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Abstract

Good motion data is costly to create. Such an expense often makes the reuse of motion data through transformation
and retargetting a more attractive option than creating new motion from scratch. Reuse requires the ability to
search automatically and efficiently a growing corpus of motion data, which remains a difficult open problem. We
present a method for quickly searching long, unsegmented motion clips for subregions that most closely match
a short query clip. Our search algorithm is based on a weighted PCA-based pose representation that allows for
flexible and efficient pose-to-pose distance calculations. We present our pose representation and the details of
the search algorithm. We evaluate the performance of a prototype search application using both synthetic and
captured motion data. Using these results, we propose ways to improve the application’s performance. The results
inform a discussion of the algorithm’s good scalability characteristics.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

As the corpus of information regarding virtually every
human endeavour grows exponentially, the importance of
computer-based indexing and searching becomes corre-
spondingly important. The ubiquity of the Web could not
have occurred without the coincident rise of the search en-
gine. There is little value in information unless one can ex-
plore it. Once a collection of data grows to a certain size, its
index becomes almost as important as its content.

Digitized motion data is expensive to create and manip-
ulate. Its creation requires the talents of a skilled animator
using specialized software, or exotic and finicky motion cap-
ture hardware. The motion data that goes into the production
of a feature animation represents an investment of millions
of dollars. As an animation studio accumulates more such
data, it is in its best interest to leverage this investment. In
order to do so, however, they need an efficient way to search
the data.

In this paper, we present a method for performing a simi-
larity search over a database of sampled motion data. This
method operates independently of mark-up, and can find
similarities in motion subject to non-linear temporal warp-
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ing. We develop a flexible and efficient representation for
motion that is amenable to optimization, and the application
of existing searching and sorting techniques. The method is
tested with both synthetic and sampled motion data, and we
analyse the results. We conclude the paper by discussing the
potential applications of the method, and mapping out av-
enues for future improvement.

1.1. Motivating Example

Animators often save time when creating new animations by
working from prior examples. It is often more productive to
modify a walk cycle to match the requirements of a particu-
lar situation than to start from scratch on every scene. As in-
dividual production studios accumulate 3D character anima-
tion, the possibilities for motion reuse at once grow and di-
minish. Reuse becomes potentially more fruitful, since there
are more examples to choose from, but the act of actually
finding useful clips gets considerably more difficult. Mo-
tions, whether they are key-framed or motion-captured, are
high-dimensional objects that are hard to compare numer-
ically. Two motions that look similar to a human observer
may in fact be numerically very dissimilar using certain rep-
resentational schemes. In most cases, searching though a cat-
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alog for a particular type of motion quickly becomes an exer-
cise in patience, memory, and hard work. Clearly, a method
for quickly searching a database of motions is a prerequisite
for large-scale motion reuse. Furthermore, it is important to
develop similarity measures that can be more readily adapted
to user needs.

1.2. Problem Statement

‘We present a method for querying a skeletal motion database
with example clips. The motion database is constructed from
one or more long motion sequences. These sequences can
be taken from previously finished animations, unsegmented
motion capture trials, or manually keyframed motion tests.
All motions must be expressed over the same skeleton. As
a preprocessing step, all sequences in the database are re-
sampled to a uniform rate, and spliced together to form a sin-
gle long motion. The database is queried with a short exam-
ple clip, which ideally expresses one distinct motion, such
as a single reach, step, punch, or jump. The search algorithm
finds the subsegments of the database which are most simi-
lar to the query, subject to a nonlinear time warping. These
subsegments are ranked and returned as the search results.

2. Related Work

Principal components analysis is a widespread technique
that has been used before in the analysis of motion data.
In several papers [PG04, GBT04], Glardon et al. construct
PCA spaces based on motion clips. The spaces represent en-
tire normalized motions as a single points. This representa-
tion allows for style-based interpolation and classification,
but the motions used must be segmented first. These spaces
are most useful when dealing with cyclic motions such as
walking. Faloutsos et al. [BSP*04] use a motion PCA rep-
resentation similar to our own in order to automatically seg-
ment motion data into separate behaviours. This is done by
detecting changes in the inherent dimensionality of test mo-
tions embedded in spaces trained to particular motions. The
spaces are built from raw quaternion data. Since quaternions
are not closed under addition, an arbitrary point in such a
space does not necessarily map back to a valid set of quater-
nions. This precludes the space from being used for pose
interpolation or synthesis.

We use the motion data preprocessing steps outlined in
Johnson’s Ph.D. thesis [JohO3] to guarantee closure for
our PCA pose space. This involves a linearization step, as
described by Grassia [Gra98], as well as the calculation
and subtraction of the sample mean pose [Joh03]. We ex-
tend Johnson’s formulation by combining it with the PCA
weighting scheme from Skocaj and Leonardis [SLO2]. Solv-
ing for a weighted PCA space requires the use of the EM
algorithm, the particulars of which are described by Roweis
[Row98].

There are two routes that can be taken with rich media
querying. The easier option is to perform some kind of a

textual attribute mark-up, and then search using the result-
ing meta-data. The MPEG-7 standard [MKPO2] represents
the content industry’s progress in this direction. There are
several drawbacks to such a scheme. The quality of queries
made under such a system depends upon the quality of the
mark-up. In addition, the process of manually marking up
data in the first place can be tedious, and it requires sub-
jective judgment. While manual annotation will always be
required to classify the qualitative or emotional aspects of
motion, it should be possible to automate quantitative classi-
fication. Finally, issues can arise when multiple data sources
that use different mark up schemes are merged. In our par-
ticular domain of motion data, this could happen to a studio
should it acquire the rights to motion libraries from others.

The alternative to meta-data based querying is to use an
automatic comparison technique. If a distance measure can
be provided for the data type in question, a similarity-based
search engine can be created. Unfortunately, efficient and ro-
bust distance measures are hard to design for many types
of media. Salesin and Finkelstein present a wavelet-based
search method for static images in [JFS95]. Their method
transforms an entire image into a robust and much more
compact signature. This strategy works well for discrete en-
tities, like whole images, but is not applicable to motion
data, where potential matches take the form of subintervals
within a much larger time-series. In [KG04], Kovar and Gle-
icher create an exhaustive table of the inter-pose difference
between two motion sequences of arbitrary length. With
some post-processing, this table can be used to quickly find
matches for segments from one motion in the other. While
useful for certain applications, such as the parametric ex-
traction task which is the major focus of their paper, the
long pre-processing time precludes it from use with novel
or real-time queries. In our technique, we calculate multi-
ple smaller, carefully-targeted distance tables to reduce the
complexity of the query. Given these distance tables, we use
the dynamic time warping algorithm to actually calculate the
distance.

Dynamic time warping (DTW) is a technique that is tradi-
tionally associated with speech recognition. Bruderlin and
Williams applied it to animation parameters in [BW95].
Subsequent authors have used it to align motion clips be-
fore interpolation [KGO3], and there is active research within
the data mining community to improve upon the basic algo-
rithm [CKHPO02,KP99]. There are several alternatives to per-
forming matching with DTW. One that has been used to per-
form motion queries [CVB*03, KPZ*04] is the LCSS-based
multidimensional trajectory comparison measure proposed
by Gunopulos et al. [VKGO02].

A related task to motion database querying is gesture
recognition. In a typical gesture recognition system, real-
time input (vision or mocap-based) is compared to a library
of predefined target gestures. This differs from our task in
that the targets are neatly segmented, while the query is
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continuous. Many authors have successfully employed Hid-
den Markov Models in order to detect and classify gestures
[CBA™96, vHBO1].

3. Search Algorithm

In this section we describe the motion search method and its
related algorithms and data structures. We explain the repre-
sentational framework in which the method operates. Next,
we give an overview of the system itself. This is followed by
a detailed description of each step in the process.

3.1. Motion Representation

In its raw form, motion data is not easy to work with.
Much of the difficulty stems from the lack of an inher-
ent distance function between poses. Researchers have used
many different approaches in their own motion work, such
as the deformed point-cloud method described by Kovar et
al. [KGP02], or the weighted sum of quaternion distances
proposed by Johnson [Joh0O3]. We present a weighted-PCA
based representation for poses that has a Euclidean distance
metric. The simple distance metric allows for the direct
application of standard data processing techniques. Being
PCA-based, our representation also benefits from having a
coarse-to-fine interpretation, which allows for less accurate,
but quicker distance calculations. A similar technique was
used in [AFOO03], albeit without the use of weighting.

Principal Components Analysis is a change-of-basis
transformation that imposes a structure upon the resulting
space that models the dimensions in which the greatest cor-
relations and variations occur [Bis96]. The result of perform-
ing PCA on a given dataset is a vector space with the same
dimensionality. Each axis in the space represents a principal
component vector. Any point in the space is thus a weighted
combination of the principal components. If the principal
components are ordered according to the amount of variance
that they describe in the original dataset, the variances show
an exponential drop-off. This is what allows for dimension-
ality reduction: a full data point can be represented with a
predictable degree of fidelity by using some subset of its PC
coordinates.

With some massaging [Joh03, LWS02], motion data can
be used to construct a PCA space. Such a space, however,
will not take into account the hierarchical nature of the pose
data. Perceptually speaking, a few degrees of change in the
angle of a shoulder changes the shape of a pose much more
than a similar change in a toe. In fact, 'noisy toes’ can
threaten to dominate the PCA space, and lead to an ineffi-
cient distribution of the motion’s degrees of freedom over
the principal components. This in turn increases the num-
ber of dimensions that must be used to produce acceptable
looking motion. In order to prevent this, we use weighted
PCA. Skocaj and Leonardis present a wPCA formulation
for vision applications, wherein weights can be applied to
both subsections of individual frames, and to entire frames
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Algorithm 1 Creating the wPCA space

Ensure: X < linearized Range of Motion data
Find the mean pose
for all samples in ROM do
for all DOF do
Rotate out the mean quaternion
Linearize the result
Accumulate in matrix X
end for
end for

Ensure: X =wU xA
U < random values
while (irs < maxlts) \(reconError < €) do
E Step: QR Solve for projection A
M Step: LU Solve for space vectors U
end while

return the orthogonalized columns of U as the PCs

[SLO2]. We use only the former, and apply a real-valued
weight to each joint. The specific weights used can be ma-
nipulated to change the properties of the resulting space, as
we will show later. In the general case, we use weights that
are derived from an approximation of the relative amount of
body mass that is influenced by the movement of each joint.
Pseudocode for the wPCA construction algorithm is given in
algorithm 1.

When projected into the wPCA space, motions become
high-dimensional parametric curves, with each sample point
representing a single pose. This projection is lossy if the pro-
jected motion was not used in the construction of the space,
but such losses can be minimized by using a good range of
motion trials for training. The distance between two poses
can be calculated by taking the scaled L2 norm of their PC
coordinates, or equivalently by scaling the points and taking
the regular L2 norm. The scale factors for these calculations
are the eigenvalues which are given as a by-product during
the creation of the PCA space. Since the magnitude of these
scale factors drops off exponentially, the distance calcula-
tion can be truncated after a small number of dimensions
if speed is required before accuracy. The weighting scheme
also serves to warp the space, changing the nature of the pose
distance metric. Because of the exponential eigenvalue de-
cay, the first few principal components dominate the distance
metric. Variations across degrees of freedom that are heav-
ily weighted will be reflected in the earlier principal compo-
nents. By changing the weighting scheme, the user is able to
target the pose distance metric to different types of motions.
For example, when comparing walking motions, it may be
advantageous to use a space that is heavily weighted toward
the legs. Different spaces can be trained off-line and saved
to disk, allowing the user to quickly select a relevant space

at work with at run-time.
Various operations that are complex to perform with the
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Figure 1: A 27 second clip of boxing motion projected into
a wPCA space.

original quaternion-based motion representation are greatly
simplified using the wPCA representation. Pose means can
be calculated by simply averaging the the PC coordinates
of the target frames. Interpolation is likewise simplified —
linear interpolation in wPCA space gives results similar to
spherical linear interpolation in the original representation.
In addition, geometric operations such as scaling and trans-
lating can be used to modify motions. These operations can
be coupled with a 3D display of the first three dimensions
of a projected motion’s pose-points to present a compelling
motion editing interface. An example of such a projection is
shown in figure 1.

The motion data with which we work is joint-based. A sin-
gle sample consists of a list of quaternions corresponding to
each joint’s angular position. When applied to a hierarchical
skeleton, these quaternions (along with a pelvis offset vec-
tor) fully describe a full-body pose. We assume a constant
sampling rate across all clips in the database. We treat the
position and heading of the skeleton’s root joint as some-
thing external to the pose. This allows for poses to match
regardless of orientation. One limitation of the linearization
step that we used is that individual joints can not travel a full
360 degrees. This is not a issue for most internal joints, but
is problematic for the root joint. Acrobatic motions such as
cartwheels would necessitate breaking the root joint’s X and
Z rotation out of the PCA space representation, much like
the heading.

3.2. System Overview

Given our motion representation and pose distance metric,
we will now describe our motion search strategy. Our search
application is similarity-based. This means that the user must
have an existing motion clip with which to query the system.
This clip could be from a library of pre-segmented, canoni-
cal actions, the results of a previous query, or even from real-
time motion capture. As a preprocessing step, both the query
clip, and the database are projected into a user-specified
wPCA space. Projecting the database is an expensive opera-
tion, but it only needs to be done once for each wPCA space,
and the results can be placed in permanent storage. After the
query clip is projected, its characteristic pose is found. An

efficient spatial sorting data structure is then used to find the
indices of all similar poses in the database. These indices are
clustered to reduce redundancy, and then a variant of the dy-
namic time warping algorithm is used to warp the database
subregions surrounding the cluster means to match the query
clip as closely as possible. The resulting warps are ranked
according to fit, and returned as the search results. We will
now describe each step in this process in detail. Pseudocode
for the querying operation is given in algorithm 2.

Algorithm 2 Performing a Query

Require: projected database and query clip, and offset to
characteristic pose in query

Perform an Approximate Nearest Neighbour search query
with the characteristic pose

for all ANN results r do
if 7 can be joined with an existing cluster ¢ then
Grow cluster c, join with neighbours if necessary
else
Create a new cluster initialized with r
end if
end for

for all Cluster min points do
Calculate the forward and backward distance tables
Find the min forward and backward paths
Join the two half paths
calculate the mean warp distance
end for

return the sorted warp paths

3.2.1. Finding the Characteristic Point

Queries represent single, coherent motions. Such motions
can often be expressed using single poses [McC94]. We call
these poses characteristic points, and we will use them as
starting points in our motion search. First, however, we must
come up with a workable definition of “characteristic”.

A good characteristic point for a punching motion would
be the moment of maximum arm extension. All punching
motions contain some element of arm extension. Most verb-
level action descriptions, such as stepping, jumping, or duck-
ing imply some similar common element. In a step motion,
the characteristic point could be moment when the legs are
farthest apart. The characteristic point of a jump might be at
its apex. Likewise, a ducking motion might be characterized
by its lowest point. The common thread in all of these exam-
ples is that the characteristic point represents a moment of
maximal extension or deviation from some neutral pose.

This concept fits well with our motion representation. If
we define the neutral pose to be some point in the wPCA
space, we can find the characteristic point with respect to that
point by searching for the most distant pose from that point.
The neutral pose can be defined in any number of ways. If the
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action phase of the query is proportionally short, the mean
pose of the whole motion provides a good approximation.
If the query is nicely segmented, a reasonable assumption
may be that the subject begins and ends in a neutral pose.
Either boundary pose could be used directly, or alternately
the mean of the two could be taken. The origin of the PCA
space represents the mean pose of the (probably significantly
longer) motion used in its creation, so it can also be used as
the neutral point.

Our objective in choosing a characteristic point is to find
class of poses that is guaranteed to have a close analogue
in all possible matching motions, but is unlikely to exist in
non-matches. If the pose is too common, spurious matches
will drown out the actual results during the next step of the
algorithm. For this reason, finding a suitable characteristic
point is a crucial task. Of course, if the query is quite short,
it is not unreasonable to require the user to specify a charac-
teristic point directly. For certain types of queries, this gives
better results than the automatic methods.

3.2.2. Generating Seed Points

An exhaustive solution to our search problem would be
to use DTW to rank all possible alignments of the query
clip and the database. This is analogous to the technique
in [KGO4], but is slow because the DTW operation is ex-
pensive. In order to provide interactive response rates to the
user, we must cull the search space before the DTW step. We
refer to this culling as finding the seed points in the database.
Seed points are the indices of poses in the database that are
similar to the characteristic point of the query.

Our measure of similarity is the euclidean distance within
the scaled wPCA space, so we can use algorithms from com-
putational geometry to speed our search. We also have to
choose the number of dimensions within which we will op-
erate. The weighting scheme used to construct the wPCA
space greatly influences the results of a search, which can be
exploited to considerable advantage in searching selectively.
The weights should be picked by the user to reflect the con-
straints of the animation for which s/he is searching.

There are several different search structures that would
work for our implementation. We chose to use Approximate
Nearest Neighbour search because of its quick running time,
flexibility, and readily available source code [Mou05]. The
effects of varying the various parameters of the ANN soft-
ware are discussed in the results section.

3.2.3. Seed Point Clustering

Motion in the database takes the form of contiguous, time-
ordered strands of pose-points. Nearest neighbour searches
within such a context result in sequences of temporally ad-
jacent points. Since we will be subjecting the seed points to
the DTW algorithm in the next step, all of these points will
return valid, yet similar results. We cluster the seed points
in order to avoid overwhelming the user with hundreds of
very similar results, and to improve the search’s run time.
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Database Motion

Query Motion

Figure 2: The DTW constraints. The warp must pass
through the intersection of the characteristic and seed
points, and contact both horizontal edges of the table. The
search is constrained by causality, so distances in the shaded
areas of the table need not be calculated.

The clustering is performed on the seed points’ time indices.
This data, since it is one dimensional, integer-valued, and
mostly sequential, is very well-behaved and easy to cluster.
Data points are simply collected into contiguous (to within a
noise term) intervals as they are found. The final results are
given as the closest points within each cluster.

3.2.4. Dynamic Time Warping

The query signal has a well-defined start and end point, but
we have no such luxury when looking for a subsequence
within the database. The search is further complicated by
the fact that motions tend to be performed slightly differ-
ently each time they occur. Changes in motion timing which
are subtle to a human observer may cause an enormous nu-
merical difference.

Both of these issues are surmounted through the use of dy-
namic time warping. DTW is a signal processing technique
that finds a non-linear alignment minimizing the error be-
tween two signals. It returns a time displacement function
that compresses and dilates one of the functions to match
the other. DTW has been used extensively on sound signals
for speech recognition, and is often used to improve the in-
terpolation of multiple motion clips [BW95, KGO03].

Each clustered index represents a single moment of simi-
larity between some point in the database, and the character-
istic point of the query. A valid time warp must pass through
this point. The warp is also constrained to run from the be-
ginning to the end of the query. These constraints are visual-
ized in figure 2.

We can divide the time warp into two subproblems: one
running forward in time and one running backward. The
method for solving each subproblem is identical. First, a dis-
tance table is computed involving the pertinent half of the
query and the corresponding section of the database. A slope
limit imposed on the final warp provides a bound on the size
of the distance table. Starting from the characteristic point,
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each cell in the table is filled with the sum of the pose dis-
tances between the indexed animation frames and the min-
imum of its previously filled neighbours. Once the table is
filled, the minimum value along the query’s boundary frame
is found. The DTW path is then found by greedily searching
through the table toward the characteristic point. This search
is subject to causality, so there are only at most three possible
steps to take at any given point. The slope limit is enforced
to prevent degenerate warps. Degeneracies in the warp are
still possible around the characteristic point, but these can
be culled out during the results ranking.

When the characteristic point is in the middle of the query,
splitting the DTW into two problems halves the number of
distance calculations required. There are several methods
available to further reduce the number of calculations, and/or
improve the warp quality [CKHP02, KP99]. Our pose dis-
tance metric is quick enough that this has not been neces-
sary to achieve interactive rates with the test data that we
have used. Another desirable feature of the distance metric
is that it is possible to trade accuracy for speed, and use less
than its full dimensionality in the calculation.

3.2.5. Results Ranking

The time warps must be scored before they can be returned
as ranked search results. Any of a number of motion distance
measures can be used. We define the final score of a warp
to be the average pose distance of each cell in its path. This
measure does not penalize warping, so it is more forgiving of
timing differences in the results. Alternative measures could
take into account the effects of outliers along the path, or put
a premium on time distortions. It may also be useful to cull
results that have large degeneracies about the critical point,
or at least penalize them so that they are lower ranked.

4. Results
4.1. Synthetic Data

We first used synthetically-generated data to verify the func-
tioning of our system. This allowed us produce clean motion
clips with controlled variations in movement parameters.
We used the physically-based animation system designed by
Neff and Fiume to generate this data procedurally [NFO4].

Two synthetic motion sets were generated. The first is ap-
proximately 300 seconds long, sampled at 50 fps. The figure
begins by raising its right arm 15 times. The exact position
of each raised hand was selected from a 10cm® cube using a
uniform random distribution. The posture of the figure was
randomly set along the Alberts axis from .25 to .75 [NF04].
Finally, the overall timing of each motion was scaled, rang-
ing from .7 to 1.5 times the normal length. The figure then
performs 20 similarly varied left arm raises, and 20 double-
arm-raises. It finishes by performing 10 identical shrugs at
different speeds, and 10 slouches. The second dataset only
contains arm raises, but the bounds for the arm targets are
increased in the x and y directions by a factor of three.

Figure 3: PCA projection of synthetic motion, showing low
inherent dimensionality.

Neff and Fiume’s animation system uses an SD-Fast de-
rived physical model [HRS94]. Using the measurements
provided in the SD system definition file, a similar skele-
ton definition was created. The mass definitions from the file
SD file were used to set the wPCA weights: each joint was
weighted with the amount of mass under it in the skeleton
hierarchy. No range of motion trial was available to train the
PCA space, so we used the longer of the two samples.

A 3D projection of the long motion clip is shown in figure
3. The individual motion classes stand out as the path ex-
tremities. The sample mean of the training data is the same
as the rest position in this clip, and is represented by the clus-
ter of points at the origin. More complicated motions embed-
ded within spaces generated from richer training data take on
a much less angular appearance when projected in three di-
mensions. This is consistent with the fact that the synthetic
data was designed to have a low inherent dimensionality.

4.2. Validation

Validation was performed using the synthetic data. The first
of each type of arm raising motion was manually segmented
from the longer motion clip, and then used to query both
motion clips. The quality of the results of the queries were
highly dependent upon the characteristic point used, and the
size of the initial ANN search.

The automatic characteristic point finder did not work
well with the arm movements, because the time that the
hands are raised is very long in relation to the length of the
whole clip. This shifted the clip’s mean point away from the
rest position, and put the characteristic point down near the
rest pose. Using the rest pose as the query point in the ANN
search lead to mostly spurious results, with the time warping
algorithm left trying to match essentially random segments
of the database to the query. Manually setting the character-
istic point to the moment of maximum arm extension and
re-querying allowed the algorithm to proceed as designed.

The size of the initial ANN search determines the broad-
ness of the results. The structure of the motion data is such
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Vicon Real-Time Skeleton SD-Fast Skeleton

Figure 4: The two skeletal structures used.

that a spatial proximity search returns long chains of time-
adjacent points for any query. We simplify the results in the
clustering phase, but in order to find all valid target clusters,
the initial search must be set to return a very large number
of points. For example, when querying the long clip with the
raised left hand motion, the ANN search must be widened
to 1130 points before all of the raised left hand targets are
found. If the search is widened even further, other types of
motions start to creep in to the results. At 1900 points, sev-
eral instances of the raise both hands action are returned after
all of the raise right hands. This is good behaviour, since the
‘raising both hands’ motion is perceptually closer to raising
only the right hand than any other action in the database. The
motion distance measure also holds up, since it consistently
ranks the second tier of matches below the actual matches.

Interestingly, querying the database with one of its own
motions does not always most highly rank that motion.
This is due to several factors. During the manual segmen-
tation of the query clips, the designated motion range is re-
sampled, introducing small numerical differences. With syn-
thetic data, the figure holds absolutely static poses at several
points during its performance. These quiescent points tend to
occur at the characteristic points, so the ANN search often
finds several identically closest points. The clustering tech-
nique has no way to distinguish among these points, so it
picks the first. This causes some noise in the alignment of the
database ranges with the query clip, which is corrected by
the time warping step. This correction has a non-zero cost,
so self-matching does not necessarily hold.

4.3. Motion Capture Data

After verifying the system with synthetic data, we tested its
real-world applicability with motion capture data. The data
was collected using a Vicon optical motion capture system,
and post-processed into joint angles using the Vicon IQ soft-
ware. This data uses a different skeleton than the synthetic
data, having the same dimensionality (19 joints), but a dif-
ferent arrangement (see figure 4). The Vicon samples at 120
Hz.

Many individual motion trials were captured, with each
being on the order of a couple minutes in length. Specific
range of motion trials were made to train the PCA spaces.

(© The Eurographics Association 2005.

Figure 5: wPCA space projection of a martial arts move.

Trials included walking, cyclic motions, martial arts moves,
and others. As with the synthetic data, query clips were man-
ually segmented from the longer trials. An example projec-
tion is shown in figure 5.

Searching with the real data worked well, but the results
were not as clean as those from the synthetic tests. An il-
lustrative example is a search done using recorded Aikido
movements. The actor in the Aikido motion trial performed
a specific script. By tinkering with the location of the char-
acteristic point, it is possible to cause the system to return
movements in the wrong order. The matches are still consis-
tent, however, with the bodies being in similar, if not iden-
tical poses. The ranking that our search method provides is
somewhat arbitrary, much like the ranking of web pages re-
turned by most web search portals.

Differently-weighted PCA spaces can be used to modify
the results. Re-doing the previous example with a weighting
scheme that emphasizes the arms improves the ranking of
the results. This is because the position of the arms is what
most clearly differentiates the moves. An animator can use
different spaces to accomplish specific goals. For example,
when animating a character picking up an object, it would
be a good idea to use a space weighted heavily toward the
hand the character is using.

4.4. Scalability

One of the most important features of a search algorithm
is its scaling behaviour. In this section we discuss the theo-
retical complexity of our algorithm and present some search
heuristics. We then provide experimental results that demon-
strate the efficacy of these techniques.

The complexity of the overall search algorithm is best
evaluated in individual sections. The complexity of the ANN
k-nearest neighbour search in d dimensions over n points
and with error bound € is shown to be O((cy ¢ + kd)logn)
in [AMN™94], where ¢4 is a constant dependent upon d
and €. This gives good performance with large databases,
but is quite sensitive to dimensionality. The clustering tech-
nique that we used has a worst-case complexity of ’(’72“),
and returns c clusters, where r is number of results returned
by the ANN search. Each application of our DTW algorithm
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Length (s) Num. Results  Query Time (ms)

54 46 580

100 21 263

130 30 662

230 40 854

300 41 877
440 25 534

670 27 580

Table 1: Query Time vs Database Length

. 2 (sx4°) .
requires at most s X g~ and at least ~~5"—~ pose distance cal-
culations to build the distance table, and 3s comparisons to
trace a path through the table (where ¢ is the length of the
query and s is the slope limit). Sorting the ¢ warps takes
clogc comparisons. The aggregate complexity of all of the
steps is

(r+1)
2

(ca ¢ +kd)logn+ 4 +c(s><q2+3s+logc).

We tested our system with motion capture databases of var-
ious sizes to experimentally evaluate its scalability. The re-
sults of the tests are given in table 1.

The data shows that our implementation’s real-world per-
formance largely depends upon the number of results passed
on to the DTW step, rather than the size of the database. The
databases used for the last two trials contained exact matches
for the query. It follows that the area around the character-
istic point would be dense with consecutive poses, which
would lead to more clustering, and fewer returned results.
This emphasizes the importance of a having both a unique
characteristic point and a good clustering result. It also indi-
cates that the best performance can be gained by tweaking
the DTW parameters. All tests in this paper were performed
using a 3GHz Pentium 4 computer.

4.5. Performance Optimization

There are several ways to improve the running time of the
algorithm. Most involve a trade-off of either search breadth
or accuracy for query time performance. In order to build a
basis for comparison, we set up what could be considered
an average query. We used the Aikido data described in the
previous section, and the search parameters listed in table 2.
Using the automatically generated characteristic point, the
average query time (from 10 trials) was 347 ms, and the
search returned 12 results. Using a manually specified char-
acteristic point, the average query time was 130 ms, with 9
results returned. The results from the manual characteristic
point trial were subjectively much closer to the query than
those from the automatic trial, so the manual point was used
in all subsequent trials.

4.5.1. Pre-smoothing the data

The Vicon system samples motion at a default rate of 120
Hz—a much higher rate than is necessary to capture most

Data Sampling rate 120 Hz
Database length 70 seconds
Query Length 2.8 seconds
ANN dimensionality 10

ANN search size 1000

ANN epsilon 0

DTW dimensionality 5

Table 2: Baseline Parameters

Hz  Num. Results  Query Time (ms)

233 9 453
166 10 158
58 9 29
29 9 7

Table 3: Query Time vs Sampling Rate

large muscle movements. Reducing the sampling rate ob-
viouly reduces search time. We resampled the database and
queried at a progression of sampling rates to illustrate the ef-
fects of this reduction on average query time. The results are
shown in table 3. As expected, using fewer samples greatly
speeds up the algorithm. The quality of the results is consis-
tent until the low sampling rate conflicts with the clustering
algorithm. At very low rates, the gaps between clusters all
get filled, and the system fails by returning a single result.

4.5.2. Adjusting the ANN parameters

The scalability results indicate that the performance barrier
in the the system lies with the DTW stage. That being said,
an investigation of the effects of the ANN parameters is im-
portant, if only just to verify the earlier result.

The number of results returned by the ANN search affects
both its own running time, and the number of final results
after the clustering step. Using the default setup as a base-
line, we varied the number of neighbours to be returned by
the ANN search. The results are given in table 4. With a low
number of neighbours, many potential results are missing.
As the number of neighbours increases, there tends to be
more results returned. After a point, the seed points’ neigh-
bourhoods grow too large, and incorporate points that they
should not, which in turn causes the clustering algorithm to
create improper clusters. The ‘sweet spot” between too few
results and over-clustering depends upon the specific nature
of the database and query being used.

One of the most desirable features of ANN search is that
it can deliver improved performance if a measure of error is
accepted. Paradoxically, increasing this error tolerance leads
to reduced performance in our system. Non-exact results
caused gaps in the runs of nearest neighbour poses, which
leads to an increased number of clusters. Adjusting the di-
mensionality of the data used for the ANN search had a neg-
ligible effect upon the running time of the overall system.

(© The Eurographics Association 2005.
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Neighbours ~ Num. Results  Query Time (ms)
100 4 54
250 5 70
360 6 80
490 8 109
600 8 118
1000 9 132
1500 9 137

2500 12 193
3010 17 256
5000 12 219

Table 4: Query Time vs Neigbours

Dimensions Num Results  Query Time (ms)
1 9 70
3 9 101
5 9 130
20 9 200
54 9 372

Table 5: Query Time vs DTW Dimensions

4.5.3. Adjusting the DTW parameters

The running time of the search algorithm directly corre-
sponds with the number of clustered results that make it to
the DTW phase, so the time warping algorithm is good area
upon which to focus optimizations. An easy optimization is
to exploit the flexibility of our motion representation by re-
ducing the dimensionality of the pose distance metric. As the
shown in table 5, reducing the accuracy of the distance com-
parisons does improve the system’s run time. For the types
of motions tested, the quality of the warp is not subjectively
affected by reducing the dimensionality. This of course de-
pends upon the distribution of the principal components. The
user is required to pick a set of weighted PCA bases that re-
flect the content of the motions that s/he is using.

5. Applications and Future Work

Our search system was designed to be integrated into a larger
motion editing system utilizing our pose space representa-
tion. In this context, the search system can be used to find
motions that are similar to a specified clip, so that fine ad-
justments can be made via interpolation. It can also be useful
as a motion exploration tool. A clip created using the various
editing tools can be used as a query in order to find a similar,
but more realistic motion. The time warping code prototyped
for the search system is also useful for improving the quality
of arbitrary interpolations.

A possible use of the system would be to quickly apply
markup to a large motion database. This procedure would
start with a small set of manually marked-up clips. The
mark-up would take the form of a (descriptor,value) tuples,
where descriptor describes the motion’s action, and value
indicates how well the descriptor fits. For example, if the

(© The Eurographics Association 2005.

descriptor is ‘step forward’, an unambiguous step forward
might have the value of 1, while a step forward and to the
left would have a lower value. Queries could be performed
using each of the motions in the marked-up set. The ranges
that are returned from each query would then take on the de-
scriptors of the queries, with values set to be a function of the
query’s values and the result’s ranking score. After mark-up,
semantic queries could be made to database very quickly.

The system could be extended to work with more com-
plicated motions by adding support for more than one char-
acteristic point. If a query were determined to have multi-
ple characteristic points, the modified algorithm would start
by finding and clustering seed points for them all. The dy-
namic time warping phase of the algorithm would have to be
modified to take into account multiple constraints. It would
work by finding seed points in the same order as their corre-
sponding characteristic points. Warps would then be found
between adjacent matching pairs. The adjacency informa-
tion could then be represented as a directed graph, and all
possible traversing paths enumerated.

6. Conclusion

In this paper we have presented a search algorithm for use
with sampled motion data. In doing so we have also de-
veloped a representation for motion data that introduces a
meaningful distance metric for poses. We have shown how
an animator can control the properties of the wPCA space
through its weights, and how this may be used to direct the
search results. We have demonstrated the use of the search
algorithm on both real and synthetic data, and have analyzed
its performance. Finally, we have experimented with the al-
gorithm’s settings in order to gauge its scalability to large
databases.
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