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5 3D Objects

5.1 Surface Representations

As with 2D objects, we can represent 3D objectparametric andimplicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “heigelds” — but we will not cover
them here).

5.2 Planes

e Implicit: (p — po) - 77 = 0, wherep, is a point inR? on the plane, and is a normal vector
perpendicular to the plane.
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A plane can be defined uniquely by three non-colinear p@ints,, ps. Leta = p, — p; and
b = p3 — p1, S0a andb are vectors in the plane. Theh= @ x b. Since the points are not
colinear,||7|| # 0.

e Parametric: 5(a, ) = po + ad + ﬂl;, fora, g € R.

Note:
This is similar to the parametric form of a linEo) = py + ad.

A planar patch is a parallelogram defined by bounds®@@and.

Example:
Let0<a<land0 < g <1:
/
_/
aj/
/
/ /
/ Y
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5.3 Surface Tangents and Normals

Thetangentto a curve ap is the instantaneous direction of the curve.at

The tangent planeto a surface ap is analogous. It is defined as the plane containing tangent
vectors to all curves on the surface that go thropgh

A surface normal at a pointp is a vector perpendicular to a tangent plane.

5.3.1 Curves on Surfaces

The parametric formp(«, 3) of a surface defines a mapping from 2D points to 3D points:yever
2D point (o, 3) in R? corresponds to a 3D pointin R*. Moreover, consider a CUNvVig\) =
(a(A), B(A)) in 2D — there is a corresponding curve in 3D contained withmsurfacei*(\) =

pUAN)-

5.3.2 Parametric Form

For a curver(\) = (z()),y(\), 2(A))T in 3D, the tangent is

de(N)  (dx(\) dy(N) dz(A) )
dx \ dx T odN T oax )
For a surface point(«a, 3), two tangent vectors can be computed:
05 s
a—aand%. (2)

Derivation:
Consider a poinfay, 3) in 2D which corresponds to a 3D poigtay, 5y). Define
two straight lines in 2D:

d(M) = (M, 0)" 3)
e(X2) = (ao, )" (4)

d'(\) = 5@0\1)) (5)
e"(A2) = 5(d(N)) (6)
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Using the chain rule for vector functions, the tangents eSéhcurves are:

0d _ 050ds  050ds _ 05 @)
8/\1 N aOZ E)/\l @5 8)\1 N @Oé
ge 0306, 0308, 0
N 00N, 980N, . 0B (8)

s
X | = . 9)
o ﬁo) < 86 o ﬁo)

The tangent plane is a plane containing the surfacgat, 3,) with normal vector equal to the
surface normal. The equation for the tangent plane is:

ii(cv, Bo) - (p — 5(0, o)) = 0. (10)

What if we used different curves in 2D to define the tangentgftaih can be shown that we get the
same tangent plane; in other words, tangent vectors of atilzizes through a given surface point
are contained within a single tangent plane. (Try this askancese).

The normal ofs ata = g, 6 = Gy IS

ﬁ((){g,ﬁo) - <§_Z

Note:

The normal vector is not unique. fis a normal vector, then any vectef: is also
normal to the surface, far € R. What this means is that the normal can be scaled,
and the direction can be reversed.

5.3.3 Implicit Form

In the implicit form, a surface is defined as the set of pojhtbat satisfyf(p) = 0 for some
function f. A normal is given by the gradient ¢f,

n(p) = VD), (11)

whereV f = (8{;;@’ (23 a{g)) ‘

Derivation:
Consider a 3D curve(\) that is contained within the 3D surface, and that passes
throughp, at \,. In other words¢(\) = p, and

fer) = 0 (12)
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for all \. Differentiating both sides gives:

of
I\

Expanding the left-hand side, we see:

0f _ 0foe,  0fde,  0foe.

= 0 (13)

= = 14

O\ Oor O\ Oy ON 0z O\ (14)
dc

= Vi), 35 =0 (15)

This last line states that the gradient is perpendiculahéocurve tangent, which
the definition of the normal vector.

is

Example:

pis: Vf=2(p—ec).

The implicit form of a sphere isf(p) = ||p — ¢[|* — R* = 0. The normal at a point

Exercise: show that the normal computed for a plane is theesaegardless of whether it is

computed using the parametric or implicit forms. (This wasealin class). Try it for
surface.

5.4 Parametric Surfaces
5.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.

ﬁ&l_l(a) Py

s T Po
Poo ﬂ?
(04
Givenpgo, poi, Pio, P11, define
(o) = (1—a)poo + apo,
Loy = (1 —a)por + apii.
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Then connecty(«) and/; («) with a line:
p(a76> = (1 - ﬁ)%(a) + 6%(04)7
for0<a<landd<pg<1.

Question: when is a bilinear patch not equivalent to a plaasch? Hint: a planar patch is defined
by 3 points, but a bilinear patch is defined by 4.

5.4.2 Cylinder

A cylinder is constructed by moving a point on a lih@long a planar curvgy(a) such that the
direction of the line is held constant.

If the direction of the lind is d, the cylinder is defined as
e, B) = po(a) + Ad.
A right cylinder hasterpendicular to the plane containipg o).

A circular cylinder is a cylinder whergy(«) is a circle.

Example:
A right circular cylinder can be defined by («) = (r cos(a), rsin(«), 0), for 0 <
a < 2m, andd = (0,0, 1).

Sop(a, 5) = (rcos(a), rsin(a), 3), for0 < g < 1.

To find the normal at a point on this cylinder, we can use theligitpform
flr,y,2) =2 +y* —r?=0tofindVf = 2(z,y,0).

Using the parametric form directly to find the normal, we have

op ) op

P r(—sin(«), cos(a), 0), and(’?ﬂ =(0,0,1), so
op Op _ :
e 75 (r cos(a)rsin(a), 0).

Note:
The cross product of two vectotis= (a1, as, as) andb = (b1, ba, b3) can
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be found by taking the determinant of the matrix,

i ik
a; as as

by by b

5.4.3 Surface of Revolution

To form asurface of revolution, we revolve a curve in the-z plane,é(5) = (z(5),0, 2(3)),
about thez-axis.

Hence, each point ohtraces out a circle parallel to they plane with radiusz(3)|. Circles then
have the form(r cos(«), 7 sin(«v)), wherew is the parameter of revolution. So the rotated surface
has the parametric form

Example:
If ¢(5) is a line perpendicular to the-axis, we have a right circular cylinder.

A torus is a surface of revolution:

¢(B) = (d+ rcos(f),0,rsin(f3)).

5.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicitnfioof a quadric in the
standard position is

ar? + by + 22 +d =0,
az® +by* + ez =0,

fora,b,c,d,e € R. There are six basic types of quadric surfaces, which deperide signs of the

parameters.

They are the ellipsoid, hyperboloid of one sheet, hypeidadd two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All bug tiyperbolic paraboloid may be ex-
pressed as a surface of revolution.
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Example:
An ellipsoid has the implicit form

ZE2 y2 22

§+b_2+§_1:0'

In parametric form, this is
5(a, B) = (asin(f) cos(a), bsin(B) sin(«), c cos(3)),

for 5 € [0, 7] anda € (—m, 7.

5.4.5 Polygonal Mesh

A polygonal meshis a collection of polygons (vertices, edges, and faces)p@dggons may be
used to approximate curves, a polygonal mesh may be usegtox@amate a surface.

edge

face

vertex

A polyhedronis a closed, connected polygonal mesh. Each edge must leldhatwo faces.
A facerefers to a planar polygonal patch within a mesh.
A mesh issimple when its topology is equivalent to that of a sphere. That isas no holes.

Given a parametric surfacg, (), we can sample values afand/ to generate a polygonal mesh
approximatings.

5.5 3D Affine Transformations

Three dimensional transformations are used for many eéifitgourposes, such as coordinate trans-
forms, shape modeling, animation, and camera modeling.
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An affine transform in 3D looks the same as in 2B(p) = Ap + t for A € R¥3, p, € R%. A
homogeneous affine transformation is

F(p) = Mp, wherep = | ¥ | 11 = i{; t.
1 0" 1
Translation:A = I, ¢ = (t,,t,,t.).
Scaling: A = diag(s., s,, s), t = 0.
Rotation: A = R, = 0, anddet(R) = 1.

3D rotations are much more complex than 2D rotations, so wWecansider only elementary
rotations about the, y, andz axes.

For a rotation about the-axis, thez coordinate remains unchanged, and the rotation occurgin th
z-y plane. So iff = Rp, theng. = p.. That s,

¢ | | cos(f) —sin(h) Da
g | [ sin@®) cos®) | [p, ]
Including thez coordinate, this becomes

cos(f) —sin(d) 0
R.(6) = | sin(f) cos(d) O
0 0 1

Similarly, rotation about the-axis is

1 0 0
R.(0)= | 0 cos(d) —sin(0)
0 sin(f) cos(@)

For rotation about thg-axis,
cos(f) 0 sin(0)

R,(0) = 0o 1 0
—sin(#) 0 cos(0)
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5.6 Spherical Coordinates

Any three dimensional vectaf = (u,,u,,u.) may be represented ispherical coordinates

By computing a polar angle counterclockwise about theaxis from thez-axis and an azimuthal
angled counterclockwise about theaxis from ther-axis, we can define a vector in the appropriate
direction. Then it is only a matter of scaling this vectorhie torrect lengtiu2 + u2 +u2)~'/? to
match.

AZ

<y

\/ N
0

X -
uxy

Given angles) andd, we can find a unit vector as= (cos() sin(¢), sin(#) sin(¢), cos(¢)).

Uy
Uz

Given a vectoru, its azimuthal angle is given by = arctan( ) and its polar angle i =

w2 +u2)/2 A . .
arctan (%) This formula does not require tha@te a unit vector.

5.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in finding the rotation goat about an arbitrary line. Let
[(A) = Au with |||| = 1, and@ having azimuthal anglé and polar angles. We may compose

elementary rotations to get the effect of rotating a ppiabout/(\) by a counterclockwise angle
p:
1. Align « with the z-axis.

e Rotate by—6 about thez-axis sou goes to therz-plane.
e Rotate up to the-axis by rotating by—¢ about they-axis.

Henceg = R,(—¢)R.(—0)p

2. Apply a rotation by about thez-axis: R, (p).
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3. Invert the first step to move theaxis back tai: R.(0)R,(¢) = (R,(—¢)R.(—6))~ .
Finally, our formula isj = Rz(p)p = R.(0)R,(¢)R.(p)R,(—¢)R.(—0)p.

5.7 Nonlinear Transformations

Affine transformations are a first-order model of shape aeé&dion. With affine transformations,
scaling and shear are the simplest nonrigid deformationann@mn higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scatingandy for all z, as in

a 0 0
g=10 b 0 |p,
0 0 1
let « andb be functions of, so
a(p,) 0 0
q= 0 b(p:) 0 |p
0 0 1

A linear taper looks likei(z) = ap + oy 2.
A quadratic taper would b&(z) = ag + a1z + a2

X X
/ éz / E z
y y

(a) Linear taper (b) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with a list of vertices a list of triangle faces. Each vertex
consists of three floating point values for they, andz positions, and a face consists of three
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indices of vertices in the vertex list. Representing a meshwhy reduces memory use, since each
vertex needs to be stored once, rather than once for everytiaon; and this gives us connectivity
information, since it is possible to determine which fadesre a common vertex. This can easily
be extended to represent polygons with an arbitrary numbeertices, but any polygon can be
decomposed into triangles. A tetrahedron can be repreabeiitte the following lists:

Vertex index| x |y | z Face index Vertices
0 0(0]|0 0 0,1,2
1 1/0|0 1 0,31
2 0Oj1|0 2 1,3,2
3 0|01 3 2,3,0

Notice that vertices are specified in a counter-clockwigkerso that the front of the face and
back can be distinguished. This is the default behavior fper®L, although it can also be set
to take face vertices in clockwise order. Lists of normald &xture coordinates can also be
specified, with each face then associated with a list of sestiand corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled &ragera polygonal mesh. Consider the
surface of revolution

(@, 8) = [z(a) cos B, z(a) sin B, 2(a)]"
with the profileC'(a) = [z(«), 0, z(«)]T ands € [0, 27].
To take a uniform sampling, we can use

a1 — Qg 2w

Aa = , andAg = —,
n

wherem is the number of patches to take along thaxis, andn is the number of patches to take
around thez-axis.

Each patch would consist of four vertices as follows:

S(lAOé,jAﬁ) SZ‘J
S — S((l + 1)AO&,]AB) _ Si‘f'lvj for 1€ [O,m — H,
" S((i+1)Aa, (j +1)AB) Sivigr |7 jeo,n—1]
S(iAa, (7 +1)AB) Sij+1

To render this as a triangle mesh, we miesselate the sampled quads into triangles. This is
accomplished by defining trianglé3; and();; given S;; as follows:

Py = (Sij, Sit1,j: Sit1,41), andQy; = (Sij, Siv1,j+1, Sij+1)
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