CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11 Basic Ray Tracing

11.1 Basics

e So far, we have considered orbcal models of illumination; they only account for incident
light coming directly from the light sources.

e Global models include incident light that arrives from other soefs, and lighting effects
that account for global scene geometry. Such effects ieclud
— Shadows
— Secondary illumination (such as color bleeding)
— Reflections of other objects, in mirrors, for example
e Ray Tracing was developed as one approach to modeling themiespof global illumina-
tion.
e The basic idea is as follows:
For each pixel:
— Cast a ray from the eye of the camera through the pixel, andtimérst surface hit by
the ray.

— Determine the surface radiance at the surface intersewitbra combination of local
and global models.

— To estimate the global component, cast rays from the sufaice to possible incident
directions to determine how much light comes from each toec This leads to a
recursive form for tracing paths of light backwards from $hieface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Traciitey, s inventor
Turner Whitted.

Computational Issues

e Form rays.

Find ray intersections with objects.

Find closest object intersections.

Find surface normals at object intersection.

Evaluate reflectance models at the intersection.

Copyright(© 2005 David Fleet and Aaron Hertzmann 64

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.2 Ray Casting
We want to find the ray from the eye through pixel;).

e Camera Model
e is the origin of the camera, in world space.
i, ¥, andw are the world space directions corresponding tothg andz axes in eye space.
The image plane is defined By — 7) - @ = 0, or 7 + a@ + b, wherer = eV + fib.

e Window
A window in the view-plane is defined by its boundaries in cear@ordinatesw;, w,., w,
andwy. (In other words, the left-most edge is the line, A, f).)

e Viewport
Let the viewport (i.e., output image) have coluntnsn, — 1 and rows0...n,, — 1. (0,0) is
the upper left entry.
The camera coordinates of pixgl j) are as follows:

ﬁfj = (w; + 1Au, w; + jAv, f)

Au = W — W
Ne — 1
Av — wy — Wy
n, — 1
In world coordinates, this is:
P = 1|1’ 1|7 117 py;+ e
L

e Ray: Finally, the ray is then defined in world coordinates #isvics:
F(\) =LY + Ay

Wheredzj = @VZ —e&". For\ > 0, all points on the ray lie in front of the viewplane along a
single line of sight.

11.3 Intersections

In this section, we denote a ray@s\) = a + Ad, A > 0.

Copyright(© 2005 David Fleet and Aaron Hertzmann 65

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.3.1 Triangles

Define a triangle with three points,, p,, andps;. Here are two ways to solve for the ray-triangle
intersection.

e Intersectr(\) with the plang(p — p;) - 7 = 0for i = (p, — p1) X (ps — p1) by substituting
7(A) for p and solving for\. Then test the half-planes for constraints. For example:

@+ —p1)-i=0

St

A — (pr —a) -

d-i
What does it mean wheh- 7 = 0? What does it mean wheh 77 = 0 and(p, — a) - 77 = 0?

e Solve fora and g wherep(a, B)p1 + a(ps — p1) + B(ps — p1), i.e. 7(A) = a + M =
p1+ a(pe — p1) + B(ps — p1). This leads to the 3x3 system

| | | o
—(p2 — 1) —(Ps — D) d B = —a)
| | | A

Invert the matrix and solve fatr, 3, and A\. The intersection is in the triangle when the
following conditions are all true:
a>0
B>0
a+ <1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersectiom he plane. Then form a ray(t) in

the plane, starting at the intersecti@i*). Measure the number of intersections with the polygon
sides fort > 0. If there is an even number of intersections, the intersads inside. If the number
of intersection is odd, it is outside.

Aside:
This is a consequence of the Jordan Curve Theorem. As relatibistproblem, it
states that two points are both inside or both outside whendmber of intersections
on a line between them is even.

Copyright(©) 2005 David Fleet and Aaron Hertzmann 66

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.3.3 Spheres

Define the unit sphere centeredcdty ||p — ¢||> = 1.
Substitute a point on the ray \) into this equation:

(@+M—¢)- (@+M—¢) —1=0
Expand this equation and write it in terms of the quadratiofo
AN +2BA+C =0

A=d-d
B=(a—2¢)-d
C=(a—c)-(a—c)—1
The solution is then:
—2B 4+ +4B2 —4A B
A\ = C_ vr_D B? — AC

2A A A’

If D < 0, there are no intersections. [If = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values fgr\; and\,.

WhenD > 0, three cases of interest exist:

e)\; < 0and); < 0. Both intersections are behind the view-plane, and are sdilei
e \; > 0and\, < 0. Thep(\) is a visible intersection, byt(\,) is not.

e \; >)y and)\, > 0. Both intersections are in front of the view-plang..) is the closest
intersection.

11.3.4 Affinely Deformed Objects

Proposition: Given an intersection method for an object, it is easy ters#ct rays with affinely
deformed versions of the object. We assume here that the affinsformation is invertible.

e Let F(7) = 0 be the deformed version ¢i(z) = 0, wherej = Az + .
ie. F(y) = f(A™'(y — 1)) = 0,50 F(y) = 0iff f(z) =

e Given an intersection method fgi(z) = 0, find the intersection of(\) = a + Ad and
F(y) =0, whereX > 0.

e Solution: Substituter(\) into the implicit equatiory = F(‘):
F(F(\) = f(ATH(F(A ﬂ)
f(A a+Ad t))

f(@ + Ad)
- F ()

Copyright(© 2005 David Fleet and Aaron Hertzmann 67

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

where
a=A"'a—1)

d=A"'d
i.e. intersecting”(y) with 7()\) is like intersectingf (x) with 7 (\) = @ + Ad’ whereX > 0.
The value of\ found is the same in both cases.

e Exercise: Verify that, at the solution*, with an affine deformationy = Az + ¢, that
F(*) = AF/(*) + 1.

11.3.5 Cylinders and Cones
A right-circular cylinder may be defined by + y? = 1 for |z| < 1. A cone may be defined by

2?4y —(1-2%)=0for0<z<1.

¢ Find intersection with "quadratic wall,” ignoring consints onz, e.g. usings? + y? = 1 or
2?4+ y? — 1(1 — 2%) = 0. Then test the: component ofj(*) against the constraint on
eg.z<lorz<l1.

e Intersect the ray with the planes containing the base or eap £ = 1 for the cylinder).
Then test ther andy components ofi(*) to see if they satisfy interior constraints (e.g.
2?2 + y? < 1 for the cylinder).

o Ifthere are multiple intersections, then take the intefeaavith the smallest positiv (i.e.,
closest to the start of the ray).

Copyright(© 2005 David Fleet and Aaron Hertzmann 68

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.4 The Scene Signature

The scene signature is a simple way to test geometry inteyegunethods.

e Create an image in which pixél, j) has intensityt if object k is first object hit from ray
through(i, j).

e Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Construct scene model{obj, (A,7), objID} >
sig: array[nc, nr] of objlD
for j=0to nr-1 (loop over rows)
for i=0to nc-1 (loop over columns)
< Construct rayr;;(\) = p;; + A\(p;; — €) through pixelp;; >
)\i,j — OO
loop over all objects in scene, with object identifiers ohjlD
< find * for the closest intersection of the ray(\) and the object>
if A* >0 and A* <);; then

A%j — AF
sig[i,j].objID « objID,
endif
endloop
endfor
endfor

11.5 Efficiency

Intersection tests are expensive when there are large marabebjects, and when the objects are
quite complex! Fortunately, data structures can be useddiol #esting intersections with objects
that are not likely to be significant.

Example: We could bound a 3D mesh or object with a simple bounding vel@eng. sphere or
cube). Then we would only test intersections with objecthére exists a positive intersection
with the bounding volume.

Example: We could project the extent onto the image plane so you da€tdrto cast rays to
determine potential for intersections.

Copyright(© 2005 David Fleet and Aaron Hertzmann 69

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.6 Surface Normals at Intersection Points

Once we find intersections of rays and scene surfaces, andleat the first surface hit by the ray,
we want to compute the shading of the surface as seen frorayh&at is, we cast a ray out from
a pixel and find the first surface hit, and then we want to know hauch light leave the surface
along the same ray but in the reverse direction, back to theeca

Toward this end, one critical property of the surface geoyntitat we need to compute is the
surface normal at the hit point.

e For mesh surfaces, we might interpolate smoothly from famenals (like we did to get
normals at a vertex). This assumes the underlying surfasma®th.

e Otherwise we can just use the face normal.

e For smooth surfaces (e.g. with implicit forniép) = 0 or parametric forms(«, 3)), either

take -
=_ VI

IVf@)I]
or s
S S

. 9a X g

N =15 Os ||”

50 % a—ﬁﬂ

11.6.1 Affinely-deformed surfaces.
Let f(p) = 0 be an implicit surface, and l€}(p) = Ap + ¢ be an affine transformation, whese
is invertible. The affinely-deformed surface is

F(q)=fQ () =f(A"'(p—1) =0 (1)

A normal of F" at a pointg is given by
ATy
|| AT |

whereA~7 = (A~1T and7 is the normal off atp = Q~*(q).

(2)

Derivation:
Let s = 7(*) be the intersection point, and lgt — s) - 7 = 0 be the tangent plane
at the intersection point. We can also write this as:

(p—5)"i=0 3)
Substituting inj = Ap + £ and solving gives:

(p—3s"1 = (A (g—1)—35"7 (4)

Copyright(© 2005 David Fleet and Aaron Hertzmann 70

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

= (- (As+H) A7 (5)

In other words, the tangent plane at the transformed poistrieamal A~77 and
passes through poifi 5 + £).

preserved so the tangent plane on the deformed surfacesisiopf A~ (G—t))"7 =
D.

This is the equation of a plane withmit normalﬁ.

11.7 Shading

Once we have cast a ray through pixel in the directionci;,j, and we've found the closest hit
point p with surface normaii, we wish to determine how much light leaves the surfageiato
the direction—J;j (i.e., back towards the camera pixel). Further we want refleth the light
from light sources that directly illuminate the surface aalvas secondary illumination, where
light from other surfaces shines on the surfacg. athis is a complex task since it involves all of
the ways in which light could illuminate the surface from different directions, and the myriad
ways such light interacts with the surface and it then echittereflected by the surface. Here we
will deal first with the simplest case, known widely as Whittealy Tracing.

Aside:

First, note that if we were to ignore all secondary reflegttben we could just com-
pute the Phong reflectance modepatnd then color the pixel with that value. Such
scenes would look similar to those that we have renderedjsiading techniques
seen earlier in the course. The main differences from eadreering techniques are
the way in which hidden surfaces are handled and the lackefgalation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light reflectenh fthe surface is a combination of
the reflection computed by the Phong model, along with onegpom@nt due to specular secondary
reflection. That is, the only reflection we consider is thag¢ ¢ln perfect mirror reflection. We
only consider perfect specular reflection for computati@ificiency; i.e., rather than consider
secondary illumination gt from all different directions, with perfect specular reflea we know
that the only incoming light gi that will be reflected in the directioml:’j will be that coming from

the corresponding mirror direction (i.ens = —Q(J;J 1))+ J;J). We can find out how much
light is incoming from directiomri be casting another ray into that direction frorand calculating
the light reflected from the first surface hit. Note that weengst described a recursive ray tracer;
i.e., in order to calculate the reflectance at a hit point wedrnte cast more rays and compute the
reflectance at the new hit points so we can calculate the imgphght at the original hit point.

In summary, for basic (Whitted) ray tracing, the reflectanceleh calculation comprises:

Copyright(© 2005 David Fleet and Aaron Hertzmann 71

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

e Alocal model (e.g., Phong) to account for diffuse and ofisapecular reflection (highlights)
due to light sources.

e An ambient term to approximate the global diffuse composient

e Cast rays fronp into directioniii, = —2(d; ; - 1)) + d; ; to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reéifved.

Forarayr(\) =a + Ad which hits a surface point poiptwith normal7, the reflectance is given
by

E =1, +rqlymax(0,7 - §) + rels max(0, ¢ m)* + rylspec

wherer,, rq4, andr, are the reflection coefficients of the Phong modgl,/;, and/, are the light
source intensities for the ambient, diffuse and speculangeof the Phong modek is the light
source direction fronp, the emittant direction of interest &= —d:,j, andm = 2(5- 7)) — §is
the perfect mirror direction for the local specular reflectiFinally, ;.. is the light obtained from
the recursive ray cast into the directigi to find secondary illumination, ang is the reflection
coefficient that determines the fraction of secondary ilhation that is reflected by the surface at

p

11.7.2 Texture

e Texture can be used to modulate diffuse and a mbient reffectiefficients, as with Gouraud
shading.

e We simply need a way to map each point on the surface to a poiexiure space, as above,
e.g. given an intersection poipt*), convert into parametric form(«, 5) and us€«, (3) to
find texture coordinate§, v).

e Unlike Gouraud shading, we don’t need to interpol@ter) over polygons. We get a new
(u, v) for each intersection point.

¢ Anti-aliasing and super-sampling are covered in the Oustron Ray Tracing notes.

11.7.3 Transmission/Refraction

e Light that penetrates a (partially or wholly) transparantace/material is refracted (bent),
owing to a change in the speed of light in different media.

e Snell's Law governs refraction:
sin 91 C1

sin 92 Co

Copyright(© 2005 David Fleet and Aaron Hertzmann 72

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

e The index of refraction is the ratio of light speedgc,. For example, the index of refraction
for passing from air to water i~ = 1.33, and for passing from air to glass, it 51— =
1.8. o
Note: There is also a wavelength dependence. We ignoredhes h

e Example:

— If o < ¢, light bends towards the normal (e.g. air to water)c,lf< ¢, light bends
away from the normal (e.g. water to air).

— The critical anglé., whenc, > ¢, iIs whend; — 6. andf, — 90. Beyondd,, 6, > 6.,
and total internal reflection occurs. No light enters theanat.

e Remarks:

— The outgoing direction is in the plane of the incoming di@ttandr. This is similar
to the perfect specular direction.

— When#; = 0, thend, = 0, i.e. there is no bending.
e For ray tracing:
— Treat global transmission like global specular, i.e. casti@y.

— Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

¢ A simple way to include some global effects with minimal wesko turn off local reflection
when the surface poigtcannot see light sources, i.e. whers in shadow.

e When computing? atp, cast a ray toward the light source, i.e. in the directioa (1 — p).
pr) =p" + A1 - p")

e Find the first intersection with a surface in the scene*lt the first intersection point is
0 < X <1, then there exists a surface that occludes the light souogf.

— We should omit diffuse and specular terms from the local Bhondel.
— The surface radiance atbecomes

E = Ta]a + Tg]spec

Copyright(© 2005 David Fleet and Aaron Hertzmann 73

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i)
< compute ray’;(\) = pi; + A&ij where &ij =Py —€ >
I =rayTrace(,;, dy;, 1);
setpixel(i, j,1)

endfor

rayTrace(a, b, depth)
findFirstHit(a, b, output var obj, A, p, n)
if A >0 then
I = rtShade(objp, i, —b, depth)
else
I = background;
endif
return()

findFirstHit (a, b, output var OBJ, \y,, Pn, in)
)\h =—1;
loop over all objects in scene, with object identifiers oljlD
< find A\« for the closest legitimate intersection of rgy(\) and object>
if (A, <0 or*<)\,) and * >0 then

Ap = A
Pr=4a+ \b;
< determine normal at hit point;, >
OBJ = objID,
endif
endloop

rtShade(OBJ, p, 1, d., depth)
[* Local Component */
findFirstHit(p, 1 — p, output var temp, \,);
if 0 <A, <1 then
I, = ambientTerm;
else
I, = phongModelp, n, d., OBJ.localparams)
endif
[* Global Component */
if depth< maxDepth then

Copyright(© 2005 David Fleet and Aaron Hertzmann 74

CSC418/CSCD18/CSC2504

Basic Ray Tracing

if OBJ has specular reflection then
< calculate mirror directiom, = —ae +2n - &eﬁ >
Iy = rayTrace(, m,, depth+1)
< scalel,,.. by OBJ.specularReflCoef
endif
if OBJis refractive then
< calculate refractive directiot >
if not total internal reflection then
L. = rayTrace(, t, depth+1)
< scalel,.;, by OBJ.refractiveReflCoef
endif
endif
Ig =]spec + [refr
else
I, =0
endif
return(; + 1,)

Copyright(© 2005 David Fleet and Aaron Hertzmann

75

