl of the circle between the two directions, divided
by radiusr of the circle,l/r (see Fig. 5). For example, the angular extent of an entire circle having
circumference2πr is just2π radians. A half-circle has arclengthπr and spansπ radians.

l
r

q

Figure 5: Angular extent in 2D is given byl/r (radians).

In 3D, the corresponding quantity to 2D angular extent is called solid angle. Analogous to the 2D
case, solid angle is measured as the areaa of a patch on a sphere, divided by the squared radius of
the sphere (Figure 6); i.e.,

ω =
a

r2
(54)

The unit of measure for solid angle is thesteradian(sr). A solid angle of2π steradians corresponds
to a hemisphere of directions. The entire sphere has a solid angle of4π sr. As depicted in Figure
2, to find the solid angle of a surfaceS with respect to a point̄q, one projectsS onto a sphere of
radiusr, centered at̄q, along lines through̄q. This gives usa, so we then divide byr2 to find the
solid angle subtended by the surface. Note that the solid angle of a patch does not depend on the
radiusr, since the projected areaa is proportional tor2.

r

a
S

q

Figure 6: The solid angle of a patchS is given by the areaa of its projection onto a sphere of radius
r, divided by the squared radius,r2.

Note:
At a surface point with normal~n, we express the hemisphere of incident and emittant
directions in spherical coordinates. That is, directions in the hemisphere~d are

~d = (sin θ cos φ, sin θ sin φ, cos θ)T (55)
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whereθ ∈ [0, π/2] denotes the angle between~d and the normal, andφ ∈ [−π, π)
measures the direction projected onto the surface.

With direction expressed in this way one can write the infinitesimal solid angle as

dω = sin θ dθ dφ (56)

The infinitesimal solid angle is an area differential for theunit sphere.

To see this, note that forθ held fixed, if we varyφ we trace out a circle of radiussin θ
that is perpendicular to~n. For a small changedφ, the circular arc has lengthsin θ dφ,
and therefore the area of a small ribbon of angular widthdθ is justsin θ dθ dφ.

q

sinq

sin dq j

dj

dq

1

This also allows us to compute the finite solid angle for a a range of visual direction,
such asθ0 ≤ θ ≤ θ1 andφ0 ≤ φ ≤ φ1. That is, to compute the solid angle we just
integrate the differential solid angle over this region on aunit sphere (r = 1):

ω =

∫ φ1

φ0

∫ θ1

θ0

sin θ dθ dφ (57)

=

∫ φ1

φ0

− cos θ|θ1

θ0
dφ (58)

= (φ1 − φ0)(cos θ0 − cos θ1) (59)

(Assuming we are in the quadrant where this quantity is positive)

Foreshortening: Another important geometric property isforeshortening, the reduction in the
(projected) area of a surface patch as seen from a particularpoint or viewer. When the surface
normal points directly at the viewer its effective size (solid angle) is maximal. As the surface
normal rotates away from the viewer it appears smaller (Figure 7). Eventually when the normal
is pointing perpendicular to the viewing direction you see the patch “edge on”; so its projection is
just a line (with zero area).

Putting it all together: Not surprisingly, the solid angle of a small surface patch, with respect
to a specific viewing location, depends on both on the distance from the viewing location to the
patch, and on the orientation of the patch with respect to theviewing direction.
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θ

~ cosA θ

A q
θ

dAcosθ

dA q
r

Figure 7: Foreshortening in 2D.Left: For a patch with areaA, seen from a point̄q, the patch’s
foreshortened area is approximatelyA cos θ. This is an approximation, since the distancer varies
over the patch. The angleθ is the angle between the patch normal and the direction toq̄. Right:
For an infinitesimal patch with areadA, the foreshortened area is exactlydA cos θ.

Let q̄ be the point (such as a light source or a viewer) about which wewant to compute solid angle.
Let p̄ be the location of a small planar surface patchS with areaA at distancer = ||q̄ − p̄|| from
q̄. Additionally, suppose the surface normal points directlyat q̄ (Figure 8). In this case, we can
imagine drawing a hemisphere aboutq̄ with radiusr, and the projected areaa of this patch will be
approximatelyA. Hence, the solid angleω ≈ A/r2. In other words, the solid angle is inversely
proportional to distance squared; a more distant object obscures less of̄q’s “field of view.” This is
an approximation, however, since the distancer varies over the patch. Nevertheless, if we consider
the limit of an infinitesimal patch with areadA, then the solid angle is exactlydω = dA/r2.

When the surface normal does not point directly atq̄, foreshortening plays a significant role. As
the surface normal rotates away from the direction ofq̄ − p̄, the surface, as viewed from pointq̄,
becomes smaller; it projects onto a smaller area on a sphere centered at̄q. sphere. So, we say that
the area of the patch, as seen fromq̄, is foreshortened. More formally, letθ be the angle between
the normal~n and direction,̄q− p̄. Then, for our infinitesimal surface with areadA, the solid angle
subtended by the tilted patch is

dω =
dA cos θ

r2
, (60)

The cosine term should look familiar; this is the same cosineterm used in Lambertian shading
within the Phong model.

q q

Figure 8: Solid angle of a patch.Left: A patch with normal pointing at̄l. Right: A patch with
arbitrary orientation.
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12.2 Elements of Radiometry

The field of radiometry concerns the measurement of light (electromagnetic radiation), usually
restricted to the visible wavelengths, in the range 400-700nm. Light is often measured in discrete
units called photons. It is difficult to talk about the numberof photons that illuminate a point
on a surface at a particular time (as it is almost always zero). Instead, we talk about the average
number of photons in small (infinitesimal) intervals of space or time, that is, we talk about photon
density, and thereby treat light as a continuous quantity rather than a photon count. In effect, we
are assuming that there is enough light in the scene so that wecan treat light as a continuous
function of space-time. For example, we will talk about the light hitting a specific surface patch as
a continuous function over the patch, rather than discuss the discrete photons of light.

12.2.1 Basic Radiometric Quantities

Formally, we describe light in terms ofradiant energy. You can think of radiant energy as the
totality of the photons emitted from a body over its entire surface and over the entire period of
time it emits light. Radiant energy is denoted byQ(t) and measured in Joules (J). You can think of
radiant energy as describing how much light has been emittedfrom (or received by) a surface up
to a timet, starting from some initial time0. 2

The main quantity of interest in radiometry ispower, that is, the rate at which light energy is
emitted or absorbed by an object. This time-varying quantity, usually calledflux, is measured in
Joules per second (J· s−1). Here we denote flux byΦ(t):

Φ(t) =
dQ(t)

dt
(61)

We can compute the total light that hits a surface up to timet as:

Q(t) =

∫ t

0

Φ(τ) dτ (62)

Flux is sufficiently important that we define a special unit ofmeasure for it, namely, watts (W).
One watt is one Joule per second; so a 50 watt light bulb draws 50J of energy per second. Most
of this radiant energy is emitted as visible light. The rest is converted to thermal energy (heat).
Higher wattage means a brighter light bulb.

Not surprisingly, the light received or emitted by an objectvaries over the surface of the object.
This is important since the appearance of an object is often based on how the light reflected from

2Of course, radiant energy depends on wavelengthλ, so it is common to express energy as a function of wavelength;
the resulting density function,Q(λ), is called spectral energy. This is important since different wavelengths are seen
as different colours. Nevertheless, our next major simplification will be to ignore the dependence of radiant energy on
wavelength. In computer graphics, colours are controlled by the relative amounts of power in three separate spectral
bands, namely, Red, Green, and Blue. What we describe in this chapter can be applied to each colour channel.
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its surface depends on surface position. Formally, lightreceivedat the surface of an object, as a
function of image position is calledirradiance. The lightemittedfrom a surface, as a function of
surface position, is often calledradiant exitance(or radiosity).

Irradiance, the incident flux, as a function of surface position p̄, is denoted byH(p̄). Remember,
we cannot talk about the amount of light received at a single point on a surface because the number
of photons received at a single point is generally zero. Instead, irradiance is the spatial density of
flux, i.e., the amount of light per unit surface area. The integral of irradiance over the surface of an
object gives us the total incident flux (i.e., received by) the object. Accordingly, irradiance is the
spatial derivative of flux. For smooth surfaces we write

H(p̄) =
dΦ

dA
(63)

wheredA refers to differential surface area. Irradiance is just power per unit surface area (W·m−2).

Example:
For a planar patch in thex− y plane, we can write irradiance as a function of(x, y)
position on the patch. Also, we havedA = dxdy. In this case:

H(x, y) =
d2Φ

dxdy
(64)

These terms are all functions of timet, since lightingΦ may change over timet. However, we will
leave the dependence on timet implicit in the equations that follow for notational simplicity.

Example:
What is the irradiance, owing to a point light source, on an infinitesimal patch
S with area dA? Let’s say we have a point light source atl̄ emitting I watts per
steradian into all directions:

dΦ = Idω (65)

In other words, the amount of light from this source is proportional to solid angle,
and independent of direction. Our goal is to compute the irradianceH on the patch,
which can be done by subtitution of formulas from this chapter:

H =
dΦ

dA
=

Idω

dA
=

IdA cos θ

dAr2
=

I cos θ

r2
(66)

wherep̄ is the position ofS, r = ||l̄ − p̄||, andθ is the angle between the surface
normal and the vector̄l − p̄. This formula illustrates the importance of solid angle:
the amount of light hitting a surface is proportional to its solid angle with respect to
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the light source.A distant patch (with larger) receives less light than a nearby patch,
and a foreshortened patch receives less light than a frontalpatch. Furthermore, the
amount of light hitting the patch is proportional to the intensity I of the light source.

12.2.2 Radiance

Of course the light emitted or received by an object depends on visual direction as well as surface
position. For example, objects are often illuminated more from above (the sky) than below (the
ground). As a consequence, when the direction of light propagation is important, we will express
flux as a function of visual direction. This leads to the central quantity in radiometry, namely,
radiance. Radiance is a measure of the rate at which light energy is emitted from a surface in
a particular direction. It is a function of position and direction, and it is often denoted byL (or
L(p̄, ~d)). Formally, it is defined as power per steradian per surface area (W· sr−1 ·m−2), where the
surface area is defined with respect to a surface patch atp̄ that is perpendicular to the direction~d.

Normally, one might think of radiance as a measure of the light emitted from a particular surface
location into a particular direction. The definition above is more general however. It allows us to
talk about the light travelling in a particular direction through an arbitrary point in space. In this
case we are measuring surface area with respect to avirtual surface, but we can talk about surface
area nonetheless.

When we talk about the light (radiance) emitted from a particular surface into a particular emittant
direction~de we have to be a little more careful because radiance is definedwith respect to a surface
perpendicular to the emittant direction, which is usually not the same orientation as the actual real
surface in question. Accordingly, often radiance is definedas power per unitforeshortenedsurface
area per solid angle to make explicit the fact that we are using a virtual surface and not the real
surface to measure area. That is, we are measuring surface area as seen by someone looking at the
surface from somewhere along a ray in the emittant direction.

θ

dA dA=  cos θ s

dAs

de

n

dAs

dω

de

Note:
Computing radiant exitance (radiosity):As mentioned above, radiant exitance is
the total amount of flux leaving a surface into the entire hemisphere of emittant di-
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rections, as a function of surface position. Intuitively, it is the integral of surface
radiance, but we have to be careful; radiance is defined with respect to unit area on
a surface perpendicular to the emittant direction rather than unit area on the real sur-
face of interest. Before we can integrate radiance we need to specify all radiance
quantities in terms of unit surface area on the real surface.To do this one needs to
multiply radiance for emittant direction~de by the ratio of the surface area normal
to ~de (i.e., dA), to the real surface area, denoteddAs. As discussed above, for an
infinitesimal patch the ratio of these areas is just the foreshortening factor, i.e.,

dA = cos θ dAs = ~n · ~de dAs , (67)

whereθ is the angle between the unit vectors~n and~de.

Taking this foreshortening factor into account, the relation between radiant exitance
E(p̄) and radianceL(p̄, ~d) is given by

E(p̄) =

∫

~d∈Ωe

L(p̄, ~d) ~n · ~d dω (68)

The domain of integration,Ωe, is the hemisphere of possible emittant directions.

Note:
Computing Irradiance:Above we showed that the irradiance on an infinitesimal
surface patchS at pointp̄ owing to a point light source at̄q with radiant intensityI
is given by

H =
I cos θ

r2
(69)

wherer = ||q̄ − p̄|| is the distance between the light source and the surface patch,
andθ is the angle between the surface normal and the direction of the light source
from the surface patch,̄q − p̄.
In this case, the radiance atp̄ from the point light source direction~d = p̄− q̄/r, i.e.,
L(p̄, ~d), is simplyI/r2. The factorcos θ is the foreshortening factor to convert from
area perpendicular to the direction~d to area on the surfaceS.
Accordingly, if we consider radiance at̄p from the entire hemisphere of possible
incident directions, then the total irradiance atp̄ is given by

H(p̄) =

∫

~d∈Ωi

L(p̄,−~d) ~n · ~d dω (70)

(Note that incident directions here are outward facing fromp̄.)
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Note:
Radiance vs. Irradiance.Radiance and irradiance are very similar concepts — both
describe an amount of light transmitted in space — but it is important to recognize the
distinctions between them. There are several ways of thinking about the difference:
• Radiance is a function of direction; it is power per foreshortened surface area

per steradian in a specific direction. Irradiance is incident power per surface
area (not foreshortened); it is not a directional quantity.

• Radiance (W· sr−1 ·m−2) and irradiance (W·m−2) have different units.

• Radiance describes light emitted from a surface. Irradiancedescribes light in-
cident on a surface. Indeed, from the radiance emitted from one surface we can
compute the incident irradiance at a nearby surface.

12.3 Bidirectional Reflectance Distribution Function

We are now ready to explore how to model the reflectance properties of different materials. Dif-
ferent objects will interact with light in different ways. Some surfaces are mirror-like, while others
scatter light in a wide variety of directions. Surfaces thatscatter light often look matte, and appear
similar from different viewing directions. Some objects absorb a significant amount of light; the
colour of an object is largely a result of which wavelengths it absorbs and which wavelengths it
reflects.

One simple model of surface reflectance is refered to as the bidirectional reflectance distribution
function (BRDF). The BRDF describes how light interacts with a surface for a relatively wide
range of common materials. In intuitive terms, it specifies what fraction of the incoming light from
a given incident direction will be reflected toward a given emittant direction. When multiplied by
the incident power (i.e., the irradiance), one obtains the desired emittant (i.e., reflected) power.

More precisely, the BRDF is a function of emittant and incidentdirections~de and~di. It is defined
to be the ratio of radiance to irradiance:

ρ(~de, ~di) =
L

H
(71)

For most common materials the only way to determine the BRDF is with measurements. That is,
for a wide range of incident and emittant directions, a material is illuminated from one direction
while the reflected light is measured from another direction. This is often a tedious procedure.
In computer graphics it is more common to design (i.e., make up) parametric BRDF formulae,
and then vary the parameters of such models to achieve the desired appearance. Most parametric
models are based on analytic models of certain idealized materials, as discussed below.
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12.4 Computing Surface Radiance

When rendering an image of an object or scene, one wants to knowhow much light is incident at
each pixel of the image plane. (In effect, one wants to compute the image irradiance.) Fortunately
it can be shown that this quantity is linearly related to the scene radiance. In particular, for a point
on an opaque object in a given visual direction, one simply needs to compute the radiance from
that point on the surface in the direction of the camera. Basedon the BRDF model of reflectance,
the surface radiance depends on the incident illumination (irradiance) at the surface, and the BRDF
of course.

Point Light Sources

For example, consider a single point source with radiant intensityI. To compute the irradiance
at a small surface patch we can compute the total flux arrivingat the surface, and then divide by
the area of the surface to find flux per unit area. More precisely, radiant intensity for the source is
given byI = dΦ/dω. We multiply by the solid angle subtended by the patchdω to obtain the flux
on the surfacedΦ, and then we divide by the surface areadA to obtaindΦ/dA, that is, irradiance
as in Eqn (63). For a point light source this was shown above (see Eqn. (66)) to be given by

H = I
~n · ~di

r2
(72)

where~n is the unit surface normal,~di is the unit vector in the direction of hte light source from the
surface patch, andr is the distance from the patch to the light source.

We now want to compute the radiance from the surface (e.g., toward the camera). Toward this end,
we multiply the irradianceH by the BRDF,ρ(~de, ~di), in order to find radiance as a function of the
emittant direction:

L(p̄, ~de) = ρ(~de, ~di) I
~n · ~di

r2
(73)

This perspective generalizes naturally to multiple light sources. That is, the radiance from a point
p on a surface in the direction of the camera is the sum of radiances due to individual light sources.
ForJ point light sources, at locationslj, with intensitiesIj, the radiance is given by

L(p̄, ~de) =
J
∑

j=1

ρ(~de, ~dj) Ij
~n · ~dj

r2
j

(74)

whererj = ||l̄j − p̄|| is the distance to thejth source, and~dj = (l̄j − p̄)/rj is the incident direction
of thejth source.
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Extended Light Sources

Many light sources are not infinitesimal point sources. Rather, in the general case we need to be
able to work with extended light sources for which the incident light is a continuous function of
incident direction. One way to think of this is to let the number of discrete light sources go to
infinity so that the sum in Eqn (74) becomes an integral.

Here we take a slightly different, but equivalent approach.As discussed above, radiance can be
used to express the light energy transport through any pointin space, in any direction of interest.
Thus, given a point̄p on a surface with unit normal~n, we can express the radiance throughp̄ along
the hemisphere of possible incident directions asL(p̄, ~di) for ~di ∈ Ωi whereΩi denotes the domain
of plausible incident directions at̄p.

Note:
As above, we can erect a spherical coordinate system atp̄. Toward this end, letθi

denote an angle measured from the surface normal, and letφi be an angle in the
surface tangent plane about the normal relative to some Cartesianx − y coordinate
system in the plane. Then all directions

~di ≡ (sin θi cos φi, sin θi sin φi, cos θi)
T (75)

contained inΩi satisfyθi ∈ [0, π/2] andφi ∈ [−π, π).

One problem with radiance is the fact that it expresses the light flux in terms of power per unit
area on a surface perpendicular to the direction of interest. Thus, for each incident direction we are
using a different plane orientation. In our case we want to express the power per unit area on our
surfaceS, and therefore we need to rescale the radiance in direction~di by the ratio of foreshortened
surface area to surface area. One can show that this is accomplished by multiplyingL(p̄, ~di) by
cos θi = ~di · ~n, for normal~n. The result is now the incident power per unit surface area (not
foreshortened) per solid angle. We multiply this by solid angledω to obtain irradiance:

H = L(p̄,−~di) cos θi dωi (76)

Therefore, the resulting surface radiance in the directionof the camera due to this irradiance is just

ρ(~de, ~di) L(p̄,−~di) cos θi dωi

If we then accumulate the total radiance from the incident illumination over the entire hemisphere
of possible incident directions we obtain

L(~de) =

∫

~di∈Ωi

ρ(~de, ~di) L(p̄,−~di) cos θi dωi (77)
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where, as above, the infinitesimal solid angle isdωi = sin θi dθi dφi.

Light sources vary greatly from scene to scene. In effect, when you take a photograph you are
measuring irradiance at the image plane of the camera for a limited field of view (angular extent).
This shows how complex illumination sources can be.

Note:
The ideal point light source can also be cast in the frameworkof a continuous, ex-
tended source. To do this we assume that the distribution of incident light can be
modeled by a scaled Dirac delta function. A Dirac delta function δ(x) is defined by:

δ(x) = 0 for x 6= 0 , and
∫

x

δ(x) f(x) dx = f(0) (78)

With the light source defined as a delta function, Eqn (77) reduces to Eqn (73).

12.5 Idealized Lighting and Reflectance Models

We now consider several important special instances of BRDF models. In particular, we are in-
terested in combinations of lighting and BRDF models that facilitate efficient shading algorithms.
We discuss how diffuse and specular surfaces can be represented as BRDFs.

12.5.1 Diffuse Reflection

A diffuse (or matte) surface is one for which the pattern of shading over the surface appears the
same from different viewpoints. The ideal diffusely reflecting surface is known as a perfect Lam-
bertian surface. Its radiance is independent of the emittant direction, its BRDF is a constant, and
it reflects all of the incident light (i.e., it absorbs zero power). The only factor that determines the
appearance (radiance) of a Lambertian surface is thereforethe irradiance (the incident light). In
this case, with the BRDF constant,ρ(~de, ~di) = ρ0, the (constant) radianceLe has the form:

Ld(p̄, ~de) = ρ0

∫

~di∈Ωi

L(p̄,−~di) cos θi dωi (79)

Note:
A perfect Lambertian surface reflects all incident light, absorbing none. Therefore,
the total irradiance over the hemisphere of incident directions must equal the radiant
exitance. Setting these quantities to be equal, one can showthat ρ0 = 1/π. The
BRDF for any diffuse surface must therefore have a value between 0 and1/π.

Despite the simplicity of the BRDF, it is not that simple to compute the radiance because we still
have an integral over the hemisphere of incident directions. So let’s simplify the model further.
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Let’s assume a single point light source with intensityI at location̄l. This gives us

Ld(p̄, ~de) = ρ0 I
~n · ~di

r2
(80)

wherer = ||l̄− p̄|| is the distance to the light source from̄p, and~di = (l̄− p̄)/r is the direction of
the source from̄p. Of course, the surface normal~n also changes with̄p.

Eqn (80) is much easier to compute, but we can actually make the computation even easier. Let’s
assume that the point source is sufficiently far away thatr and~di do not change much with points
p̄ on the object surface. That is, let’s treat them as constant.Then we can simplify Eqn (80) to

Ld(p̄) = rd I ~s · ~n (81)

whererd is often called the diffuse reflection coefficient, and~s is the direction of the source. Then
the only quantity that depends on surface positionp̄ is the surface normal~n.

Note:
The value~s · ~n should actually bemax(0, ~s · ~n). Why? Consider the relationship of
the light source and surface when this dot product is negative.

12.5.2 Ambient Illumination

The diffuse shading model in Eqn (80) is easy to compute, but often appears artificial. The biggest
issue is the point light source assumption, the most obviousconsequence of which is that any
surface normal pointing away from the light source (i.e., for which~s · ~n < 0) will have a radiance
of zero. A better approximation to the light source is a uniform ambientterm plus a point light
source. This is a still a remarkably crude model, but it’s much better than the point source by itself.

With a uniform illuminant and a constant BRDF, it is easy to see that the integral in Eqn (79)
becomes a constant. That is, the radiance does not depend on the orientation of the surface because
the illumination is invariant to surface orientation. As a result we can write the radiance under a
uniform illuminant as

La(p̄) = ra Ia (82)

wherera is often called the ambient reflection coefficient, andIa denotes the integral of the uniform
illuminant.

Note:
If the illuminant is the sum of a point source and a uniform source, then the resulting
radiance is the sum of the radiances to the individual sources, that is, the sum of Eqns
(82) and (81).
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12.5.3 Specular Reflection

For specular (mirror) surfaces, the incident light from each incident direction~di is reflected toward
a unique emittant direction~de. The emittant direction lies in the same plane as the incident direction
~di and the surface normal~n, and the angle between~n and~de is equal to that between~n and~di. One

ded i

n

can show that the emittant direction is given by~de = 2(~n · ~di)~n − ~di. For all power from~di be
reflected into a single emittant direction the BRDF for a perfect mirror must be proportional to a
delta function,ρ(~de, ~di) ∝ δ(~di − (2(~n · ~de)~n− ~de)).

In particular, if we choose the constant of proportionalityso that the radiant emittance is equal to
the total incident power, then the BRDF becomes:

ρ(~de, ~di) =
1

~n · ~di

δ(~di − (2(~n · ~de)~n− ~de)) (83)

In this case, Eqn (77) reduces to

Ls(p̄, ~de) = L(p̄,−(2(~n · ~de)~n− ~de)) (84)

This equation plays a major role in ray tracing.

Off-Axis Specularity: Many materials exhibit a significant specular component in their re-
flectance. But few are perfect mirrors. First, most specular surfaces do not reflect all light, and
that is easily handled by introducing a scalar constant in Eqn (84) to attenuate surface radianceLs.
Second, most specular surfaces exhibit some form ofoff-axis specular reflection. That is, many
polished and shiny surfaces (like plastics and metals) emitlight in the perfect mirror direction and
in some nearby directions as well. These off-axis specularities look a little blurred. Good examples
arehighlightson plastics and metals.

The problem with off-axis specularities is that the BRDF is no longer a simple delta function. The
radiance into a particular emittant direction will now be affected from the incident power over a
range of incident directions about the perfect specular direction. This means that, unlike the simple
radiance function in Eqn (84) for perfect measures, we need to return to the integral in Eqn (77).
Therefore it is not easy to compute radiance in this case.

Like the diffuse case above, one way to simplify the model with off-axis specularities is to assume
a point light source. With a point light source we can do away with the integral. In that case the
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light from a distant point source in the direction of~s is reflected into a range of directions about
the perfect mirror directions~m = 2(~n · ~s)~n− ~s. One common model for this is the following:

Ls(~de) = rsI max(0, ~m · ~de)
α, (85)

wherers is called the specular reflection coefficient (often equal to1− rd), I is the incident power
from the point source, andα ≥ 0 is a constant that determines the width of the specular highlights.
As α increases, the effective width of the specular reflection decreases. In the limit asα increases,
this becomes a mirror.

12.5.4 Phong Reflectance Model

The above components, taken together, give us the well-known Phong reflectance model that was
introduced earlier:

L(p̄, ~de) = rd Id max(0, ~s · ~n) + ra Ia + rsIs max(0, ~m · ~de)
α, (86)

where

• Ia, Id, andIr are parameters that correspond to the power of the light sources for the ambient,
diffuse, and specular terms;

• ra, rd andrs are scalar constants, called reflection coefficients, that determine the relative
magnitudes of the three reflection terms;

• α determines the spread of the specurlar highlights;

• ~n is the surface normal at̄p;

• ~s is the direction of the distant point source;

• ~m is the perfect mirror direction, given~n and~s ; and

• and~de is the emittant direction of interest (usually the direction of the camera).
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13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRT”), our goal is to render a scene as ac-
curately as possible. Whereas Basic Ray Tracing computed a verycrude approximation to radiance
at a point, in DRT we will attempt to compute the integral as accurately as possible. Additionally,
the intensity at each pixel will be properly modeled as an integral as well. Since these integrals
cannot be computed exactly, we must resort to numerical integration techniques to get approximate
solutions.

Aside:
When originally introduced, DRT was known as “Distributed RayTracing.” We will
avoid this name to avoid confusion with distributed computing, especially because
some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:

L(~de) =

∫

Ω

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) dω (87)

This equation says that the radiance emitted in direction~de is given by integrating over the hemi-
sphereΩ the BRDFρ times the incoming radianceL(−~di(φ, θ)). Directions on the hemisphere are
parameterized as

~di = (sin θ sin φ, sin θ cos φ, cos θ) (88)

The differential solid angledω is given by:

dω = sin θdθdφ (89)

and so:

L(~de) =

∫

φ∈[0,2π]

∫

θ∈[0,π/2]

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θdθdφ (90)

This is an integral over all incoming light directions, and we cannot compute these integrals in
closed-form. Hence, we need to develop numerical techniques to compute approximations.

Intensity of a pixel. Up to now, we’ve been engaged in a fiction, namely, that the intensity
of a pixel is the light passing through a single point on an image plane. However, real sensors
— including cameras and the human eye — cannot gather light atan infinitesimal point, due
both to the nature of light and the physical properties of thesensors. The actual amount of light
passing through any infinitesimal region (a point) is infinitesimal (approaching zero) and cannot
be measured. Instead light must be measured within a region.Specifically, the image plane (or
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retina) is divided up into an array of tiny sensors, each of which measures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameterizedas p̄(α, β) = p̄0 + α~u + β~v. In
camera coordinates,̄pc

0 = (0, 0, f), and the axes correspond to thex andy axes:~uc = (1, 0, 0) and
~vc = (0, 1, 0). Then, we placed pixel coordinates on a grid:p̄c

i,j = (L+ i∆i, T +j∆j, f) = p̄0 +α,
where∆i = (R − L)/nc and∆j = (B − T )/nr, andL, T,B,R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, rather than a single point. In other words,
pixel (i, j) is all valuesp̄(α, β) for αmin ≤ α < αmax , βmin ≤ β < βmax . The bounds of each
pixel are:αmin = L + i∆i, αmax = L + (i + 1)∆i, βmin = T + j∆j, andβmax = T + (j + 1)∆j.
(In general, we will set things up so that this rectangle is a square in world-space.) For each point
on the image plane, we can write the ray passing through this pixel as

~d(α, β) =
p̄(α, β)− ē

||p̄(α, β)− ē|| (91)

To compute the color of a pixel, we should compute the total light energy passing through this
rectangle, i.e., the flux at that pixel:

Φi,j =

∫

αmin≤α<αmax

∫

βmin≤β<βmax

H(α, β)dαdβ (92)

whereH(α, β) is the incoming light (irradiance) on the image at positionα, β. For color images,
this integration is computed for each color channel. Again,we cannot compute this integral exactly.

Aside:
An even more accurate model of a pixel intensity is to weight rays according to how
close they are to the center of the pixel, using a Gaussian weighting function.

13.2 Numerical integration

We begin by considering the general problem of computing an integral in 1D. Suppose we wish to
integrate a functionf(x) from 0 to D:

S =

∫ D

0

f(x)dx (93)

Visually, this corresponds to computing the area under a curve. Recall the definition of the integral.
We can break the real line into a set of intervals centered at uniformly-spaced pointsx1, ..., xN . We
can then define one rectangle on each interval, each widthD/N and heightf(xi). The total area

Copyright c© 2005 David Fleet and Aaron Hertzmann 93



CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

of these rectangles will be approximately the same as the area under the curve. The area of each
rectangle isf(xi)D/N , and thus the total area of all rectangles together is:

SN =
D

N

∑

i

f(xi) (94)

Hence, we can useSN as an approximation toS. Moreover, we will get more accuracy as we
increase the number of points:

lim
N→∞

SN = S (95)

There are two problems with using uniformly-spaced samplesfor numerical integration:

• Some parts of the function may be much more “important” than others. For example, we
don’t want to have to evaluatef(x) in areas where it is almost zero. Hence, you need to
generate many, manyxi values, which can be extremely slow.

• Uniformly-spaced samples can lead toaliasing artifacts. These are especially noticable
when the scene or textures contain repeated (periodic) patterns.

In ray-tracing, each evaluation off(x) requires performing a ray-casting operation and a recursive
call to the shading procedure, and is thus very, very expensive. Hence, we would like to design
integration procedures that use as few evaluations off(x) as possible.

To address these problems, randomized techniques known asMonte Carlo integration can be
used.

13.3 Simple Monte Carlo integration

Simple Monte Carlo addresses the problem of aliasing, and works as follows. We randomly sample
N valuesxi in the interval[0, D], and then evaluate the same sum just as before:

SN =
D

N

∑

i

f(xi) (96)

It turns out that, if we have enough samples, we will get just as accurate a result as before; more-
over, aliasing problems will be reduced.

Aside:
Formally, it can be shown that the expected value ofSN is S. Moreover, the variance
of SN is proportional toN , i.e., more samples leads to better estimates of the integral.

In the C programming language, the random sampling can be computed asrand() * D.

Aside:
Monte Carlo is a city near France and Italy famous for a big casino. Hence, the name
of the Monte Carlo algorithm, since you randomly sample some points and gamble
that they are representative of the function.
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13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need to evaluate Equation 92). This is a 2D
integral, so we need to determineK 2D points(αi, βi), and compute:

Φi,j ≈
(αmax − αmin)(βmax − βmin)

K

K
∑

i=1

H(αi, βi) (97)

In other words, we pickN points withnin the pixel, cast a ray through each point, and then average
the intensities of the rays (scaled by the pixel’s area(αmax − αmin)(βmax − βmin). These samples
can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute this is by uniformly-spaced samples(αm, βn):

αm = (m− 1)∆α, ∆α = (αmax − αmin)/M (98)

βn = (n− 1)∆β, ∆β = (βmax − βmin)/N (99)

and then sum:

Φi,j ≈ ∆α∆β
M
∑

m=1

N
∑

n=1

H(αm, βn) (100)

However, Monte Carlo sampling — in which the samples are randomly-spaced —
will usually give better results.

13.5 Shading integration

Our goal in shading a point is to compute the integral:

L(~de) =

∫

φ∈[0,2π]

∫

θ∈[0,π/2]

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θ dθdφ (101)

We can choose uniformly-spaced values ofφ andθ values as follows:

θm = (m− 1)∆θ, ∆θ = (π/2)/M (102)

φn = (n− 1)∆φ, ∆φ = 2π/N (103)

This divides up the unit hemisphere intoMN solid angles, each with area approximately equal to
sin θ∆θ∆φ. Applying 2D numerical integration gives:

L(~de) ≈
M
∑

m=1

N
∑

n=1

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θ ∆θ ∆φ (104)
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Once you have all the elements in place (e.g., the ray-tracer, the BRDF model, etc.), evaluating this
equation is actually quite simple, and doesn’t require all the treatment of special cases required for
basic ray-tracing (such as specular, diffuse, mirror, etc.). However, it is potentially much slower to
compute.

13.6 Stratified Sampling

A problem with Simple Monte Carlo is that, if you use a small number of samples, these samples
will be spaced very irregularly. For example, you might be very unlucky and get samples that
don’t place any samples in some parts of the space. This can beaddressed by a technique called
stratified sampling: divide the domain intoK-uniformly sized regions, and randomly sampleJ
pointsxi within each region; then sumD

N

∑

i f(xi) as before.

13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small part of the integral. For example, if the
scene is lit by a bright point light source, then most of the energy comes from the direction to this
source. If the surface is very shiny and not very diffuse, then most of the energy comes from the
reflected direction. In general, it is desirable to sample more densely in regions where the function
changes faster and where the function values are large. The general equation for this is:

SN =
∑

i

f(xi)di (105)

wheredi is the size of the region around pointxi. Alternatively, we can use stratified sampling,
and randomly sampleJ values within each region. How we choose to define the region sizes
and spaces depends on the specific integration problem. Doing so can be very difficult, and, as a
consequence, deterministic non-uniform spacing is normally used in graphics; instead, importance
sampling (below) is used instead.

13.8 Importance sampling

The method ofimportance sampling is a more sophisticated form of Monte Carlo that allows
non-uniform sample spacing. Instead of sampling the pointsxi uniformly, we sample them from
another probability distribution function (PDF)p(x). We need to design this PDF so that it gives
us more samples in regions ofx that are more “important,” e.g., values off(x) are larger. We can
then approximate the integralS as:

SN =
1

N

∑

i

f(xi)

p(xi)
(106)
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If we use a uniform distribution:p(x) = 1/D for x ∈ [0, D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we can alsouse something more sophisti-
cated, such as a Gaussian distribution centered around the point we expect to provide the greatest
contribution to the intensity.
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13.9 Distribution Ray Tracer

for each pixel (i,j)
< chooseN pointsx̄k within the pixel’s area >

for each samplek
< compute ray~rk(λ) = ~pk + λ~dk where~dk = ~pk − ~e >

Ik = rayTrace(~pk, ~dk, 1)
endfor
setpixel(i, j,∆i∆j

∑

k Ik/N )
endfor

The rayTrace and findFirstHit procedures are the same as for Basic Ray Tracing. However, the
new shading procedure uses numerical integration:

distRtShade(OBJ,~p, ~n, ~de, depth)
< chooseN directions(φk, θk) on the hemisphere>
for each directionk

Ik = rayTrace(~p, ~dk, depth+1)
endfor
return∆θ∆φ

∑

k ρ(~de, ~di(φk, θk))Ik sin θk
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14 Interpolation

14.1 Interpolation Basics

Goal: We would like to be able to define curves in a way that meets the following criteria:

1. Interaction should be natural and intuitive.

2. Smoothness should be controllable.

3. Analytic derivatives should exist and be easy to compute.

4. Representation should be compact.

Interpolation is when a curve passes through a set of “control points.”

Figure 9: *
Interpolation

Approximation is when a curve approximates but doesn’t necessarily contain its control points.

Figure 10: *
Approximation

Extrapolation is extending a curve beyond the domain of its control points.

Continuity - A curve is isCn when it is continuous in up to itsnth-order derivatives. For example,
a curve is inC1 if it is continuous and its first derivative is also continuous.

Consider a cubic interpolant — a 2D curve,c̄(t) =
[

x(t) y(t)
]

where

x(t) = a0 + a1t + a2t
2 + a3t

3, (107)

y(t) = b0 + b1t + b2t
2 + b3t

3, (108)
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Figure 11: *
Extrapolation

so

x(t) =
3
∑

i=0

ait
i =

[

1 t t2 t3
]









a0

a1

a2

a3









= ~tT~a. (109)

Here,~t is the basis and~a is the coefficient vector. Hence,c̄(t) = ~tT
[

~a ~b
]

. (Note: T
[

~a ~b
]

is

a4× 2 matrix).

There are eight unknowns, fourai values and fourbi values. The constraints are the values ofc̄(t)
at known values oft.

Example:
For t ∈ (0, 1), suppose we know̄cj ≡ c̄(tj) for tj = 0, 1

3
, 2

3
, 1 asj = 1, 2, 3, 4. That

is,

c̄1 =
[

x1 y1

]

≡
[

x(0) y(0)
]

, (110)

c̄2 =
[

x2 y2

]

≡
[

x(1/3) y(1/3)
]

, (111)

c̄3 =
[

x3 y3

]

≡
[

x(2/3) y(2/3)
]

, (112)

c̄4 =
[

x4 y4

]

≡
[

x(1) y(1)
]

. (113)

So we have the following linear system,








x1 y1

x2 y2

x3 y3

x4 y4









=









1 0 0 0
1 1/3 (1/3)2 (1/3)3

1 2/3 (2/3)2 (2/3)3

1 1 1 1









[

~a ~b
]

, (114)

or more compactly,
[

~x ~y
]

= C
[

~a ~b
]

. Then,
[

~a ~b
]

= C−1
[

~x ~y
]

. From

this we can find~a and~b, to calculate the cubic curve that passes through the given
points.
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We can also place derivative constraints on interpolant curves. Let

~τ(t) =
dc̄(t)

dt
=

d

dt

[

1 t t2 t3
]

[

~a ~b
]

(115)

=
[

0 1 t t2
]

[

~a ~b
]

, (116)

that is, a different basis with the same coefficients.

Example:
Suppose we are given three points,tj = 0, 1

2
, 1, and the derivative at a point,~τ2(

1
2
).

So we can write this as








x1 y1

x2 y2

x3 y3

x′
2 y′

2









=









1 0 0 0
1 1/2 (1/2)2 (1/2)3

1 1 1 1
0 1 2(1/2) 3(1/2)2









[

~a ~b
]

, (117)

and








c̄1

c̄2

c̄3

~τ2









= C
[

~a ~b
]

, (118)

which we can use to find~a and~b:

[

~a ~b
]

= C−1









c̄1

c̄2

c̄3

~τ2









. (119)

Unfortunately, polynomial interpolation yields unintuitive results when interpolating large num-
bers of control points; you can easily get curves that pass through the control points, but oscillate
in very unexpected ways. Hence, direct polynomial interpolation is rarely used except in combi-
nation with other techniques.

14.2 Catmull-Rom Splines

Catmull-Rom Splines interpolate degree-3 curves withC1 continuity and are made up of cubic
curves.

A user specifies only the points[p̄1, ...p̄N ] for interpolation, and the tangent at each point is set
to be parallel to the vector between adjacent points. So the tangent at̄pj is κ(p̄j+1 − p̄j−1) (for
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endpoints, the tangent is instead parallel to the vector from the endpoint to its only neighbor). The
value ofκ is set by the user, determining the “tension” of the curve.

p
j

p
j-1

p
j+1

Between two points,̄pj andp̄j+1, we draw a cubic curve usinḡpj, p̄j+1, and two auxiliary points
on the tangents,κ(p̄j+1 − p̄j−1) andκ(p̄j+2 − p̄j).

We want to find the coefficientsaj whenx(t) =
[

1 t t2 t3
][

a0 a1 a2 a3

]T
, where the

curve is defined as̄c(t) =
[

c(t) y(t)
]

(similarly for y(t) andbj). For the curve between̄pj and
p̄j+1, assume we know two end points,c̄(0) andc̄(1) and their tangents,~c′(0) and~c′(1). That is,

x(0) = xj, (120)

x(1) = xj+1, (121)

x′(0) = κ(xj+1 − xj−1), (122)

x′(1) = κ(xj+2 − xj). (123)

To solve for~a, set up the linear system,








x(0)
x(1)
x′(0)
x′(1)









=









1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

















a0

a1

a2

a3









. (124)

Then~x = M~a, so~a = M−1~x. Substituting~a in x(t) yields

x(t) =
[

1 t t2 t3
]









1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

















xj

xj+1

κ(xj+1 − xj−1)
κ(xj+2 − xj)









(125)

=
[

1 t t2 t3
]









0 1 0 0
−κ 0 κ 0
2κ κ− 3 3− 2κ −κ
−κ 2− κ κ− 2 κ

















xj−1

xj

xj+1

xj+2









. (126)
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For the first tangent in the curve, we cannot use the above formula. Instead, we use:

~τ1 = κ(p̄2 − p̄1) (127)

and, for the last tangent:

~τN = κ(p̄N − p̄N−1) (128)
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15 Parametric Curves And Surfaces

15.1 Parametric Curves

Designing Curves

• We don’t want only polygons.

• Curves are used for design. Users require a simple set of controls to allow them to edit and
design curves easily.

• Curves should have infinite resolution, so we can zoom in and still see a smooth curve.

• We want to have a compact representation.

Parametric functions are of the formx(t) = f(t) andy(t) = g(t) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to modelcurves that arenot functions of any
axis in the plane.

Curves can be defined as polynomials, for examplex(t) = 5t10 + 4t9 + 3t8 + .... However,
coefficients are not intuitive editing parameters, and these curves are difficult to control. Hence,
we will consider more intuitive parameterizations.

15.2 B́ezier curves

We can define a set of curves called Bézier curves by a procedure called the de Casteljau algorithm.
Given a sequence of control pointsp̄k, de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedly defining new, smaller point sequences until
we have a single point at the value fort for which we are evaluating the curve.

p
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p
1 p

2

p
3

p
0
1

p
1
1

p
0
2

p
1
2

p
2
1

p
0
3

Figure 12: de Casteljau evaluation fort = 0.25.

p̄1
0(t) = (1− t)p̄0 + tp̄1 (129)
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p̄1
1(t) = (1− t)p̄1 + tp̄2 (130)

p̄1
2(t) = (1− t)p̄2 + tp̄3 (131)

p̄2
0(t) = (1− t)p̄1

0(t) + tp̄1
1(t) (132)

= (1− t)2p̄0 + 2t(1− t)p̄1 + t2p̄2 (133)

p̄2
1(t) = (1− t)p̄1

1(t) + tp̄1
2(t) (134)

= (1− t)2p̄1 + 2t(1− t)p̄2 + t2p̄3 (135)

p̄3
0(t) = (1− t)p̄2

0(t) + tp̄2
1(t) (136)

= (1− t)3p̄0 + 3(1− t)2tp̄1 + 3(1− t)t2p̄2 + t3p̄3 (137)

The resulting curvēp3
0 is the cubic B́ezier defined by the four control points. The curvesp̄2

0 andp̄2
1

are quadratic B́ezier curves, each defined by three control points. For all Bézier curves, we keept
in the range[0...1].

15.3 Control Point Coefficients

Given a sequence of points̄p0, p̄1, ..., p̄n, we can directly evaluate the coefficient of each point. For
a class of curves known as Bézier curves, the coefficients are defined by the Bernstein polynomials:

p̄n
0 (t) =

n
∑

i=0

(

n
i

)

(1− t)n−itip̄i =
n
∑

i=0

Bn
i (t)p̄i (138)

where

Bn
i (t) =

(

n

i

)

(1− t)n−iti (139)

are called theBernstein basis functions.

For example, cubic B́ezier curves have the following coefficients:

B3
0(t) = (1− t)3 (140)

B3
1(t) = 3(1− t)2t (141)

B3
2(t) = 3(1− t)t2 (142)

B3
3(t) = t3 (143)

Figure 13 is an illustration of the cubic Bernstein basis functions.

Similarly, we define basis functions for a linear curve, which is equivalent to the interpolation
p̄(t) = p̄0(1− t) + p̄1t. These are shown in Figure 3.
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Figure 13: Degree three basis functions for Bézier curves.B3
0(t) (dark blue),B3

1(t) (green),B3
2(t)

(red), andB3
3(t) (light blue).
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Figure 14: Degree one basis functions for Bézier curves.B1
0(t) (green) andB1

1(t) (blue).

15.4 B́ezier Curve Properties

• Convexity of the basis functions.For all values oft ∈ [0...1], the basis functions sum to 1:

n
∑

i=0

Bn
i (t) = 1 (144)

In the cubic case, this can be shown as follows:

((1− t) + t)3 = (1− t)3 + 3(1− t)2t + 3(1− t)t2 + t3 = 1 (145)

In the general case, we have:

((1− t) + t)n =
n
∑

i=0

(

n

i

)

(1− t)n−iti = 1 (146)

Similarly, it is easy to show that the basis functions are always non-negative:Bn
i (t) ≥ 0.
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• Affine Invariance

What happens if we apply an affine transformation to a Bézier curve?

Let c̄(t) =
∑n

j=0 p̄jB
n
j (t), and letF (p̄) = Ap̄+ ~d be an affine transformation. Then we have

the following:

F (c̄(t)) = Ac̄(t) + ~d (147)

= A
(

∑

p̄jB
n
j (t)

)

+ ~d (148)

=
∑

(Ap̄j) Bn
j (t) + ~d (149)

=
∑

(

Ap̄j + ~d
)

Bn
j (t) (150)

=
∑

Bn
j (t)q̄j (151)

q̄j = Ap̄j + ~d denotes the transformed points. This illustrates that the transformed curve
we get is the same as what we get by transforming the control points. (The third statement
follows from the fact that

∑n
j=0 Bn

j (t) = 1. )

• Convex Hull Property

SinceBN
i (t) ≥ 0, p̄(t) is a convex combination of the control points. Thus, Bézier curves

alwayslie within the convex hull of the control points.

• Linear Precision

When the control points lie on a straight line, then the corresponding B́ezier curve will also
be a straight line. This follows from the convex hull property.

• Variation Diminishing

No straight line can have more intersections with the Bézier curve than it has with the control
polygon. (The control polygon is defined as the line segmentspjpj+1.)

• Derivative Evaluation

Letting c̄(t) =
∑N

j=0 p̄jB
N
j (t), we want to find the following:

c̄′(t) =
dc̄(t)

dt
=

(

dx(t)

dt
,
dy(t)

dt

)

(152)

Letting ~dj = p̄j+1 − p̄j, it can be shown that:

τ(t) =
d

dt
c̄(t) =

d

dt

N
∑

j=0

p̄jB
N
j (t) = N

N−1
∑

j=0

~dBN−1
j (t) (153)
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Figure 15: The line (green) will always intersect the curve less often than or as many times as the
control polygon.

Thus, c̄(t) is a convex sum of the points̄pj and is a point itself.τ(t) is a convex sum of
vectors and is a vector.

Example: What isτ(0) whenN = 3, given(p̄0, p̄1, p̄2, p̄3)?

SinceB3
j (0) = 0 for all j 6= 0 andB3

0(0) = 1,

τ(0) = N
∑

~djB
N−1
j (t) = 3~dj = 3 (p̄1 − p̄0) (154)

Therefore, the tangent vector at the endpoint is parallel tothe vector from the endpoint to the
adjacent point.

• Global vs. Local Control

Bézier curves that approximate a long sequence of points produce high-degree polynomials.
They have global basis functions; that is, modifying any point changes the entire curve. This
results in curves that can be hard to control.

15.5 Rendering Parametric Curves

Given a parameter ranget ∈ [0, 1], samplet by some partition∆t, and draw a line connecting each
pair of adjacent samples.

• This is an expensive algorithm.

• This does not adapt to regions of a curve that do not require asmany samples.

• It’s difficult to determine a sufficient number of samples to render the curve such that it
appears smooth.

There are faster algorithms based on adaptive refinement andsubdivision.
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15.6 B́ezier Surfaces

Cubic B́ezier patches are the most common parametric surfaces used for modeling. They are of
the following form:

s(α, β) =
3
∑

k=0

3
∑

j=0

B3
j (α)B3

k(β)p̄j,k =
∑

k

B3
k(β)p̄k(α) (155)

where each̄pk(α) is a B́ezier curve:

p̄k(α) =
∑

j

B3
j (α)p̄j,k (156)

Rather than considering only four points as in a cubic Bézier curve, consider 16 control points
arranged as a 4 x 4 grid:

Figure 16: Evaluation of any point can be done by evaluating curves along one direction (blue),
and evaluating a curve among points on these curves with corresponding parameter values.

For any givenα, generate four points on curves and then approximate them with a B́ezier curve
alongβ.

p̄k(α) =
3
∑

j=0

B3
j (α)p̄jk (157)

To connect multiple patches, we align adjacent control points. to ensureC1 continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functionsB3

j,k(α, β) = B3
j (α)B3

k(β):

s(α, β) =
3
∑

k=0

3
∑

j=0

B3
j,k(α, β)p̄j,k (158)
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