
CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRT”), our goal is to render a scene as ac-
curately as possible. Whereas Basic Ray Tracing computed a verycrude approximation to radiance
at a point, in DRT we will attempt to compute the integral as accurately as possible. Additionally,
the intensity at each pixel will be properly modeled as an integral as well. Since these integrals
cannot be computed exactly, we must resort to numerical integration techniques to get approximate
solutions.

Aside:
When originally introduced, DRT was known as “Distributed RayTracing.” We will
avoid this name to avoid confusion with distributed computing, especially because
some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:

L(~de) =

∫
Ω

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) dω (1)

This equation says that the radiance emitted in direction~de is given by integrating over the hemi-
sphereΩ the BRDFρ times the incoming radianceL(−~di(φ, θ)). Directions on the hemisphere are
parameterized as

~di = (sin θ sin φ, sin θ cos φ, cos θ) (2)

The differential solid angledω is given by:

dω = sin θdθdφ (3)

and so:

L(~de) =

∫
φ∈[0,2π]

∫
θ∈[0,π/2]

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θdθdφ (4)

This is an integral over all incoming light directions, and we cannot compute these integrals in
closed-form. Hence, we need to develop numerical techniques to compute approximations.

Intensity of a pixel. Up to now, we’ve been engaged in a fiction, namely, that the intensity
of a pixel is the light passing through a single point on an image plane. However, real sensors
— including cameras and the human eye — cannot gather light atan infinitesimal point, due
both to the nature of light and the physical properties of thesensors. The actual amount of light
passing through any infinitesimal region (a point) is infinitesimal (approaching zero) and cannot
be measured. Instead light must be measured within a region.Specifically, the image plane (or

Copyright c© 2005 David Fleet and Aaron Hertzmann 92

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

retina) is divided up into an array of tiny sensors, each of which measures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameterizedas p̄(α, β) = p̄0 + α~u + β~v. In
camera coordinates,̄pc

0 = (0, 0, f), and the axes correspond to thex andy axes:~uc = (1, 0, 0) and
~vc = (0, 1, 0). Then, we placed pixel coordinates on a grid:p̄c

i,j = (L+ i∆i, T +j∆j, f) = p̄0 +α,
where∆i = (R − L)/nc and∆j = (B − T)/nr, andL, T,B,R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, rather than a single point. In other words,
pixel (i, j) is all valuesp̄(α, β) for αmin ≤ α < αmax , βmin ≤ β < βmax . The bounds of each
pixel are:αmin = L + i∆i, αmax = L + (i + 1)∆i, βmin = T + j∆j, andβmax = T + (j + 1)∆j.
(In general, we will set things up so that this rectangle is a square in world-space.) For each point
on the image plane, we can write the ray passing through this pixel as

~d(α, β) =
p̄(α, β) − ē

||p̄(α, β) − ē||
(5)

To compute the color of a pixel, we should compute the total light energy passing through this
rectangle, i.e., the flux at that pixel:

Φi,j =

∫
αmin≤α<αmax

∫
βmin≤β<βmax

H(α, β)dαdβ (6)

whereH(α, β) is the incoming light (irradiance) on the image at positionα, β. For color images,
this integration is computed for each color channel. Again,we cannot compute this integral exactly.

Aside:
An even more accurate model of a pixel intensity is to weight rays according to how
close they are to the center of the pixel, using a Gaussian weighting function.

13.2 Numerical integration

We begin by considering the general problem of computing an integral in 1D. Suppose we wish to
integrate a functionf(x) from 0 to D:

S =

∫ D

0

f(x)dx (7)

Visually, this corresponds to computing the area under a curve. Recall the definition of the integral.
We can break the real line into a set of intervals centered at uniformly-spaced pointsx1, ..., xN . We
can then define one rectangle on each interval, each widthD/N and heightf(xi). The total area

Copyright c© 2005 David Fleet and Aaron Hertzmann 93

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

of these rectangles will be approximately the same as the area under the curve. The area of each
rectangle isf(xi)D/N , and thus the total area of all rectangles together is:

SN =
D

N

∑
i

f(xi) (8)

Hence, we can useSN as an approximation toS. Moreover, we will get more accuracy as we
increase the number of points:

lim
N→∞

SN = S (9)

There are two problems with using uniformly-spaced samplesfor numerical integration:

• Some parts of the function may be much more “important” than others. For example, we
don’t want to have to evaluatef(x) in areas where it is almost zero. Hence, you need to
generate many, manyxi values, which can be extremely slow.

• Uniformly-spaced samples can lead toaliasing artifacts. These are especially noticable
when the scene or textures contain repeated (periodic) patterns.

In ray-tracing, each evaluation off(x) requires performing a ray-casting operation and a recursive
call to the shading procedure, and is thus very, very expensive. Hence, we would like to design
integration procedures that use as few evaluations off(x) as possible.

To address these problems, randomized techniques known asMonte Carlo integration can be
used.

13.3 Simple Monte Carlo integration

Simple Monte Carlo addresses the problem of aliasing, and works as follows. We randomly sample
N valuesxi in the interval[0, D], and then evaluate the same sum just as before:

SN =
D

N

∑
i

f(xi) (10)

It turns out that, if we have enough samples, we will get just as accurate a result as before; more-
over, aliasing problems will be reduced.

Aside:
Formally, it can be shown that the expected value ofSN is S. Moreover, the variance
of SN is proportional toN , i.e., more samples leads to better estimates of the integral.

In the C programming language, the random sampling can be computed asrand() * D.

Aside:
Monte Carlo is a city near France and Italy famous for a big casino. Hence, the name
of the Monte Carlo algorithm, since you randomly sample some points and gamble
that they are representative of the function.

Copyright c© 2005 David Fleet and Aaron Hertzmann 94

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need to evaluate Equation 6). This is a 2D
integral, so we need to determineK 2D points(αi, βi), and compute:

Φi,j ≈
(αmax − αmin)(βmax − βmin)

K

K∑
i=1

H(αi, βi) (11)

In other words, we pickN points withnin the pixel, cast a ray through each point, and then average
the intensities of the rays (scaled by the pixel’s area(αmax − αmin)(βmax − βmin). These samples
can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute this is by uniformly-spaced samples(αm, βn):

αm = (m − 1)∆α, ∆α = (αmax − αmin)/M (12)

βn = (n − 1)∆β, ∆β = (βmax − βmin)/N (13)

and then sum:

Φi,j ≈ ∆α∆β
M∑

m=1

N∑
n=1

H(αm, βn) (14)

However, Monte Carlo sampling — in which the samples are randomly-spaced —
will usually give better results.

13.5 Shading integration

Our goal in shading a point is to compute the integral:

L(~de) =

∫
φ∈[0,2π]

∫
θ∈[0,π/2]

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θ dθdφ (15)

We can choose uniformly-spaced values ofφ andθ values as follows:

θm = (m − 1)∆θ, ∆θ = (π/2)/M (16)

φn = (n − 1)∆φ, ∆φ = 2π/N (17)

This divides up the unit hemisphere intoMN solid angles, each with area approximately equal to
sin θ∆θ∆φ. Applying 2D numerical integration gives:

L(~de) ≈
M∑

m=1

N∑
n=1

ρ(~de, ~di(φ, θ)) L(−~di(φ, θ)) (~n · ~di) sin θ ∆θ ∆φ (18)

Copyright c© 2005 David Fleet and Aaron Hertzmann 95

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

Once you have all the elements in place (e.g., the ray-tracer, the BRDF model, etc.), evaluating this
equation is actually quite simple, and doesn’t require all the treatment of special cases required for
basic ray-tracing (such as specular, diffuse, mirror, etc.). However, it is potentially much slower to
compute.

13.6 Stratified Sampling

A problem with Simple Monte Carlo is that, if you use a small number of samples, these samples
will be spaced very irregularly. For example, you might be very unlucky and get samples that
don’t place any samples in some parts of the space. This can beaddressed by a technique called
stratified sampling: divide the domain intoK-uniformly sized regions, and randomly sampleJ
pointsxi within each region; then sumD

N

∑
i f(xi) as before.

13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small part of the integral. For example, if the
scene is lit by a bright point light source, then most of the energy comes from the direction to this
source. If the surface is very shiny and not very diffuse, then most of the energy comes from the
reflected direction. In general, it is desirable to sample more densely in regions where the function
changes faster and where the function values are large. The general equation for this is:

SN =
∑

i

f(xi)di (19)

wheredi is the size of the region around pointxi. Alternatively, we can use stratified sampling,
and randomly sampleJ values within each region. How we choose to define the region sizes
and spaces depends on the specific integration problem. Doing so can be very difficult, and, as a
consequence, deterministic non-uniform spacing is normally used in graphics; instead, importance
sampling (below) is used instead.

13.8 Importance sampling

The method ofimportance sampling is a more sophisticated form of Monte Carlo that allows
non-uniform sample spacing. Instead of sampling the pointsxi uniformly, we sample them from
another probability distribution function (PDF)p(x). We need to design this PDF so that it gives
us more samples in regions ofx that are more “important,” e.g., values off(x) are larger. We can
then approximate the integralS as:

SN =
1

N

∑
i

f(xi)

p(xi)
(20)

Copyright c© 2005 David Fleet and Aaron Hertzmann 96

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

If we use a uniform distribution:p(x) = 1/D for x ∈ [0, D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we can alsouse something more sophisti-
cated, such as a Gaussian distribution centered around the point we expect to provide the greatest
contribution to the intensity.

Copyright c© 2005 David Fleet and Aaron Hertzmann 97

CSC418 / CSCD18 / CSC2504 Distribution Ray Tracing

13.9 Distribution Ray Tracer

for each pixel (i,j)
< chooseN pointsx̄k within the pixel’s area >

for each samplek
< compute ray~rk(λ) = ~pk + λ~dk where~dk = ~pk − ~e >

Ik = rayTrace(~pk, ~dk, 1)
endfor
setpixel(i, j,∆i∆j

∑
k
Ik/N)

endfor

The rayTrace and findFirstHit procedures are the same as for Basic Ray Tracing. However, the
new shading procedure uses numerical integration:

distRtShade(OBJ,~p, ~n, ~de, depth)
< chooseN directions(φk, θk) on the hemisphere>
for each directionk

Ik = rayTrace(~p, ~dk, depth+1)
endfor
return∆θ∆φ

∑
k
ρ(~de, ~di(φk, θk))Ik sin θk

Copyright c© 2005 David Fleet and Aaron Hertzmann 98

