
CSC418 / CSCD18 / CSC2504 Camera Models

6 Camera Models

Goal: To model basic geometry of projection of 3D points, curves, and surfaces onto a 2D surface,
theview plane or image plane.

6.1 Thin Lens Model

Most modern cameras use a lens to focus light onto the view plane (i.e., the sensory surface). This
is done so that one can capture enough light in a sufficiently short period of time that the objects do
not move appreciably, and the image is bright enough to show significant detail over a wide range
of intensities and contrasts.

Aside:
In a conventional camera, the view plane contains either photoreactive chemicals;
in a digital camera, the view plane contains a charge-coupled device (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). In the human eye, the
view plane is a curved surface called theretina, and and contains a dense array of
cells with photoreactive molecules.

Lens models can be quite complex, especially for compound lens found in most cameras. Here we
consider perhaps the simplist case, known widely as the thinlens model. In the thin lens model,
rays of light emitted from a point travel along paths throughthe lens, convering at a point behind
the lens. The key quantity governing this behaviour is called the focal lengthof the lens. The
focal length,,|f |, can be defined as distance behind the lens to which rays from an infinitely distant
source converge in focus.

view plane
lens

z
0

surface point

optical axis

z
1

More generally, for the thin lens model, ifz1 is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for a focal length|f |, the rays from that surface
point will be in focus at a distancez0 behind the lens center, wherez1 andz0 satisfy the thin lens
equation:

1

|f |
=

1

z0

+
1

z1

(1)

Copyright c© 2005 David Fleet and Aaron Hertzmann 32

CSC418 / CSCD18 / CSC2504 Camera Models

6.2 Pinhole Camera Model

A pinhole camera is an idealization of the thin lens as aperture shrinks to zero.

view plane

infinitesimal

pinhole

Light from a point travels along a single straight path through a pinhole onto the view plane. The
object is imaged upside-down on the image plane.

Note:
We use a right-handed coordinate system for the camera, withthex-axis as the hor-
izontal direction and they-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negativez-axis.

-z

y

z

x

Here is another way of thinking about the pinhole model. Suppose you view a scene with one eye
looking through a square window, and draw a picture of what you see through the window:

(Engraving by Albrecht D̈urer, 1525).

Copyright c© 2005 David Fleet and Aaron Hertzmann 33

CSC418 / CSCD18 / CSC2504 Camera Models

The image you’d get corresponds to drawing a ray from the eye position and intersecting it with
the window. This is equivalent to the pinhole camera model, except that the view plane is in front
of the eye instead of behind it, and the image appears rightside-up, rather than upside down. (The
eye point here replaces the pinhole). To see this, consider tracing rays from scene points through a
view plane behind the eye point and one in front of it:

For the remainder of these notes, we will consider this camera model, as it is somewhat easier to
think about, and also consistent with the model used by OpenGL.

Aside:
The earliest cameras were room-sized pinhole cameras, calledcamera obscuras. You
would walk in the room and see an upside-down projection of the outside world on
the far wall. The wordcamerais Latin for “room;” camera obscurameans “dark
room.”

18th-century camera obscuras. The camera on the right uses amirror in the roof to
project images of the world onto the table, and viewers may rotate the mirror.

6.3 Camera Projections

Consider a point̄p in 3D space oriented with the camera at the origin, which we want to project
onto the view plane. To projectpy to y, we can use similar triangles to gety = f

pz

py. This is
perspective projection.

Note thatf < 0, and the focal length is|f |.

In perspective projection, distant objects appear smallerthan near objects:

Copyright c© 2005 David Fleet and Aaron Hertzmann 34

CSC418 / CSCD18 / CSC2504 Camera Models

pinhole image

f

y

z

p
y

p
z

Figure 1: *
Perspective projection

The man without the hat appears to be two different sizes, even though the two images of him have
identical sizes when measured in pixels. In 3D, the man without the hat on the left is about 18
feet behind the man with the hat. This shows how much you mightexpect size to change due to
perspective projection.

6.4 Orthographic Projection

For objects sufficiently far away, rays are nearly parallel,and variation inpz is insignificant.

Copyright c© 2005 David Fleet and Aaron Hertzmann 35

CSC418 / CSCD18 / CSC2504 Camera Models

Here, the baseball players appear to be about the same heightin pixels, even though the batter
is about 60 feet away from the pitcher. Although this is an example of perspective projection, the
camera is so far from the players (relative to the camera focal length) that they appear to be roughly
the same size.

In the limit, y = αpy for some real scalarα. This isorthographic projection:

y

z

image

6.5 Camera Position and Orientation

Assume camera coordinates have their origin at the “eye” (pinhole) of the camera,̄e.

y

z

x

g
e

w

u

v

Figure 2:

Let ~g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera
z-axis) is

~w =
−~g

‖~g‖
(2)

Copyright c© 2005 David Fleet and Aaron Hertzmann 36

CSC418 / CSCD18 / CSC2504 Camera Models

We need two more orthogonal vectors~u and~v to specify a camera coordinate frame, with~u and
~v parallel to the view plane. It may be unclear how to choose them directly. However, we can
instead specify an “up” direction. Of course this up direction will not be perpendicular to the gaze
direction.

Let~t be the “up” direction (e.g., toward the sky so~t = (0, 1, 0)). Then we want~v to be the closest
vector in the viewplane to~t. This is really just the projection of~t onto the view plane. And of
course,~u must be perpendicular to~v and ~w. In fact, with these definitions it is easy to show that~u
must also be perpendicular to~t, so one way to compute~u and~v from~t and~g is as follows:

~u =
~t × ~w

‖~t × ~w‖
~v = ~w × ~u (3)

Of course, we could have use many different “up” directions,so long as~t × ~w 6= 0.

Using these three basis vectors, we can define acamera coordinate system, in which 3D points are
represented with respect to the camera’s position and orientation. The camera coordinate system
has its origin at the eye point̄e and has basis vectors~u, ~v, and~w, corresponding to thex, y, andz
axes in the camera’s local coordinate system. This explainswhy we chose~w to point away from
the image plane: the right-handed coordinate system requires thatz (and, hence,~w) point away
from the image plane.
Now that we know how to represent the camera coordinate framewithin the world coordinate
frame we need to explicitly formulate the rigid transformation from world to camera coordinates.
With this transformation and its inverse we can easily express points either in world coordinates or
camera coordinates (both of which are necessary).
To get an understanding of the transformation, it might be helpful to remember the mapping from
points in camera coordinates to points in world coordinates. For example, we have the following
correspondences between world coordinates and camera coordinates: Using such correspondences

Camera coordinates(xc, yc, zc) World coordinates(x, y, z)
(0, 0, 0) ē
(0, 0, f) ē + f ~w
(0, 1, 0) ē + ~v
(0, 1, f) ē + ~v + f ~w

it is not hard to show that for a general point expressed in camera coordinates as̄pc = (xc, yc, zc),
the corresponding point in world coordinates is given by

p̄w = ē + xc~u + yc~v + zc ~w (4)

=
[

~u ~v ~w
]

p̄c + ē (5)

= Mcwp̄c + ē. (6)

Copyright c© 2005 David Fleet and Aaron Hertzmann 37

CSC418 / CSCD18 / CSC2504 Camera Models

where

Mcw =
[

~u ~v ~w
]

=





u1 v1 w1

u2 v2 w2

u3 v3 w3



 (7)

Note: We can define the same transformation for points in homogeneous coordinates:

M̂cw =

[

Mcw ē
~0T 1

]

.

Now, we also need to find the inverse transformation, i.e., from world to camera coordinates.
Toward this end, note that the matrixMcw is orthonormal. To see this, note that vectors~u, ~v
and, ~w are all of unit length, and they are perpendicular to one another. You can also verify this
by computingMT

cwMcw. BecauseMcw is orthonormal, we can express the inverse transformation
(from camera coordinates to world coordinates) as

p̄c = MT
cw(p̄w − ē)

= Mwcp̄
w − d̄ ,

whereMwc = MT
cw =





~uT

~vT

~wT



. (why?), andd̄ = MT
cwē.

In homogeneous coordinates,p̂c = M̂wcp̂
w, where

M̂v =

[

Mwc −Mwcē
~0T 1

]

=

[

Mwc
~0

~0T 1

][

I −ē
~0T 1

]

.

This transformation takes a point from world to camera-centered coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection using the idea of similar triangles. Here we
consider a complementary algebraic formulation. To begin,we are given

• a pointp̄c in camera coordinates (uvw space),

• center of projection (eye or pinhole) at the origin in cameracoordinates,

• image plane perpendicular to thez-axis, through the point(0, 0, f), with f < 0, and

Copyright c© 2005 David Fleet and Aaron Hertzmann 38

CSC418 / CSCD18 / CSC2504 Camera Models

• line of sight is in the direction of the negativez-axis (in camera coordinates),

we can find the intersection of the ray from the pinhole top̄c with the view plane.

The ray from the pinhole tōpc is r̄(λ) = λ(p̄c − 0̄).

The image plane has normal(0, 0, 1) = ~n and contains the point(0, 0, f) = f̄ . So a point̄xc is on
the plane when(x̄c − f̄) · ~n = 0. If x̄c = (xc, yc, zc), then the plane satisfieszc − f = 0.

To find the intersection of the planezc = f and ray~r(λ) = λp̄c, substitute~r into the plane equation.
With p̄c = (pc

x, p
c
y, p

c
z), we haveλpc

z = f , soλ∗ = f/pc
z, and the intersection is

~r(λ∗) =

(

f
pc

x

pc
z

, f
pc

y

pc
z

, f

)

= f

(

pc
x

pc
z

,
pc

y

pc
z

, 1

)

≡ x̄∗. (8)

The first two coordinates of this intersectionx̄∗ determine the image coordinates.

2D points in the image plane can therefore be written as
[

x∗

y∗

]

=
f

pc
z

[

pc
x

pc
y

]

=

[

1 0 0
0 1 0

]

f

pc
z

p̄c.

The mapping from̄pc to (x∗, y∗, 1) is calledperspective projection.

Note:
Two important properties of perspective projection are:

• Perspective projection preserves linearity. In other words, the projection of a
3D line is a line in 2D. This means that we can render a 3D line segment by
projecting the endpoints to 2D, and then draw a line between these points in
2D.

• Perspective projection does not preserve parallelism: twoparallel lines in 3D
do not necessarily project to parallel lines in 2D. When the projected lines inter-
sect, the intersection is called avanishing point, since it corresponds to a point
infinitely far away. Exercise: when do parallel lines project to parallel lines and
when do they not?

Aside:
The discovery of linear perspective, including vanishing points, formed a corner-
stone of Western painting beginning at the Renaissance. On the other hand, defying
realistic perspective was a key feature of Modernist painting.

To see that linearity is preserved, consider that rays from points on a line in 3D through a pinhole
all lie on a plane, and the intersection of a plane and the image plane is a line. That means to draw
polygons, we need only to project the vertices to the image plane and draw lines between them.

Copyright c© 2005 David Fleet and Aaron Hertzmann 39

CSC418 / CSCD18 / CSC2504 Camera Models

6.7 Homogeneous Perspective

The mapping of̄pc = (pc
x, p

c
y, p

c
z) to x̄∗ = f

pc
z

(pc
x, p

c
y, p

c
z) is just a form of scaling transformation.

However, the magnitude of the scaling depends on the depthpc
z. So it’s not linear.

Fortunately, the transformation can be expressed linearly(ie as a matrix) in homogeneous coordi-
nates. To see this, remember thatp̂ = (p̄, 1) = α(p̄, 1) in homogeneous coordinates. Using this
property of homogeneous coordinates we can writex̄∗ as

x̂∗ =

(

pc
x, p

c
y, p

c
z,

pc
z

f

)

.

As usual with homogeneous coordinates, when you scale the homogeneous vector by the inverse
of the last element, when you get in the first three elements isprecisely the perspective projection.
Accordingly, we can expresŝx∗ as a linear transformation of̂pc:

x̂∗ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0









p̂c ≡ M̂pp̂
c.

Try multiplying this out to convince yourself that this all works.
Finally, M̂p is called the homogeneous perspective matrix, and sincep̂c = M̂wcp̂

w, we havex̂∗ =

M̂pM̂wcp̂
w.

6.8 Pseudodepth

After dividing by its last element,̂x∗ has its first two elements as image plane coordinates, and its
third element isf . We would like to be able to alter the homogeneous perspective matrixM̂p so
that the third element ofp

c
z

f
x̂∗ encodes depth while keeping the transformation linear.

Idea: Let x̂∗ =









1 0 0 0
0 1 0 0
0 0 a b
0 0 1/f 0









p̂c, soz∗ = f

pc
z

(apc
z + b).

What shoulda andb be? We would like to have the following two constraints:

z∗ =

{

−1 whenpc
z = f

1 whenpc
z = F

,

wheref gives us the position of thenear plane, andF gives us thez coordinate of thefar plane.

Copyright c© 2005 David Fleet and Aaron Hertzmann 40

CSC418 / CSCD18 / CSC2504 Camera Models

So−1 = af + b and1 = af + b f

F
. Then2 = b f

F
− b = b

(

f

F
− 1

)

, and we can find

b =
2F

f − F
.

Substituting this value forb back in, we get−1 = af + 2F
f−F

, and we can solve fora:

a = −
1

f

(

2F

f − F
+ 1

)

= −
1

f

(

2F

f − F
+

f − F

f − F

)

= −
1

f

(

f + F

f − F

)

.

These values ofa and b give us a functionz∗(pc
z) that increases monotonically aspc

z decreases
(sincepc

z is negative for objects in front of the camera). Hence,z∗ can be used to sort points by
depth.

Why did we choose these values fora andb? Mathematically, the specific choices do not matter,
but they are convenient for implementation. These are also the values that OpenGL uses.

What is the meaning of the near and far planes? Again, for convenience of implementation, we will
say that only objects between the near and far planes are visible. Objects in front of the near plane
are behind the camera, and objects behind the far plane are too far away to be visible. Of course,
this is only a loose approximation to the real geometry of theworld, but it is very convenient
for implementation. The range of values between the near andfar plane has a number of subtle
implications for rendering in practice. For example, if youset the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in the course) will be very inaccurate due to
numerical precision problems. On the other hand, moving them too close will make distant objects
disappear. However, these issues will generally not affectrendering simple scenes. (For homework
assignments, we will usually provide some code that avoids these problems).

6.9 Projecting a Triangle

Let’s review the steps necessary to project a triangle from object space to the image plane.

1. A triangle is given as three vertices in an object-based coordinate frame:̄po
1, p̄o

2, p̄o
3.

Copyright c© 2005 David Fleet and Aaron Hertzmann 41

CSC418 / CSCD18 / CSC2504 Camera Models

y

z

x
p

1

p
2

p
3

A triangle in object coordinates.

2. Transform to world coordinates based on the object’s transformation: p̂w
1 , p̂w

2 , p̂w
3 , where

p̂w
i = M̂owp̂o

i .

y

z

x

p
1
w

p
3
w

p
2
w

c

The triangle projected to world coordinates, with a camera at c̄.

3. Transform from world to camera coordinates:p̂c
i = M̂wcp̂

w
i .

Copyright c© 2005 David Fleet and Aaron Hertzmann 42

CSC418 / CSCD18 / CSC2504 Camera Models

y

z

x

p
1
c

p
3
c

p
2
c

The triangle projected from world to camera coordinates.

4. Homogeneous perspective transformation:x̂∗

i = M̂pp̂
c
i , where

M̂p =









1 0 0 0
0 1 0 0
0 0 a b
0 0 1/f 0









, sox̂∗

i =









pc
x

pc
y

apc
z + b
pc

z

f









.

5. Divide by the last component:





x∗

y∗

z∗



 = f







pc
x

pc
z

pc
y

pc
z

apc
z
+b

pc
z






.

p
1
*

p
3
*

p
2
*

(-1, -1, -1)

(1, 1, 1)

The triangle in normalized device coordinates after perspective division.

Copyright c© 2005 David Fleet and Aaron Hertzmann 43

CSC418 / CSCD18 / CSC2504 Camera Models

Now (x∗, y∗) is an image plane coordinate, andz∗ is pseudodepth for each vertex of the
triangle.

6.10 Camera Projections in OpenGL

OpenGL’s modelview matrix is used to transform a point from object or world space to camera
space. In addition to this, aprojection matrixis provided to perform the homogeneous perspective
transformation from camera coordinates toclip coordinatesbefore performing perspective divi-
sion. After selecting the projection matrix, theglFrustum function is used to specify a viewing
volume, assuming the camera is at the origin:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, near, far);

For orthographic projection,glOrtho can be used instead:

glOrtho(left, right, bottom, top, near, far);

The GLU library provides a function to simplify specifying aperspective projection viewing frus-
tum:

gluPerspective(fieldOfView, aspectRatio, near, far);

The field of view is specified in degrees about thex-axis, so it gives the vertical visible angle. The
aspect ratio should usually be the viewport width over its height, to determine the horizontal field
of view.

Copyright c© 2005 David Fleet and Aaron Hertzmann 44

