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15 Parametric Curves And Surfaces

15.1 Parametric Curves

Designing Curves

• We don’t want only polygons.

• Curves are used for design. Users require a simple set of controls to allow them to edit and
design curves easily.

• Curves should have infinite resolution, so we can zoom in and still see a smooth curve.

• We want to have a compact representation.

Parametric functions are of the formx(t) = f(t) andy(t) = g(t) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to modelcurves that arenot functions of any
axis in the plane.

Curves can be defined as polynomials, for examplex(t) = 5t10 + 4t9 + 3t8 + .... However,
coefficients are not intuitive editing parameters, and these curves are difficult to control. Hence,
we will consider more intuitive parameterizations.

15.2 B́ezier curves

We can define a set of curves called Bézier curves by a procedure called the de Casteljau algorithm.
Given a sequence of control pointsp̄k, de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedly defining new, smaller point sequences until
we have a single point at the value fort for which we are evaluating the curve.
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Figure 1: de Casteljau evaluation fort = 0.25.

p̄1

0(t) = (1 − t)p̄0 + tp̄1 (1)
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p̄1

1(t) = (1 − t)p̄1 + tp̄2 (2)

p̄1

2(t) = (1 − t)p̄2 + tp̄3 (3)

p̄2

0(t) = (1 − t)p̄1

0(t) + tp̄1

1(t) (4)

= (1 − t)2p̄0 + 2t(1 − t)p̄1 + t2p̄2 (5)

p̄2

1(t) = (1 − t)p̄1

1(t) + tp̄1

2(t) (6)

= (1 − t)2p̄1 + 2t(1 − t)p̄2 + t2p̄3 (7)

p̄3

0(t) = (1 − t)p̄2

0(t) + tp̄2

1(t) (8)

= (1 − t)3p̄0 + 3(1 − t)2tp̄1 + 3(1 − t)t2p̄2 + t3p̄3 (9)

The resulting curvēp3
0 is the cubic B́ezier defined by the four control points. The curvesp̄2

0 andp̄2
1

are quadratic B́ezier curves, each defined by three control points. For all Bézier curves, we keept
in the range[0...1].

15.3 Control Point Coefficients

Given a sequence of points̄p0, p̄1, ..., p̄n, we can directly evaluate the coefficient of each point. For
a class of curves known as Bézier curves, the coefficients are defined by the Bernstein polynomials:

p̄n
0 (t) =

n
∑

i=0

(

n

i

)

(1 − t)n−itip̄i =
n

∑

i=0

Bn
i (t)p̄i (10)

where

Bn
i (t) =

(

n

i

)

(1 − t)n−iti (11)

are called theBernstein basis functions.

For example, cubic B́ezier curves have the following coefficients:

B3

0(t) = (1 − t)3 (12)

B3

1(t) = 3(1 − t)2t (13)

B3

2(t) = 3(1 − t)t2 (14)

B3

3(t) = t3 (15)

Figure 2 is an illustration of the cubic Bernstein basis functions.

Similarly, we define basis functions for a linear curve, which is equivalent to the interpolation
p̄(t) = p̄0(1 − t) + p̄1t. These are shown in Figure 3.
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Figure 2: Degree three basis functions for Bézier curves.B3
0(t) (dark blue),B3

1(t) (green),B3
2(t)

(red), andB3
3(t) (light blue).
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Figure 3: Degree one basis functions for Bézier curves.B1
0(t) (green) andB1

1(t) (blue).

15.4 B́ezier Curve Properties

• Convexity of the basis functions.For all values oft ∈ [0...1], the basis functions sum to 1:

n
∑

i=0

Bn
i (t) = 1 (16)

In the cubic case, this can be shown as follows:

((1 − t) + t)3 = (1 − t)3 + 3(1 − t)2t + 3(1 − t)t2 + t3 = 1 (17)

In the general case, we have:

((1 − t) + t)n =
n

∑

i=0

(

n

i

)

(1 − t)n−iti = 1 (18)

Similarly, it is easy to show that the basis functions are always non-negative:Bn
i (t) ≥ 0.
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• Affine Invariance

What happens if we apply an affine transformation to a Bézier curve?

Let c̄(t) =
∑n

j=0
p̄jB

n
j (t), and letF (p̄) = Ap̄+ ~d be an affine transformation. Then we have

the following:

F (c̄(t)) = Ac̄(t) + ~d (19)

= A

(

∑

p̄jB
n
j (t)

)

+ ~d (20)

=
∑

(Ap̄j) Bn
j (t) + ~d (21)

=
∑

(

Ap̄j + ~d
)

Bn
j (t) (22)

=
∑

Bn
j (t)q̄j (23)

q̄j = Ap̄j + ~d denotes the transformed points. This illustrates that the transformed curve
we get is the same as what we get by transforming the control points. (The third statement
follows from the fact that

∑n

j=0
Bn

j (t) = 1. )

• Convex Hull Property

SinceBN
i (t) ≥ 0, p̄(t) is a convex combination of the control points. Thus, Bézier curves

always lie within the convex hull of the control points.

• Linear Precision

When the control points lie on a straight line, then the corresponding B́ezier curve will also
be a straight line. This follows from the convex hull property.

• Variation Diminishing

No straight line can have more intersections with the Bézier curve than it has with the control
polygon. (The control polygon is defined as the line segmentspjpj+1.)

• Derivative Evaluation

Letting c̄(t) =
∑N

j=0
p̄jB

N
j (t), we want to find the following:

c̄′(t) =
dc̄(t)

dt
=

(

dx(t)

dt
,
dy(t)

dt

)

(24)

Letting ~dj = p̄j+1 − p̄j, it can be shown that:

τ(t) =
d

dt
c̄(t) =

d

dt

N
∑

j=0

p̄jB
N
j (t) = N

N−1
∑

j=0

~dBN−1

j (t) (25)

Copyright c© 2005 David Fleet and Aaron Hertzmann 107



CSC418 / CSCD18 / CSC2504 Parametric Curves And Surfaces

Figure 4: The line (green) will always intersect the curve less often than or as many times as the
control polygon.

Thus, c̄(t) is a convex sum of the points̄pj and is a point itself.τ(t) is a convex sum of
vectors and is a vector.

Example: What isτ(0) whenN = 3, given(p̄0, p̄1, p̄2, p̄3)?

SinceB3
j (0) = 0 for all j 6= 0 andB3

0(0) = 1,

τ(0) = N
∑

~djB
N−1

j (t) = 3~dj = 3 (p̄1 − p̄0) (26)

Therefore, the tangent vector at the endpoint is parallel tothe vector from the endpoint to the
adjacent point.

• Global vs. Local Control

Bézier curves that approximate a long sequence of points produce high-degree polynomials.
They have global basis functions; that is, modifying any point changes the entire curve. This
results in curves that can be hard to control.

15.5 Rendering Parametric Curves

Given a parameter ranget ∈ [0, 1], samplet by some partition∆t, and draw a line connecting each
pair of adjacent samples.

• This is an expensive algorithm.

• This does not adapt to regions of a curve that do not require asmany samples.

• It’s difficult to determine a sufficient number of samples to render the curve such that it
appears smooth.

There are faster algorithms based on adaptive refinement andsubdivision.
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15.6 B́ezier Surfaces

Cubic B́ezier patches are the most common parametric surfaces used for modeling. They are of
the following form:

s(α, β) =
3

∑

k=0

3
∑

j=0

B3

j (α)B3

k(β)p̄j,k =
∑

k

B3

k(β)p̄k(α) (27)

where each̄pk(α) is a B́ezier curve:

p̄k(α) =
∑

j

B3

j (α)p̄j,k (28)

Rather than considering only four points as in a cubic Bézier curve, consider 16 control points
arranged as a 4 x 4 grid:

Figure 5: Evaluation of any point can be done by evaluating curves along one direction (blue), and
evaluating a curve among points on these curves with corresponding parameter values.

For any givenα, generate four points on curves and then approximate them with a B́ezier curve
alongβ.

p̄k(α) =
3

∑

j=0

B3

j (α)p̄jk (29)

To connect multiple patches, we align adjacent control points. to ensureC1 continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functionsB3

j,k(α, β) = B3
j (α)B3

k(β):

s(α, β) =
3

∑

k=0

3
∑

j=0

B3

j,k(α, β)p̄j,k (30)
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