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11 Basic Ray Tracing

11.1 Basics

• So far, we have considered onlylocal models of illumination; they only account for incident
light coming directly from the light sources.

• Global models include incident light that arrives from other surfaces, and lighting effects
that account for global scene geometry. Such effects include:

– Shadows

– Secondary illumination (such as color bleeding)

– Reflections of other objects, in mirrors, for example

• Ray Tracing was developed as one approach to modeling the properties of global illumina-
tion.

• The basic idea is as follows:

For each pixel:

– Cast a ray from the eye of the camera through the pixel, and find the first surface hit by
the ray.

– Determine the surface radiance at the surface intersectionwith a combination of local
and global models.

– To estimate the global component, cast rays from the surfacepoint to possible incident
directions to determine how much light comes from each direction. This leads to a
recursive form for tracing paths of light backwards from thesurface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Tracing, after its inventor,
Turner Whitted.

Computational Issues

• Form rays.

• Find ray intersections with objects.

• Find closest object intersections.

• Find surface normals at object intersection.

• Evaluate reflectance models at the intersection.
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11.2 Ray Casting

We want to find the ray from the eye through pixel(i, j).

• Camera Model
ēW is the origin of the camera, in world space.
~u, ~v, and~w are the world space directions corresponding to the~x, ~y, and~z axes in eye space.
The image plane is defined by(p̄− r̄) · ~w = 0, or r̄ + a~u + b~v, wherer̄ = ēW + f ~w.

• Window
A window in the view-plane is defined by its boundaries in camera coordinates:wl, wr, wt,
andwb. (In other words, the left-most edge is the line(wl, λ, f).)

• Viewport
Let the viewport (i.e., output image) have columns0...nc − 1 and rows0...nr − 1. (0, 0) is
the upper left entry.
The camera coordinates of pixel(i, j) are as follows:

p̄C
i,j = (wl + i∆u,wt + j∆v, f)

∆u =
wr − wl

nc − 1

∆v =
wb − wt

nr − 1

In world coordinates, this is:

p̄W
i,j =





| | |
~u ~v ~w
| | |



 p̄C
i,j + ēW

• Ray: Finally, the ray is then defined in world coordinates as follows:

r̄(λ) = p̄W
i,j + λ~di,j

where~di,j = p̄W
i,j − ēW . Forλ > 0, all points on the ray lie in front of the viewplane along a

single line of sight.

11.3 Intersections

In this section, we denote a ray asr̄(λ) = ā + λ~d, λ > 0.
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11.3.1 Triangles

Define a triangle with three points,p̄1, p̄2, andp̄3. Here are two ways to solve for the ray-triangle
intersection.

• Intersect̄r(λ) with the plane(p̄− p̄1) · ~n = 0 for ~n = (p̄2 − p̄1)× (p̄3 − p̄1) by substituting
r̄(λ) for p̄ and solving forλ. Then test the half-planes for constraints. For example:

(ā + λ~d− p̄1) · ~n = 0

λ∗ =
(p̄1 − ā) · ~n

~d · ~n

What does it mean when~d · ~n = 0? What does it mean when~d · ~n = 0 and(p̄1− ā) · ~n = 0?

• Solve forα andβ where p̄(α, β)p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1), i.e. r̄(λ) = ā + λ~d =
p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1). This leads to the 3x3 system





| | |
−(p̄2 − p̄1) −(p̄3 − p̄1) ~d

| | |









α
β
λ



 = (p̄1 − ā)

Invert the matrix and solve forα, β, andλ. The intersection is in the triangle when the
following conditions are all true:

α ≥ 0
β ≥ 0

α + β ≤ 1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersection with the plane. Then form a rays(t) in
the plane, starting at the intersectionp̄(λ∗). Measure the number of intersections with the polygon
sides fort > 0. If there is an even number of intersections, the intersection is inside. If the number
of intersection is odd, it is outside.

Aside:
This is a consequence of the Jordan Curve Theorem. As related to this problem, it
states that two points are both inside or both outside when the number of intersections
on a line between them is even.
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11.3.3 Spheres

Define the unit sphere centered atc̄ by ||p̄− c̄||2 = 1.
Substitute a point on the raȳr(λ) into this equation:

(ā + λ~d− c̄) · (ā + λ~d− c̄)− 1 = 0

Expand this equation and write it in terms of the quadratic form:

Aλ2 + 2Bλ + C = 0

A = ~d · ~d
B = (ā− c̄) · ~d

C = (ā− c̄) · (ā− c̄)− 1

The solution is then:

λ =
−2B ±

√
4B2 − 4AC

2A
= −B

A
±
√

D

A
,D = B2 − AC

If D < 0, there are no intersections. IfD = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values forλ, λ1 andλ2.

WhenD > 0, three cases of interest exist:

• λ1 < 0 andλ2 < 0. Both intersections are behind the view-plane, and are not visible.

• λ1 > 0 andλ2 < 0. Thep̄(λ1) is a visible intersection, but̄p(λ1) is not.

• λ1 > λ2 andλ2 > 0. Both intersections are in front of the view-plane.p̄(λ2) is the closest
intersection.

11.3.4 Affinely Deformed Objects

Proposition: Given an intersection method for an object, it is easy to intersect rays with affinely
deformed versions of the object. We assume here that the affine transformation is invertible.

• Let F (ȳ) = 0 be the deformed version off(x̄) = 0, whereȳ = Ax̄ + ~t.
i.e. F (ȳ) = f(A−1(ȳ − ~t)) = 0, soF (ȳ) = 0 iff f(x̄) = 0.

• Given an intersection method forf(x̄) = 0, find the intersection of̄r(λ) = ā + λ~d and
F (ȳ) = 0, whereλ > 0.

• Solution: Substitutēr(λ) into the implicit equationf = F (ȳ):

F (r̄(λ)) = f
(

A−1
(

r̄ (λ)− ~t
))

= f(A−1(ā + λ~d− ~t))

= f(ā′ + λ~d′)
= f(r̄′(λ))
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where
ā′ = A−1(ā− ~t)

~d′ = A−1~d

i.e. intersectingF (ȳ) with r̄(λ) is like intersectingf(x) with r̄′(λ) = ā′ + λ~d′ whereλ > 0.
The value ofλ found is the same in both cases.

• Exercise: Verify that, at the solutionλ∗, with an affine deformation̄y = Ax̄ + ~t, that
r̄(λ∗) = Ar̄′(λ∗) + ~t.

11.3.5 Cylinders and Cones

A right-circular cylinder may be defined byx2 + y2 = 1 for |z| ≤ 1. A cone may be defined by
x2 + y2 − 1

4
(1− z2) = 0 for 0 ≤ z ≤ 1.

• Find intersection with ”quadratic wall,” ignoring constraints onz, e.g. usingx2 + y2 = 1 or
x2 + y2 − 1

4
(1 − z2) = 0. Then test thez component of̄p(λ∗) against the constraint onz,

e.g.z ≤ 1 or z < 1.

• Intersect the ray with the planes containing the base or cap (e.g. z = 1 for the cylinder).
Then test thex andy components of̄p(λ∗) to see if they satisfy interior constraints (e.g.
x2 + y2 < 1 for the cylinder).

• If there are multiple intersections, then take the intersection with the smallest positiveλ (i.e.,
closest to the start of the ray).

Copyright c© 2005 David Fleet and Aaron Hertzmann 68



CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

11.4 The Scene Signature

The scene signature is a simple way to test geometry intersection methods.

• Create an image in which pixel(i, j) has intensityk if object k is first object hit from ray
through(i, j).

• Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Construct scene model ={ obj, (A,~t), objID } >
sig: array[nc, nr] of objID
for j = 0 to nr-1 (loop over rows)

for i = 0 to nc-1 (loop over columns)
< Construct ray~rij(λ) = p̄ij + λ(p̄ij − ē) through pixelp̄ij >
λi,j ←∞
loop over all objects in scene, with object identifiers objIDk

< find λ∗ for the closest intersection of the ray~rij(λ) and the object>
if λ∗ > 0 and λ∗ < λi,j then

λi,j ← λ∗

sig[i,j].objID ← objIDk

endif
endloop

endfor
endfor

11.5 Efficiency

Intersection tests are expensive when there are large numbers of objects, and when the objects are
quite complex! Fortunately, data structures can be used to avoid testing intersections with objects
that are not likely to be significant.

Example: We could bound a 3D mesh or object with a simple bounding volume (e.g. sphere or
cube). Then we would only test intersections with objects ifthere exists a positive intersection
with the bounding volume.

Example: We could project the extent onto the image plane so you don’t need to cast rays to
determine potential for intersections.
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11.6 Surface Normals at Intersection Points

Once we find intersections of rays and scene surfaces, and we select the first surface hit by the ray,
we want to compute the shading of the surface as seen from the ray. That is, we cast a ray out from
a pixel and find the first surface hit, and then we want to know how much light leave the surface
along the same ray but in the reverse direction, back to the camera.
Toward this end, one critical property of the surface geometry that we need to compute is the
surface normal at the hit point.

• For mesh surfaces, we might interpolate smoothly from face normals (like we did to get
normals at a vertex). This assumes the underlying surface issmooth.

• Otherwise we can just use the face normal.

• For smooth surfaces (e.g. with implicit formsf(p̄) = 0 or parametric formss(α, β)), either
take

~n =
∇f(p̄)

||∇f(p̄)||
or

~n =

∂s

∂α
× ∂s

∂β

|| ∂s

∂α
× ∂s

∂β
|| .

11.6.1 Affinely-deformed surfaces.

Let f(p̄) = 0 be an implicit surface, and letQ(p̄) = Ap̄ + ~t be an affine transformation, whereA
is invertible. The affinely-deformed surface is

F (q̄) = f(Q−1(p̄)) = f(A−1(p̄− ~t)) = 0 (1)

A normal ofF at a pointq̄ is given by
A−T~n

||A−T~n|| (2)

whereA−T = (A−1)T and~n is the normal off at p̄ = Q−1(q̄).

Derivation:
Let s̄ = r̄(λ∗) be the intersection point, and let(p̄ − s̄) · ~n = 0 be the tangent plane
at the intersection point. We can also write this as:

(p̄− s̄)T~n = 0 (3)

Substituting inq̄ = Ap̄ + ~t and solving gives:

(p̄− s̄)T~n = (A−1(q̄ − ~t)− s̄)T~n (4)
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= (q̄ − (As̄ + ~t))TA−T~n (5)

In other words, the tangent plane at the transformed point has normalA−T~n and
passes through point(As̄ + ~t).
preserved so the tangent plane on the deformed surface is given by(A−1(q̄−~t))T~n =
D.

This is the equation of a plane withunit normal A−T ~n
||A−T ~n||

.

11.7 Shading

Once we have cast a ray through pixelp̄i,j in the direction~di,j, and we’ve found the closest hit
point p̄ with surface normal~n, we wish to determine how much light leaves the surface atp̄ into
the direction−~di,j (i.e., back towards the camera pixel). Further we want reflect both the light
from light sources that directly illuminate the surface as well as secondary illumination, where
light from other surfaces shines on the surface atp̄. This is a complex task since it involves all of
the ways in which light could illuminate the surface from alldifferent directions, and the myriad
ways such light interacts with the surface and it then emitted or reflected by the surface. Here we
will deal first with the simplest case, known widely as WhittedRay Tracing.

Aside:
First, note that if we were to ignore all secondary reflection, then we could just com-
pute the Phong reflectance model atp̄ and then color the pixel with that value. Such
scenes would look similar to those that we have rendered using shading techniques
seen earlier in the course. The main differences from earlier rendering techniques are
the way in which hidden surfaces are handled and the lack of interpolation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light reflected from the surface is a combination of
the reflection computed by the Phong model, along with one component due to specular secondary
reflection. That is, the only reflection we consider is that due to perfect mirror reflection. We
only consider perfect specular reflection for computational efficiency; i.e., rather than consider
secondary illumination at̄p from all different directions, with perfect specular reflection we know
that the only incoming light at̄p that will be reflected in the direction−~di,j will be that coming from
the corresponding mirror direction (i.e.,~ms = −2(~di,j · ~n))~n + ~di,j). We can find out how much
light is incoming from direction~ms be casting another ray into that direction fromp̄ and calculating
the light reflected from the first surface hit. Note that we have just described a recursive ray tracer;
i.e., in order to calculate the reflectance at a hit point we need to cast more rays and compute the
reflectance at the new hit points so we can calculate the incoming light at the original hit point.

In summary, for basic (Whitted) ray tracing, the reflectance model calculation comprises:
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• A local model (e.g., Phong) to account for diffuse and off-axis specular reflection (highlights)
due to light sources.

• An ambient term to approximate the global diffuse components.

• Cast rays from̄p into direction~ms = −2(~di,j ·~n))~n+ ~di,j to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reflection).

For a rayr(λ) = ā + λ~d which hits a surface point point̄p with normal~n, the reflectance is given
by

E = raIa + rdId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α + rgIspec

wherera, rd, andrs are the reflection coefficients of the Phong model,Ia, Id, andIs are the light
source intensities for the ambient, diffuse and specular terms of the Phong model,~s is the light
source direction from̄p, the emittant direction of interest is~c = −~di,j, and~m = 2(~s · ~n))~n − ~s is
the perfect mirror direction for the local specular reflection. Finally,Ispec is the light obtained from
the recursive ray cast into the direction~ms to find secondary illumination, andrg is the reflection
coefficient that determines the fraction of secondary illumination that is reflected by the surface at
p̄

11.7.2 Texture

• Texture can be used to modulate diffuse and a mbient reflection coefficients, as with Gouraud
shading.

• We simply need a way to map each point on the surface to a point in texture space, as above,
e.g. given an intersection pointp̄(λ∗), convert into parametric forms(α, β) and use(α, β) to
find texture coordinates(µ, ν).

• Unlike Gouraud shading, we don’t need to interpolate(µ, ν) over polygons. We get a new
(µ, ν) for each intersection point.

• Anti-aliasing and super-sampling are covered in the Distribution Ray Tracing notes.

11.7.3 Transmission/Refraction

• Light that penetrates a (partially or wholly) transparent surface/material is refracted (bent),
owing to a change in the speed of light in different media.

• Snell’s Law governs refraction:
sin θ1

sin θ2

=
c1

c2
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• The index of refraction is the ratio of light speedsc1/c2. For example, the index of refraction
for passing from air to water iscair

cwater
= 1.33, and for passing from air to glass, it iscair

cglass
=

1.8.
Note: There is also a wavelength dependence. We ignore this here.

• Example:

– If c2 < c1, light bends towards the normal (e.g. air to water). Ifc2 < c1, light bends
away from the normal (e.g. water to air).

– The critical angleθc, whenc2 > c1, is whenθ1 → θc andθ2 → 90. Beyondθc, θ1 > θc,
and total internal reflection occurs. No light enters the material.

• Remarks:

– The outgoing direction is in the plane of the incoming direction and~n. This is similar
to the perfect specular direction.

– Whenθ1 = 0, thenθ2 = 0, i.e. there is no bending.

• For ray tracing:

– Treat global transmission like global specular, i.e. cast one ray.

– Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

• A simple way to include some global effects with minimal workis to turn off local reflection
when the surface point̄p cannot see light sources, i.e. whenp̄ is in shadow.

• When computingE at p̄, cast a ray toward the light source, i.e. in the directions = (l− p̄).

p̄W (λ) = p̄W + λ(lW − p̄W )

• Find the first intersection with a surface in the scene. Ifλ∗ at the first intersection point is
0 ≤ λ ≤ 1, then there exists a surface that occludes the light source from p̄.

– We should omit diffuse and specular terms from the local Phong model.

– The surface radiance atp̄ becomes

E = raIa + rgIspec
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Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i,j)
< compute ray~rij(λ) = p̄ij + λ~dij where~dij = p̄ij − ~e >

I = rayTrace(̄pij, ~dij, 1);
setpixel(i, j,I)

endfor

rayTrace( ā, ~b, depth)
findFirstHit( ā, ~b, output var obj, λ, p̄, ~n)
if λ > 0 then

I = rtShade(obj,̄p, ~n,−~b, depth)
else

I = background;
endif
return(I)

findFirstHit ( ā, ~b, output var OBJ,λh, p̄h, ~nh)
λh = −1;
loop over all objects in scene, with object identifiers objIDk

< find λ∗ for the closest legitimate intersection of ray~rij(λ) and object>
if ( λh < 0 or λ∗ < λh) and λ∗ > 0 then

λh = λ∗

p̄h = ā + λ∗~b;
< determine normal at hit point~nh >
OBJ = objIDk

endif
endloop

rtShade(OBJ,p̄, ~n, ~de, depth)
/* Local Component */
findFirstHit( p̄,~lw − p̄, output var temp,λh);
if 0 < λh < 1 then

Il = ambientTerm;
else

Il = phongModel(̄p, ~n, ~de, OBJ.localparams)
endif
/* Global Component */
if depth< maxDepth then
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if OBJ has specular reflection then
< calculate mirror direction~ms = −~de + 2~n · ~de~n >
Ispec = rayTrace(̄p, ~ms, depth+1)
< scaleIspec by OBJ.specularReflCoef>

endif
if OBJ is refractive then

< calculate refractive direction~t >
if not total internal reflection then

Irefr = rayTrace(̄p,~t, depth+1)
< scaleIrefr by OBJ.refractiveReflCoef>

endif
endif
Ig = Ispec + Irefr

else
Ig = 0

endif
return(Il + Ig)
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