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6 CameraModes

Goal: To model basic geometry of projection of 3D points, curvesl surfaces onto a 2D surface,
theview plane orimage plane.

6.1 Thin LensModd

Most modern cameras use a lens to focus light onto the viemefdiee., the sensory surface). This
is done so that one can capture enough light in a sufficiehtyt period of time that the objects do
not move appreciably, and the image is bright enough to slgmificant detail over a wide range

of intensities and contrasts.

Aside:
In a conventional camera, the view plane contains eithetgobactive chemicals;
in a digital camera, the view plane contains a charge-cougéice (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). Imihe bye, the
view plane is a curved surface called tle¢ina, and and contains a dense array of
cells with photoreactive molecules.

Lens models can be quite complex, especially for compoumslflaund in most cameras. Here we
consider perhaps the simplist case, known widely as thelehs model. In the thin lens model,
rays of light emitted from a point travel along paths throtigé lens, convering at a point behind
the lens. The key quantity governing this behaviour is dattesfocal lengthof the lens. The
focal length, | f|, can be defined as distance behind the lens to which rays inonfiaitely distant
source converge in focus.

surface point

view plane

W optical axis

0 1

More generally, for the thin lens model, 4f is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for a foeagth| f|, the rays from that surface
point will be in focus at a distancg behind the lens center, whetreandz, satisfy the thin lens

equation:
1 1 1
=+ (1)

|\ 20 1
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6.2 Pinhole Camera Model

A pinhole camera is an idealization of the thin lens as aperture shtmkero.

view plane
\~>%
infinitesimal
pinhole

Light from a point travels along a single straight path tlyloa pinhole onto the view plane. The
object is imaged upside-down on the image plane.

Note:

We use a right-handed coordinate system for the camerathéth-axis as the hor
izontal direction and thg-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negativeaxis.

y

Here is another way of thinking about the pinhole model. $8pp/ou view a scene with one eye
looking through a square window, and draw a picture of whatgee through the window:

(Engraving by Albrecht Drer, 1525).
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The image you'd get corresponds to drawing a ray from the egéipn and intersecting it with
the window. This is equivalent to the pinhole camera modeadept that the view plane is in front
of the eye instead of behind it, and the image appears rdg¥sp, rather than upside down. (The
eye point here replaces the pinhole). To see this, cons@gng rays from scene points through a
view plane behind the eye point and one in front of it:

For the remainder of these notes, we will consider this camsydel, as it is somewhat easier to
think about, and also consistent with the model used by OpenG

Aside:

The earliest cameras were room-sized pinhole camerasgcalinera obscura You
would walk in the room and see an upside-down projection efalitside world on
the far wall. The wordcamerais Latin for “room;” camera obscuraneans “dark
room.”

18th-century camera obscuras. The camera on the right usésaa in the roof tg
project images of the world onto the table, and viewers méatedhe mirror.

6.3 Camera Projections

Consider a poinp in 3D space oriented with the camera at the origin, which wetwa project
onto the view plane. To projegt, to y, we can use similar triangles to get= pizpy. This is
per spective projection.

Note thatf < 0, and the focal length igf|.

In perspective projection, distant objects appear sméilbar near objects:
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Figure 1: *

Perspective projection

The man without the hat appears to be two different sizes\ thaigh the two images of him have
identical sizes when measured in pixels. In 3D, the man withioe hat on the left is about 18
feet behind the man with the hat. This shows how much you neagpect size to change due to
perspective projection.

6.4 Orthographic Projection

For objects sufficiently far away, rays are nearly paradiatj variation irp. is insignificant.
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Here, the baseball players appear to be about the same eigixels, even though the batter
is about 60 feet away from the pitcher. Although this is amepie of perspective projection, the
camera is so far from the players (relative to the camerd fergth) that they appear to be roughly
the same size.

In the limit, y = ap,, for some real scalat. This isorthographic projection:

y

image

6.5 CameraPosition and Orientation

Assume camera coordinates have their origin at the “ey@h@ie) of the camera.

y A4

N

\

Y

Figure 2:

Let g be the gaze direction, so a vector perpendicular to the viewep(parallel to the camera
z-axis) is
— . _g
W = 7= (2)
4]
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We need two more orthogonal vectarsandv to specify a camera coordinate frame, witland

v parallel to the view plane. It may be unclear how to choosentdéectly. However, we can
instead specify an “up” direction. Of course this up directwill not be perpendicular to the gaze
direction.

Let ¢ be the “up” direction (e.g., toward the sky ge- (0, 1,0)). Then we wani to be the closest
vector in the viewplane to. This is really just the projection af onto the view plane. And of
courseu must be perpendicular tandw. In fact, with these definitions it is easy to show tiat
must also be perpendiculartpso one way to computéandd from ¢ andg is as follows:

T =10 x i 3)

U= —

Of course, we could have use many different “up” directi@slong ag x @ # 0.

Using these three basis vectors, we can defoagreer a coor dinate system, in which 3D points are
represented with respect to the camera’s position andtatien. The camera coordinate system
has its origin at the eye poiatand has basis vectois v, andw, corresponding to the, y, andz
axes in the camera’s local coordinate system. This explainswe chosei to point away from
the image plane: the right-handed coordinate system megjtiatz (and, henceyw) point away
from the image plane.

Now that we know how to represent the camera coordinate fnaitien the world coordinate
frame we need to explicitly formulate the rigid transforroatfrom world to camera coordinates.
With this transformation and its inverse we can easily esppoints either in world coordinates or
camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might dpfbeto remember the mapping from
points in camera coordinates to points in world coordinakes example, we have the following
correspondences between world coordinates and cameditates: Using such correspondences

Camera coordinatgs:., ., z.) | World coordinatesz, y, z)
(0,0,0) é
(0,0, f) e+ fu
(0,1,0) e+ v
0,1, f) e+ U+ fuw

it is not hard to show that for a general point expressed inetarooordinates g8 = (z., y., zc),
the corresponding point in world coordinates is given by

pY = e+ x U+ Yo+ zl 4)
= [u ¥ ¥ ]p+e (5)
= Mep® +e. (6)
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where
u;y v wy
Mcw:[ﬁ U 'U_J'}: U2 Vg W2 (7)

us V3 wWs

Note: We can define the same transformation for points in lg@meous coordinates:

- M., €
- [ <)

Now, we also need to find the inverse transformation, i.@mfworld to camera coordinates.
Toward this end, note that the matri¥,.,, is orthonormal. To see this, note that vectarsy
and,« are all of unit length, and they are perpendicular to onelarotYou can also verify this

by computingM % M.,,,. Becausell,,, is orthonormal, we can express the inverse transformation
(from camera coordinates to world coordinates) as

o= ML(pY—é)

- chﬁw - d,
al )
whereM,,. = ML = | &7 |.(why?),andl = ML e.
=T
w

In homogeneous coordinatgs,= M,,.p*, where

- ch _ché
= | T

_ ch 6 I —e
B O A T N IO B
This transformation takes a point from world to camera-eesd coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection usimitiea of similar triangles. Here we
consider a complementary algebraic formulation. To begeare given

e apointp® in camera coordinatesw space),
e center of projection (eye or pinhole) at the origin in camsyardinates,

e image plane perpendicular to theaxis, through the point0, 0, f), with f < 0, and
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¢ line of sight is in the direction of the negativeaxis (in camera coordinates),
we can find the intersection of the ray from the pinholgtavith the view plane.

The ray from the pinhole tp° is 7(\) = A(p° — 0).
The image plane has norm@l, 0, 1) = 7 and contains the poirfd, 0, f) = f. So a pointz© is on

the plane wheriz® — f) - 77 = 0. If ¢ = (2°, y°, z¢), then the plane satisfie§ — f = 0.

To find the intersection of the plané = f and rayi(\) = \p®, substitute”into the plane equation.
With p¢ = (ps, p5;, p%), we haverp: = f, so\* = f/p¢, and the intersection is

— * p; pc p; pc — =%k
p, D p: D
The first two coordinates of this intersectiohdetermine the image coordinates.

2D points in the image plane can therefore be written as

AR
y* Ps L Py 01 0 ps

The mapping fronp* to (z*, y*, 1) is calledper spective projection.

Note:
Two important properties of perspective projection are:

e Perspective projection preserves linearity. In other wptle projection of
3D line is a line in 2D. This means that we can render a 3D lirggnant by
projecting the endpoints to 2D, and then draw a line betwbese points in
2D.

e Perspective projection does not preserve parallelism:parallel lines in 3D
do not necessarily project to parallel lines in 2D. When tloggmted lines inter
sect, the intersection is calledranishing point, since it corresponds to a pojnt
infinitely far away. Exercise: when do parallel lines praojecparallel lines an
when do they not?

8

=N

Aside:

The discovery of linear perspective, including vanishimgngs, formed a cornef-
stone of Western painting beginning at the Renaissance. ©wtlier hand, defying
realistic perspective was a key feature of Modernist pagnti

To see that linearity is preserved, consider that rays fromtp on a line in 3D through a pinhole
all lie on a plane, and the intersection of a plane and the enpdane is a line. That means to draw
polygons, we need only to project the vertices to the imageghnd draw lines between them.

Copyright(© 2005 David Fleet and Aaron Hertzmann 39



CSC418/CSCD18/CSC2504 Camera Models

6.7 Homogeneous Per spective

The mapping of° = (pg, p;, ps) to 7° = px,py,pz) is just a form of scaling transformation.
However, the magnitude of the scaling d}épends on the géptho it’s not linear.

Fortunately, the transformation can be expressed linéerlgs a matrix) in homogeneous coordi-
nates. To see this, remember that (p, 1) = «a(p, 1) in homogeneous coordinates. Using this
property of homogeneous coordinates we can writas

(p D5, s &)
T y? z) f

As usual with homogeneous coordinates, when you scale tmed@neous vector by the inverse
of the last element, when you get in the first three elememiseisisely the perspective projection.
Accordingly, we can express' as a linear transformation ¢f:

e = Myp-.

o O OO

0
0
1
1f

Try multiplying this out to convince yourself that this albwks.
Flnally, M is called the homogeneous perspective matrix, and gihee M,,.p”, we havei* =

M, ch

o O O
OO = O

6.8 Pseudodepth

After dividing by its last element;* has its first two elements as image plane coordinates, and its
third element isf. We would like to be able to alter the homogeneous persmamm!trlxM SO
that the third element o@ encodes depth while keeping the transformation linear.

ldea: Let i* = p° 802" = ;%(@pi +0).

S O O
o O = O
o ot O O

1/f

What should: andb be? We would like to have the following two constraints:

. ] —1 whenp¢=f
T 1 whenp¢ =F ~

0
0
a
/

wheref gives us the position of theear plane, andF’ gives us the: coordinate of théar plane.
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So—1=af+bandl =af +bk. Then2 =bL —b=1b (L — 1), and we can find

2F
b= ——.
f—F

Substituting this value fob back in, we get-1 = af + f_—FF and we can solve far:

Lo L (i . 1)
fANf-F
B _l( 2F N f—F)
f\f-F [f=-F
1 (f + F)
f\f=-F)
These values of andb give us a functiorz*(p<) that increases monotonically @$ decreases

(sincept is negative for objects in front of the camera). Hengecan be used to sort points by
depth.

Why did we choose these values foandb? Mathematically, the specific choices do not matter,
but they are convenient for implementation. These are asedlues that OpenGL uses.

What is the meaning of the near and far planes? Again, for coemee of implementation, we will
say that only objects between the near and far planes aldeviSdbjects in front of the near plane
are behind the camera, and objects behind the far plane@fartaway to be visible. Of course,
this is only a loose approximation to the real geometry ofwleeld, but it is very convenient
for implementation. The range of values between the nearfamplane has a number of subtle
implications for rendering in practice. For example, if ys®t the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in therse) will be very inaccurate due to
numerical precision problems. On the other hand, movingtte® close will make distant objects
disappear. However, these issues will generally not afeexdering simple scenes. (For homework
assignments, we will usually provide some code that avtiese problems).

6.9 ProjectingaTriangle

Let's review the steps necessary to project a triangle frbjaah space to the image plane.

1. Atriangle is given as three vertices in an object-baseddinate framepy, p3, ps.
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A triangle in object coordinates.

2. Transform to world coordinates based on the object'sstoamation: p{’, py, py, where

~

ﬁ;ﬂ - Mowﬁ?'
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The triangle projected to world coordinates, with a caméra a

3. Transform from world to camera coordinatgs= M., j" .
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z

The triangle projected from world to camera coordinates.

4. Homogeneous perspective transformation:= Mppg, where

10 0 0 Dy
~ |01 0 0 e Dy
M, = 00 a bl 0%~ apl +b

P

0 0 1/f O 7

5. Divide by the last component:
. 2
xr p%
* _ Py
y _f S
z* ap$+b
PE
(L
Ps
A x
P
A %
Ps
(-1,-1,-1)

The triangle in normalized device coordinates after pertspedivision.
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Now (z*,y*) is an image plane coordinate, antis pseudodepth for each vertex of the
triangle.

6.10 CameraProjectionsin OpenGL

OpenGL's modelview matrix is used to transform a point frobject or world space to camera
space. In addition to this,@ojection matrixis provided to perform the homogeneous perspective
transformation from camera coordinatesctip coordinatesbefore performing perspective divi-
sion. After selecting the projection matrix, tgeFr ust umfunction is used to specify a viewing
volume, assuming the camera is at the origin:

gl Matri xMode( GL_PRQIECTI ON) ;

gl Loadl dentity();

gl Frustum(left, right, bottom top, near, far);
For orthographic projectiomyl Ort ho can be used instead:

glOtho(left, right, bottom top, near, far);

The GLU library provides a function to simplify specifyingparspective projection viewing frus-
tum:

gl uPer spective(fiel dOF Vi ew, aspectRatio, near, far);

The field of view is specified in degrees about ihaxis, so it gives the vertical visible angle. The
aspect ratio should usually be the viewport width over iiglig to determine the horizontal field
of view.
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