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15 Parametric Curves And Surfaces

15.1 Parametric Curves
Designing Curves
e We don’t want only polygons.

e Curves are used for design. Users require a simple set ofat®mdrallow them to edit and
design curves easily.

e Curves should have infinite resolution, so we can zoom in dlidest a smooth curve.
e \We want to have a compact representation.

Parametric functions are of the fornit) = f(¢) andy(t) = ¢(¢) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to ntaoteés that areot functions of any
axis in the plane.

Curves can be defined as polynomials, for examgle = 5t + 4¢t° + 3t® + ... However,
coefficients are not intuitive editing parameters, anddarhmgves are difficult to control. Hence,
we will consider more intuitive parameterizations.

15.2 Bezier curves

We can define a set of curves calleéier curves by a procedure called the de Casteljau algarithm
Given a sequence of control poirtg, de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedlyidgfirew, smaller point sequences until
we have a single point at the value fdior which we are evaluating the curve.

PP p,

Figure 1: de Casteljau evaluation fior= 0.25.

po(t) = (1—1)po+th (1)
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pt) = (1—t)p +tp ()
() = (1—t)p2+tps (3)
po(t) = (1 —t)pe(t) +tpy(t) (4)
= (1 —1)%po +2t(1 — )Py + t*po (5)
pit) = (1—t)py(t) + tpy(t) (6)
= (1= )%, +2t(1 — t)ps + t2P3 (7
po(t) = (L—t)pg(t) +tpi(t) (8)
= (1—=t)’po +3(1 —t)%tp1 + 3(1 — )P + 73 9)

The resulting curves; is the cubic Bzier defined by the four control points. The curggsandp?
are quadratic Bzier curves, each defined by three control points. For&ti€ curves, we keep
in the rang€o0...1].

15.3 Control Point Coefficients

Given a sequence of poings, p1, ..., pn, We can directly evaluate the coefficient of each point. For
a class of curves known a€Bier curves, the coefficients are defined by the Bernsteympaoiials:

—n - n n % z— n
po<t)=2(l.)( t'p ZB (10)
1=0
where
s = () 0oy (11)
are called tha&ernstein basis functions.

For example, cubic &zier curves have the following coefficients:

By(t) = (1—t) (12)
Bi(t) = 3(1—1t)* (13)
Bit) = 3(1—t)t? (14)
Bi(t) = & (15)

Figure 2 is an illustration of the cubic Bernstein basis fiord.

Similarly, we define basis functions for a linear curve, whis equivalent to the interpolation
p(t) = po(1 — t) + p1t. These are shown in Figure 3.
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Figure 2: Degree three basis functions fdzier curves.B(t) (dark blue),B; (¢) (green),Bs;(t)
(red), andB:(t) (light blue).

Figure 3: Degree one basis functions fdrAer curvesB}(t) (green) andBi (¢) (blue).

15.4 Bezier Curve Properties

e Convexity of the basis functions.For all values ot < [0...1], the basis functions sum to 1:

S B =1 (16)
i=0

In the cubic case, this can be shown as follows:
(1=t +t)P =0 -t +31-t)t+31-t)* +t° =1 (17)

In the general case, we have:

(1—t)+t)" = Y (?) (1—t)""t" =1 (18)

(2

Similarly, it is easy to show that the basis functions areagswnon-negativeB! (t) > 0.
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o Affine Invariance
What happens if we apply an affine transformation toeaiBr curve?

Lete(t) =37, p; B} (t), and letF(p) = Ap+ d be an affine transformation. Then we have

the following:
FEt) = Act)+d (19)
— A (Z ij;l(t)> +d (20)
= > (Ap)Bp(t)+d (1)
= > (Ap+d) B (22)
= Y Bt)g (23)

g = Ap; + d denotes the transformed points. This illustrates thatréesformed curve
we get is the same as what we get by transforming the contmotpqThe third statement
follows from the fact thad " B} (t) = 1.)

e Convex Hull Property
Since BN (t) > 0, p(t) is a convex combination of the control points. Thugz®r curves
always lie within the convex hull of the control points.

e Linear Precision
When the control points lie on a straight line, then the cqoesling Ezier curve will also
be a straight line. This follows from the convex hull progert

e Variation Diminishing

No straight line can have more intersections with tiéziBr curve than it has with the control
polygon. (The control polygon is defined as the line segnmgms;.)

e Derivative Evaluation
Lettingc(t) = Z] o ;B (), we want to find the following:

Loy L det)  (dx(t) dy(t)
="y = ( at = dt (24)
Letting d; = j;41 — p;, it can be shown that:
d d N N—
- = N— 1
T(t) = et = — ZO ;dB (25)
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Figure 4: The line (green) will always intersect the curvesleften than or as many times as the
control polygon.

Thus, () is a convex sum of the poings and is a point itself.7(¢) is a convex sum of
vectors and is a vector.

Example: What isT(0) whenN = 3, given (po, p1, D2, P3)?

SinceB}(0) = 0 forall j # 0 and B (0) = 1,

7(0) = N Y _d;BY\(t) = 3d; = 3 (p1 — po) (26)

Therefore, the tangent vector at the endpoint is paralligléaector from the endpoint to the
adjacent point.

e Global vs. Local Control

Bézier curves that approximate a long sequence of pointaipeoldigh-degree polynomials.
They have global basis functions; that is, modifying anynpohanges the entire curve. This
results in curves that can be hard to control.

15.5 Rendering Parametric Curves

Given a parameter ranges [0, 1], samplet by some partitiom\¢, and draw a line connecting each
pair of adjacent samples.

e This is an expensive algorithm.
e This does not adapt to regions of a curve that do not requinesary samples.

e It's difficult to determine a sufficient number of samples émder the curve such that it
appears smooth.

There are faster algorithms based on adaptive refinemergudotivision.
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15.6 Bezier Surfaces

Cubic Bezier patches are the most common parametric surfaces aisetbéieling. They are of
the following form:

3 3
=> Y BNa)B}B)pix = Z B (3)pr(a) (27)
k=0 j=0

where eachp,(«) is a Bezier curve:

ZW )Pjk (28)

Rather than considering only four points as in a cub&ziBr curve, consider 16 control points
arranged as a 4 x 4 grid:

’ -. .

7z .
— ——
- —

Figure 5: Evaluation of any point can be done by evaluatingeialong one direction (blue), and
evaluating a curve among points on these curves with carreipg parameter values.

For any givenn, generate four points on curves and then approximate themaniBézier curve
alongg.

3

= B¥a)p (29)

7=0

To connect multiple patches, we align adjacent control {goito ensureé”! continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functi®hsa, 5) = B3 («) B}(3):

3 3
s, ) =D > Biule, B)ps (30)
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