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5 3D Objects

5.1 Surface Representations

As with 2D objects, we can represent 3D objects inparametric and implicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “height fields” — but we will not cover
them here).

5.2 Planes

• Implicit: (p̄ − p̄0) · ~n = 0, wherep̄0 is a point inR
3 on the plane, and~n is a normal vector

perpendicular to the plane.

n

p
0

A plane can be defined uniquely by three non-colinear pointsp̄1, p̄2, p̄3. Let~a = p̄2 − p̄1 and
~b = p̄3 − p̄1, so~a and~b are vectors in the plane. Then~n = ~a ×~b. Since the points are not
colinear,‖~n‖ 6= 0.

• Parametric: s̄(α, β) = p̄0 + α~a + β~b, for α, β ∈ R.

Note:
This is similar to the parametric form of a line:l̄(α) = p̄0 + α~a.

A planar patch is a parallelogram defined by bounds onα andβ.

Example:
Let 0 ≤ α ≤ 1 and0 ≤ β ≤ 1:

a

bp
0
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5.3 Surface Tangents and Normals

Thetangent to a curve at̄p is the instantaneous direction of the curve atp̄.

The tangent plane to a surface at̄p is analogous. It is defined as the plane containing tangent
vectors to all curves on the surface that go throughp̄.

A surface normalat a pointp̄ is a vector perpendicular to a tangent plane.

5.3.1 Curves on Surfaces

The parametric form̄p(α, β) of a surface defines a mapping from 2D points to 3D points: every
2D point (α, β) in R

2 corresponds to a 3D point̄p in R
3. Moreover, consider a curvēl(λ) =

(α(λ), β(λ)) in 2D — there is a corresponding curve in 3D contained within the surface:̄l∗(λ) =
p̄(l̄(λ)).

5.3.2 Parametric Form

For a curvēc(λ) = (x(λ), y(λ), z(λ))T in 3D, the tangent is

dc̄(λ)

dλ
=

(

dx(λ)

dλ
,
dy(λ)

dλ
,
dz(λ)

dλ

)

. (1)

For a surface point̄s(α, β), two tangent vectors can be computed:

∂s̄

∂α
and

∂s̄

∂β
. (2)

Derivation:
Consider a point(α0, β0) in 2D which corresponds to a 3D points̄(α0, β0). Define
two straight lines in 2D:

d̄(λ1) = (λ1, β0)
T (3)

ē(λ2) = (α0, λ2)
T (4)

These lines correspond to curves in 3D:

d̄∗(λ1) = s̄(d̄(λ1)) (5)

ē∗(λ2) = s̄(d̄(λ2)) (6)
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Using the chain rule for vector functions, the tangents of these curves are:

∂d̄∗

∂λ1

=
∂s̄

∂α

∂d̄α

∂λ1

+
∂s̄

∂β

∂d̄β

∂λ1

=
∂s̄

∂α
(7)

∂ē∗

∂λ2

=
∂s̄

∂α

∂ēα

∂λ2

+
∂s̄

∂β

∂ēβ

∂λ2

=
∂s̄

∂β
(8)

The normal of̄s atα = α0, β = β0 is

~n(α0, β0) =

(

∂s̄

∂α

∣

∣

∣

∣

α0,β0

)

×

(

∂s̄

∂β

∣

∣

∣

∣

α0,β0

)

. (9)

The tangent plane is a plane containing the surface ats̄(α0, β0) with normal vector equal to the
surface normal. The equation for the tangent plane is:

~n(α0, β0) · (p̄ − s̄(α0, β0)) = 0. (10)

What if we used different curves in 2D to define the tangent plane? It can be shown that we get the
same tangent plane; in other words, tangent vectors of all 2Dcurves through a given surface point
are contained within a single tangent plane. (Try this as an exercise).

Note:
The normal vector is not unique. If~n is a normal vector, then any vectorα~n is also
normal to the surface, forα ∈ R. What this means is that the normal can be scaled,
and the direction can be reversed.

5.3.3 Implicit Form

In the implicit form, a surface is defined as the set of pointsp̄ that satisfyf(p̄) = 0 for some
functionf . A normal is given by the gradient off ,

~n(p̄) = ∇f(p̄)|p̄ (11)

where∇f =
(

∂f(p̄)
∂x

,
∂f(p̄)

∂y
,

∂f(p̄)
∂z

)

.

Derivation:
Consider a 3D curvēc(λ) that is contained within the 3D surface, and that passes
throughp̄0 atλ0. In other words,̄c(λ0) = p̄0 and

f(c̄(λ)) = 0 (12)
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for all λ. Differentiating both sides gives:

∂f

∂λ
= 0 (13)

Expanding the left-hand side, we see:

∂f

∂λ
=

∂f

∂x

∂c̄x

∂λ
+

∂f

∂y

∂c̄y

∂λ
+

∂f

∂z

∂c̄z

∂λ
(14)

= ∇f(p̄)|p̄ ·
dc̄

dλ
= 0 (15)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of a sphere is:f(p̄) = ‖p̄ − c̄‖2 − R2 = 0. The normal at a point
p̄ is: ∇f = 2(p̄ − c̄).

Exercise: show that the normal computed for a plane is the same, regardless of whether it is
computed using the parametric or implicit forms. (This was done in class). Try it for another
surface.

5.4 Parametric Surfaces

5.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.

α

β

p
01 p

11

p
00

p
10

l
1
(α)

l
0
(α)

Given p̄00, p̄01, p̄10, p̄11, define

l̄0(α) = (1 − α)p̄00 + αp̄10,

l̄1(α) = (1 − α)p̄01 + αp̄11.
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Then connect̄l0(α) andl̄1(α) with a line:

p̄(α, β) = (1 − β)l̄0(α) + βl̄1(α),

for 0 ≤ α ≤ 1 and0 ≤ β ≤ 1.

Question: when is a bilinear patch not equivalent to a planarpatch? Hint: a planar patch is defined
by 3 points, but a bilinear patch is defined by 4.

5.4.2 Cylinder

A cylinder is constructed by moving a point on a linel along a planar curvep0(α) such that the
direction of the line is held constant.

If the direction of the linel is ~d, the cylinder is defined as

p̄(α, β) = p0(α) + β~d.

A right cylinder has~d perpendicular to the plane containingp0(α).

A circular cylinder is a cylinder wherep0(α) is a circle.

Example:
A right circular cylinder can be defined byp0(α) = (r cos(α), r sin(α), 0), for 0 ≤

α < 2π, and~d = (0, 0, 1).

Sop0(α, β) = (r cos(α), r sin(α), β), for 0 ≤ β ≤ 1.

To find the normal at a point on this cylinder, we can use the implicit form
f(x, y, z) = x2 + y2 − r2 = 0 to find∇f = 2(x, y, 0).

Using the parametric form directly to find the normal, we have

∂p̄

∂α
= r(− sin(α), cos(α), 0), and

∂p̄

∂β
= (0, 0, 1), so

∂p̄

∂α
×

∂p̄

∂β
= (r cos(α)r sin(α), 0).

Note:
The cross product of two vectors~a = (a1, a2, a3) and~b = (b1, b2, b3) can
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be found by taking the determinant of the matrix,




i j k

a1 a2 a3

b1 b2 b3



.

5.4.3 Surface of Revolution

To form asurface of revolution, we revolve a curve in thex-z plane, c̄(β) = (x(β), 0, z(β)),
about thez-axis.

Hence, each point on̄c traces out a circle parallel to thex-y plane with radius|x(β)|. Circles then
have the form(r cos(α), r sin(α)), whereα is the parameter of revolution. So the rotated surface
has the parametric form

s̄(α, β) = (x(β) cos(α), x(β) sin(α), z(β)).

Example:
If c̄(β) is a line perpendicular to thex-axis, we have a right circular cylinder.

A torus is a surface of revolution:

c̄(β) = (d + r cos(β), 0, r sin(β)).

5.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicit form of a quadric in the
standard position is

ax2 + by2 + cz2 + d = 0,

ax2 + by2 + ez = 0,

for a, b, c, d, e ∈ R. There are six basic types of quadric surfaces, which dependon the signs of the
parameters.
They are the ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All but the hyperbolic paraboloid may be ex-
pressed as a surface of revolution.
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Example:
An ellipsoid has the implicit form

x2

a2
+

y2

b2
+

z2

c2
− 1 = 0.

In parametric form, this is

s̄(α, β) = (a sin(β) cos(α), b sin(β) sin(α), c cos(β)),

for β ∈ [0, π] andα ∈ (−π, π].

5.4.5 Polygonal Mesh

A polygonal meshis a collection of polygons (vertices, edges, and faces). Aspolygons may be
used to approximate curves, a polygonal mesh may be used to approximate a surface.

vertex

edge

face

A polyhedron is a closed, connected polygonal mesh. Each edge must be shared by two faces.

A facerefers to a planar polygonal patch within a mesh.

A mesh issimplewhen its topology is equivalent to that of a sphere. That is, it has no holes.

Given a parametric surface,s̄(α, β), we can sample values ofα andβ to generate a polygonal mesh
approximatinḡs.

5.5 3D Affine Transformations

Three dimensional transformations are used for many different purposes, such as coordinate trans-
forms, shape modeling, animation, and camera modeling.
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An affine transform in 3D looks the same as in 2D:F (p̄) = Ap̄ + ~t for A ∈ R
3×3, p̄,~t ∈ R

3. A
homogeneous affine transformation is

F̂ (p̂) = M̂p̂, wherep̂ =

[

p̄

1

]

, M̂ =

[

A ~t
~0T 1

]

.

Translation:A = I, ~t = (tx, ty, tz).

Scaling:A = diag(sx, sy, sz), ~t = ~0.

Rotation:A = R, ~t = ~0, anddet(R) = 1.

3D rotations are much more complex than 2D rotations, so we will consider only elementary
rotations about thex, y, andz axes.

For a rotation about thez-axis, thez coordinate remains unchanged, and the rotation occurs in the
x-y plane. So if̄q = Rp̄, thenqz = pz. That is,

[

qx

qy

]

=

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

px

py

]

.

Including thez coordinate, this becomes

Rz(θ) =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



.

Similarly, rotation about thex-axis is

Rx(θ) =





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)



.

For rotation about they-axis,

Ry(θ) =





cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)



.
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5.6 Spherical Coordinates

Any three dimensional vector~u = (ux, uy, uz) may be represented inspherical coordinates.
By computing a polar angleφ counterclockwise about they-axis from thez-axis and an azimuthal
angleθ counterclockwise about thez-axis from thex-axis, we can define a vector in the appropriate
direction. Then it is only a matter of scaling this vector to the correct length(u2

x + u2
y + u2

z)
−1/2 to

match~u.

x

y

z

u

uxy

θ

φ

Given anglesφ andθ, we can find a unit vector as~u = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Given a vector~u, its azimuthal angle is given byθ = arctan
(

uy

ux

)

and its polar angle isφ =

arctan
(

(u2
x+u2

y)1/2

uz

)

. This formula does not require that~u be a unit vector.

5.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in finding the rotation of apoint about an arbitrary line. Let
l̄(λ) = λ~u with ‖~u‖ = 1, and~u having azimuthal angleθ and polar angleφ. We may compose
elementary rotations to get the effect of rotating a pointp̄ aboutl̄(λ) by a counterclockwise angle
ρ:

1. Align ~u with thez-axis.

• Rotate by−θ about thez-axis so~u goes to thexz-plane.

• Rotate up to thez-axis by rotating by−φ about they-axis.

Hence,̄q = Ry(−φ)Rz(−θ)p̄

2. Apply a rotation byρ about thez-axis:Rz(ρ).
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3. Invert the first step to move thez-axis back to~u: Rz(θ)Ry(φ) = (Ry(−φ)Rz(−θ))−1.

Finally, our formula is̄q = R~u(ρ)p̄ = Rz(θ)Ry(φ)Rz(ρ)Ry(−φ)Rz(−θ)p̄.

5.7 Nonlinear Transformations

Affine transformations are a first-order model of shape deformation. With affine transformations,
scaling and shear are the simplest nonrigid deformations. Common higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scaling in x andy for all z, as in

q̄ =





a 0 0
0 b 0
0 0 1



p̄,

let a andb be functions ofz, so

q̄ =





a(p̄z) 0 0
0 b(p̄z) 0
0 0 1



p̄.

A linear taper looks likea(z) = α0 + α1z.
A quadratic taper would bea(z) = α0 + α1z + α2z

2.

x

y

z

(a) Linear taper

x

y

z

(b) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with a list of vertices and a list of triangle faces. Each vertex
consists of three floating point values for thex, y, andz positions, and a face consists of three
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indices of vertices in the vertex list. Representing a mesh this way reduces memory use, since each
vertex needs to be stored once, rather than once for every face it is on; and this gives us connectivity
information, since it is possible to determine which faces share a common vertex. This can easily
be extended to represent polygons with an arbitrary number of vertices, but any polygon can be
decomposed into triangles. A tetrahedron can be represented with the following lists:

Vertex index x y z
0 0 0 0
1 1 0 0
2 0 1 0
3 0 0 1

Face index Vertices
0 0, 1, 2
1 0, 3, 1
2 1, 3, 2
3 2, 3, 0

Notice that vertices are specified in a counter-clockwise order, so that the front of the face and
back can be distinguished. This is the default behavior for OpenGL, although it can also be set
to take face vertices in clockwise order. Lists of normals and texture coordinates can also be
specified, with each face then associated with a list of vertices and corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled to generate a polygonal mesh. Consider the
surface of revolution

S̄(α, β) = [x(α) cos β, x(α) sin β, z(α)]T

with the profileC̄(α) = [x(α), 0, z(α)]T andβ ∈ [0, 2π].

To take a uniform sampling, we can use

∆α =
α1 − α0

m
, and∆β =

2π

n
,

wherem is the number of patches to take along thez-axis, andn is the number of patches to take
around thez-axis.

Each patch would consist of four vertices as follows:

Sij =









S̄(i∆α, j∆β)
S̄((i + 1)∆α, j∆β)
S̄((i + 1)∆α, (j + 1)∆β)
S̄(i∆α, (j + 1)∆β)









=









S̄i,j

S̄i+1,j

S̄i+1,j+1

S̄i,j+1









, for
i ∈ [0,m − 1],
j ∈ [0, n − 1]

To render this as a triangle mesh, we musttesselate the sampled quads into triangles. This is
accomplished by defining trianglesPij andQij givenSij as follows:

Pij = (S̄i,j, S̄i+1,j, S̄i+1,j+1), andQij = (S̄i,j, S̄i+1,j+1, S̄i,j+1)
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