CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRRBur goal is to render a scene as ac-
curately as possible. Whereas Basic Ray Tracing computed @netg approximation to radiance
at a point, in DRT we will attempt to compute the integral asumately as possible. Additionally,
the intensity at each pixel will be properly modeled as argral as well. Since these integrals
cannot be computed exactly, we must resort to numericajiat®n techniques to get approximate
solutions.

Aside:

When originally introduced, DRT was known as “Distributed Ragicing.” We will
avoid this name to avoid confusion with distributed compgtiespecially because
some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:
L) = [pld di(0.0)) L=di0,0) (- @) e @

This equation says that the radiance emitted in directjais given by integrating over the hemi-
sphere) the BRDFp times the incoming radiande(—d; (¢, #)). Directions on the hemisphere are
parameterized as

d, = (sin 0 sin ¢, sin @ cos ¢, cos) (2)

The differential solid angldw is given by:
dw = sin 0dOd¢ 3)

and so:

-/ / p(do di(6,0)) L(—d.(6,0)) (7 -) sin 6o (4)
$€[0,27] ee()n/z

This is an integral over all incoming light directions, aneé wannot compute these integrals in
closed-form. Hence, we need to develop numerical techeitueompute approximations.

Intensity of a pixel. Up to now, we've been engaged in a fiction, namely, that thensity

of a pixel is the light passing through a single point on angealane. However, real sensors
— including cameras and the human eye — cannot gather ligah abfinitesimal point, due
both to the nature of light and the physical properties ofgtesors. The actual amount of light
passing through any infinitesimal region (a point) is inésimal (approaching zero) and cannot
be measured. Instead light must be measured within a re@pacifically, the image plane (or

Copyright(© 2005 David Fleet and Aaron Hertzmann 92

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

retina) is divided up into an array of tiny sensors, each attvimeasures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameteaged«, 5) = po + ai + (9. In
camera coordinateg; = (0,0, f), and the axes correspond to thandy axes:u“ = (1,0,0) and

v° = (0,1,0). Then, we placed pixel coordinates on a gyifl; = (L +iAi, T+ jAj, f) = po +a,
whereAi = (R — L)/n.andAj = (B —T)/n,, andL, T, B, R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, ratherdhsingle point. In other words,
pixel (z, 7) is all valuesp(a, 3) for amin < a < Qmazs Bmin < B < Bmaz- The bounds of each
pixel are:ai, = L+ iAi, Qo = L+ (i + 1) A6, Bpin = T + jAF, andBee = T + (J + 1) Aj.

(In general, we will set things up so that this rectangle igwase in world-space.) For each point
on the image plane, we can write the ray passing through ke s

_]5(0[, B) —€
||p(cv, B) — el

To compute the color of a pixel, we should compute the totitlenergy passing through this
rectangle, i.e., the flux at that pixel:

v, [/ H(a,)dads ©)
Cmin La<&magz Y Bmin <B<LBmaz

whereH («, 3) is the incoming light (irradiance) on the image at positior. For color images,
this integration is computed for each color channel. Agammgcannot compute this integral exactly.

d(a, B) (5)

Aside:
An even more accurate model of a pixel intensity is to weiglgsraccording to ho
close they are to the center of the pixel, using a Gaussiaghtieg function.

<

13.2 Numerical integration

We begin by considering the general problem of computingneegral in 1D. Suppose we wish to
integrate a functiorf (x) from 0 to D:

D
S:A f(z)dz @)

Visually, this corresponds to computing the area underaectRecall the definition of the integral.
We can break the real line into a set of intervals centeredi&nnly-spaced points,, ..., z . We
can then define one rectangle on each interval, each viidiki and heightf(z;). The total area

Copyright(©) 2005 David Fleet and Aaron Hertzmann 93

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

of these rectangles will be approximately the same as treelwarder the curve. The area of each
rectangle isf(z;) D/N, and thus the total area of all rectangles together is:

Sv =3 3 S ®

Hence, we can us8y as an approximation t§. Moreover, we will get more accuracy as we
increase the number of points:

N—oo

There are two problems with using uniformly-spaced samiplesumerical integration:

e Some parts of the function may be much more “important” théoeis. For example, we
don’t want to have to evaluatg(z) in areas where it is almost zero. Hence, you need to
generate many, many values, which can be extremely slow.

e Uniformly-spaced samples can leaddbasing artifacts. These are especially noticable
when the scene or textures contain repeated (periodi®rpatt

In ray-tracing, each evaluation ¢fx) requires performing a ray-casting operation and a reaairsiv
call to the shading procedure, and is thus very, very expengience, we would like to design
integration procedures that use as few evaluationg.of as possible.

To address these problems, randomized techniques knowtoake Carlo integration can be
used.

13.3 Simple Monte Carlo integration

Simple Monte Carlo addresses the problem of aliasing, anksnas follows. We randomly sample
N valuesz; in the interval[0, D], and then evaluate the same sum just as before:

D
Sy =% Z f(x) (10)
It turns out that, if we have enough samples, we will get jgssaecurate a result as before; more-

over, aliasing problems will be reduced.

Aside:
Formally, it can be shown that the expected valugpfis S. Moreover, the variange
of Sy is proportional taV, i.e., more samples leads to better estimates of the integra

In the C programming language, the random sampling can beutaa as and() * D.

Aside:
Monte Carlo is a city near France and Italy famous for a bignzagtience, the name
of the Monte Carlo algorithm, since you randomly sample sooietp and gambl
that they are representative of the function.

4%

Copyright(© 2005 David Fleet and Aaron Hertzmann 94

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need taleate Equation 6). This is a 2D
integral, so we need to determifi&2D points(«;, 3;), and compute:

K

(I)i,j ~ (amax - amin]){(—ﬁmax - Bmm) Z H(Olz,ﬁz) (11)

=1

In other words, we pickV points withnin the pixel, cast a ray through each point, dethtaverage
the intensities of the rays (scaled by the pixel's &®@g., — @min)(Bmaz — Bmin). These samples
can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute this is by uniformly-spaced dasfpv,,, 3,):

an = (m—1DAa, Aa = (e — Wmin)/M (12)
Bn - (Tl - 1)Aﬁ, Aﬁ = (ﬁmax - ﬁmm)/N (13)
and then sum:
M N
~ AaAB >N Ham, B,) (14)
m=1 n=1

However, Monte Carlo sampling — in which the samples are ramgcpaced —
will usually give better results.

13.5 Shading integration

Our goal in shading a point is to compute the integral:

= [P die0) L-d6,0) - &) simodsas (15)
¢€[0,2n] JO€[0,7/2]

We can choose uniformly-spaced valueg@ndd values as follows:

O, = (m—1)A0, AG=(r/2)/M (16)
6n = (n—1)A¢, A¢=2r/N (17)

This divides up the unit hemisphere imté/V solid angles, each with area approximately equal to
sin 0AOA¢. Applying 2D numerical integration gives:

ZZpJ di(.0)) L(=di(6,0)) (7 - d;) sin 0 A9 Ag (18)

m=1n=1

Copyright(© 2005 David Fleet and Aaron Hertzmann 95

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

Once you have all the elements in place (e.g., the ray-trieeBRDF model, etc.), evaluating this
equation is actually quite simple, and doesn't requirehaditteatment of special cases required for
basic ray-tracing (such as specular, diffuse, mirror) ektowever, it is potentially much slower to
compute.

13.6 Stratified Sampling

A problem with Simple Monte Carlo is that, if you use a small tn@mof samples, these samples
will be spaced very irregularly. For example, you might beyvenlucky and get samples that
don’t place any samples in some parts of the space. This caddrvessed by a technique called
stratified sampling: divide the domain infg-uniformly sized regions, and randomly sample
pointsz; within each region; then su} 3", f(z;) as before.

13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small pathe integral. For example, if the
scene is lit by a bright point light source, then most of thergy comes from the direction to this
source. If the surface is very shiny and not very diffusentimost of the energy comes from the
reflected direction. In general, it is desirable to sampleengi@nsely in regions where the function
changes faster and where the function values are large. diferg equation for this is:

Sy = flai)d; (19)

whered; is the size of the region around point Alternatively, we can use stratified sampling,
and randomly samplg values within each region. How we choose to define the regess
and spaces depends on the specific integration problem.gBoican be very difficult, and, as a
consequence, deterministic non-uniform spacing is ndymakd in graphics; instead, importance
sampling (below) is used instead.

13.8 Importance sampling

The method ofimportance samplingis a more sophisticated form of Monte Carlo that allows
non-uniform sample spacing. Instead of sampling the paiptsmiformly, we sample them from
another probability distribution function (PDp}jz). We need to design this PDF so that it gives
us more samples in regions othat are more “important,” e.g., values ffr) are larger. We can
then approximate the integrélas:

. i f(%)
Sn =+ Z o) (20)

Copyright(© 2005 David Fleet and Aaron Hertzmann 96

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

If we use a uniform distributionp(z) = 1/D for x € [0, D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we canuslesomething more sophisti-
cated, such as a Gaussian distribution centered arounaihievyge expect to provide the greatest
contribution to the intensity.

Copyright(© 2005 David Fleet and Aaron Hertzmann 97

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13.9 Distribution Ray Tracer

for each pixel (i,))
< chooseVN pointsz; within the pixel's area >
for each samplé
< compute rayf,(\) = By + Ad;, whered, = B, — € >
I, = rayTrace@;, d;, 1)
endfor
setpixel(i, j,AiAj >, I;;/N)
endfor

The rayTrace and findFirstHit procedures are the same as f&ic Bay Tracing. However, the
new shading procedure uses numerical integration:

distRtShadgOBJ, b, ii, d., depth)
< chooseN directions(¢y, 0;) on the hemisphere>
for each directiork
I, = rayTracep, d;, depth+1)
endfor
returnAdAe¢ >, p(&e, ci;(gbk, 01)) I}, sin O,

Copyright(© 2005 David Fleet and Aaron Hertzmann 98

