Topic 6:

3D Transformations

* Homogeneous coordinates in 3D

* Homogeneous 3D Transformations

Representing Points by Euclidean 3D Coords

Studad ((Guchear)

represevioion of a
Pom‘\‘ Fi

Euclidean Coords = Homogeneous Coords

0/,84-“"‘0‘0“05” (&ACIIO’QGM)
MPNSQV\JFO&']’OVL 0£ a

Poin‘\' ‘) '

DR BRI
: Howgﬁev\eou% (ata Prooachva
representothion of P

2D coordvodes NM09tneous 3D
. Coordivotes A '%C

B — [

Points at = in Homogeneous Coordinates

« A P’)M+ b in ml\j does

V\O‘L \repr\e,scnjr e\ P\'\:jS\QO\(
\om{'\on on the l

- It represents o divecki on

-

T%O:H

Cms X

Last goord w0 —>
Pounl i« of oo

Plane Equation in Homogeneous Coordinates
. Tl@ qu,tajn‘om of o P\a\m

@X*@)@} +dl= 0
0 \\A \/\ovv\OjQV\wus OoO{’&w\aj%S

T

o b .& X: tone dords Y

O\zﬂ‘z/mwo' (\’\OW‘WV‘“ ()OWJ‘
]0\7 \\L(V\Qd‘O/‘> COO(‘JS

Topic 6:

3D Transformations

* Homogeneous 3D Transformations

Affine Transformations in 3D
. The watrix W re,Fre,SenJrg o ver&

homodjcneous %@mem& Q} OQ tra hivdrmo}ﬂ ons

< 3D PO"vd‘

v\era\ linear (PWSQNQ Plahes)

QCine (preserve paralle iSW\)\
|
The wokeix @ NOw

on iwerhble ‘\'Q\LQ% . WN\ONL

ﬂ f 4x4 malvix

NN o\‘e@\ Eocw\ ‘o

Affine Transformations: Basic Properties
lmw. Gevxe,m\\ %zbfw\ o MO\JW\K \‘\

w

Y AW\V‘Q J\“raw$ orms
preserve the \glue, L &

e last \/\ow\oaev\coaé

From Affine to Rigid Transformations

homoo eneous

£ 3D point
.

on | »weP)r\U{

f 4xq makvix

'] —
Jm~=-- - — —0. i
oo Ea
. ! - -~
N —
’ N - _ - =
’ - -
N < - _

AWO“P'MC \iA @

Gf,v\e,ral linear (PWSQNQ \\'V\QS)

ACQCine (Preserve prralielicw,’)

- Ar\,g\\-ro\rﬁ S\I\QO\NV\
- General s‘chm% C&

Conlormal CP resesve angles)

- \)V\\QOfYV\ S Colim

B Qf/g\j \ee/J\"OV\

-vag\qjﬁon

~Potation

Rigid Transformations: Rotations in 3D

V\\\’la V\\\'la
v .o 7]
/[| (:
TI‘O(V\S /m@,d

’RO‘\‘O\JF\OY\ odoouj‘ 2-0X[S

QU j%f
1]
dOQS V\o{‘
offect

/%wds’

coD »Sw% Q C(fbéa 3\7\9
S C°5% S 1 Sm Coy) © ;‘J

O’OO

Elementary Rotations in 3D

V\\\'IOL
AL Yotaton B Q dvoud x axis
[TN 0 o |4
4 Hx: f\ A \O o) &\Q})
OS\\Q COQ *
Tf\av\s /mcd (EO’\"Q\‘]O\,\ bjcs Q\o((;u\%)/(?X{S:
"g Fod O sin
A[’ [o Ay S 1V 0O Z
%& (\ O o X
@olra\woh cha doout 2 oxis:
o cos(a »Sw% 3 o cod _sns) ©
--"t"f."--- sw@ cos% H%’ 2.0 A% \SWQ cosD O} T
001 | oo 1‘ o 1?5 X

Rotation About Arbitrary Vector?

G\)Uk%\"lovr\z \V\ow Ao we | |
deQme A when it s QO}”OA?O“‘ _%Lj% _Ol\oo(dt Xoxs$

\‘o&c‘ow ? A :g - | ; X
o tototion alwout Q"\O Hx:\ fi\ Ax \O oS 'Sw%)

QPL)'\\‘Y'O\Y VZ,C/’\"O(' 7 g
3 O iw% Coso‘)

S -
K (EOLQMO»\ bj% Q\OOU\% Y xS -

f E Vv ‘P _ Ayi‘% A - coc% O SC\:?S
: ‘_-_/ y Y —&)6-,'1' 7 O |
= ' <) O COS%

x/\/ (EOLQX\WO»\ bj% Aot 2 axis:

%, ;g -cosg »Sn«% &
Ans: Cpress i Aoy e \A%‘)\ ATl oo 0‘5
A Cofatiors obpnl™ = oo 6 O |

Cl/\,-okx

Rotation About Arbitrary Vector: Construction

Quesﬁcm: ‘V\ow o\O we (%OS\C idw g\vxoe wae

delme A when it s row bo do rolat

ON ‘\O»(‘CLXT\OV\ O—Q@O\OOU-* awn kV\OUO w To a0 ro \Ons
7 olooud 2, we will do

’\% Onowlm(‘j .
C

= % Rotole oload- §)~
Ans: EX\’)PQSS L as o hb‘ﬁ on ongle @
Compm{‘l'ov\ Oe the theee % Upoly” I ol ignwant

elementary matvices A Ay Ag L T ond 3 axs

Topic 7/

3D Viewing

* Intro

* Overview

* Windowing transformation
e Camera transformation

* Perspective transformation

Perspective

Goal: create 2D images of 3D scenes

Standard approach: linear perspective,

i.e. straight lines in the scene become straight lines in the image
(in contrast to, e.g., fisheye views)

Two important distinctions:

@ parallel projection

@ perspective projection

The Pinhole Camera

Ve Wo/‘lo\

o Voivg plane X pomb

lane ceaker E
A/\/Eo(:‘\‘g\m)"\ : O\
‘ < ol

Py ° POW\

/ ”P')‘v"f\ole b L7

projechon of aperhrc *ptica/

T lodld povmt s

The Pinhole Camera: Basic Geometry in 2D
e o\ ow\j Consider e (dealied Pm\«olc model her

Ca,\:.a. PQJ‘SPec\“Nc, PI‘OC)QG\'[ovD

o
Y poi
center of port
°F‘H°‘*‘ Pmoechiov\
ox\s "L \,\/

- © £ —T

g\,\/\/\f)l\‘@m‘\-i on F##1: ’T—Q\Cﬂ Flahe«‘(‘o -P\V\\/\o‘c olig}qme :g
giW\q)\\'QCO\HOV\ 2 - /U\/\O‘O’(\YV\OL%,Q PQUQJ\SO\\ [08

plocing viewmg plare in Pront
of @na'nole ©

Parallel Projection

Parallel projection: Maps 3D points to 2D by moving them along a
projection direction until they hit an image plane

A

@ image plane perpendicular to Y
viewing direction: orthographic P
@ otherwise: oblique —

o (note: other definitions exist) N
Characteristics: /

@ keep parallel lines parallel /

@ preserve size and shape of
planar objects »

Perspective projection

Perspective projection: Maps 3D points to 2D by projecting them
along lines that pass trought a single viewpoint until they hit an
image plane

’ diStinCtion between Oblique and D] '
non-oblique based on projection | P>
direction at the center of the >
image

Characteristics:

@ objects farther from the

viewpoint naturally become
smaller i 4

Parallel vs Perspective projection

e Parallel: usage in mechanical and architectural drawings
@ Perspective projection: more natural and realistic

A

@ How to get 3D objects perspectively correct on 2D screen?

@ Note: usually your API takes care of most of this, but it's
good to know what's going on behind those function calls
(esp. when debugging your code)

Topic 7/

3D Viewing

* Qverview

Perspective projection

How to get 3D objects perspectively correct on 2D screen?

A
| ¢ 3D WORLD _
—

2D SCREEN

WORLD SPACE

SCREEN SPACE

This task is best solved by splitting it in subtasks
that in turn can be solved by matrix multiplication

Let's start with what we got ...

World space

@ Our 3D scene is given in world @
space, i.e. linear combinations N
of the base vectors 7, 7, and 7 Y

@ Given an arbitrary camera
position, we want to display our .
3D world in a 2D image using 7] > X
perspective projection WORLD SPACE

Camera position

The camera position is specified by

@ the eye vector €
(it's location)

@ the gaze vector g
(it's direction)

@ the image plane
(via it's field of view (FOV)
and distance from €)

CAMERA SPACE

View frustum

The view frustum (aka view volume)
specifies everything that the camera
can see. It's defined by Q

@ the left plane { .
the right plane r Ve

°

@ the top plane t

@ the bottom plane b
°

the near plane n

e the far plane f

- =
For now, we assume wireframe ~ ‘
— |

models that are completely within =
the view frustum

Camera transformation

CAMERA
Hmm, it would be much easier if the SPACE

camera were at the origin ...

We can do that by moving from
world space coordinates to camera
space coordinates.

This is just a simple matrix
multiplication (cf. later).

WORLD SPACE

Camera transformation

CAMERA

Per convention, we look into the
direction of the negative Z-axis

Orthographic projection

VIEW
FRUSTUM

Hmm, it would be much easier if we

could do parallel projection ... { mapping

i from (x,y,2)
i tolx,y,)

We can do that by transforming the

view frustum to the orthographic
view volume.

Again, this is just a matrix
multiplication (but this time, it's not
that simple, cf. later).

i mapping
i from (x,y, 2)
P to(x,y,)=(xy)

ORTHOGRAPHIC
VIEW VOLUME

The canonical view volume

ORTHOGRAPHIC
VIEW VOLUME

Hmm, it would be much easier if our
values were between -1 and 1 ...

We can do that by transforming the
orthographic view volume to the
canonical view volume. A

Again, this is just a (simple) matrix >
multiplication (cf. later).

CANONICAL
VIEW VOLUME

Viewport or windowing transform

sl

CANONICAL
Now all that's left is a parallel VIEW VOLUME
projection along the Z-axis (every
easy) and ... ‘

SCREEN SPACE

Viewport or windowing transform

A

\J

... a windowing transformation in

>
v
order to display the square [—1,1]? 4

—

onto an ng; X n, image.

Again, these are just some (simple)

matrix multiplications (cf. later).

Graphics pipeline (part 1)

G
v:;)mo sm:(‘

A CAMERA .
SPACE ..}

ORTHOGRAPHIC

VIEW VOLUME ,
>

CANONICAL
VIEW VOLUME

Uyl

Notice that every step in this sequence can
be represented by a matrix operation, so
the whole process can be applied by
performing a single matrix operation!
(well, almost .. .)

We call this sequence a graphics pipeline

= a special software or hardware subsystem
that efficiently draws 3D primitives in
perspective.

Topic 7/

3D Viewing

* Windowing transformation

Overview

} S SRRITTTTTTTTI LI

T i

f i - i

" ORTHOGRAPHIC .

VIEW VOLUME ‘ =
~
CANONICAL
VIEW VOLUME

SCREEN SPACE

Let's start with the easier stuff, e.g.

Windowing transformation
(aka viewport transformation)

How do we get the data from the canonical
view volume to the screen?

The canonical view volume

The canonical view volume is a

2 X 2 X 2 box, centered at the origin.

The view frustum is transformed to
this box (and the objects within the
view frustum undergo the same
transformation).

Vertices in the canonical view
volume are orthographically
projected onto an ng; X m, image.

»X

(-1,-1, 1)

(1,1,-1)

(1,-1,-1)

Mapping the canonical view volume

(1.1

A

We need to map the square [—1,1]? _’
onto a rectangle [0, nz] x [0,n,]. (-1,-1) ‘

The following matrix takes care of

that:
i My
ny At
2
1

o ownff
onld o

Mapping the canonical view volume

In practice, pixels represent unit N
squares centered at integer (Q)
coordinates, so we actually have to N //

map to the rectangle
(=310 — 3] X [-3,ny — 3],

-

—
—

Hence, our matrix becomes: ny
LY
ng (g nNe__1
2 2 "2
0 2 Ny _ 1
2 2 2 > :
0 O 1 X

Mapping the canonical view volume

Notice that we did orthographic projection by “throwing away "
the z-coordinate.

But since we want to combine all matrices in the end, we need a
4 x 4 matrix, so we add a row and colum that “doesn’t change 2".

Our final matrix for the windowing or viewport transformation is

Ng ng 1

;90 7

M. — 0 _23 0 _23_5
10 0 1 0
0O 0 O 1

Topic 7/

3D Viewing

e Camera transformation

Overview

A CAMERA
SPACE ..o t
B> oy
\ 4
B -
L g
ORTHOGRAPHIC A
VIEW VOLUME
[T
—O—rt>
-

CANONICAL
VIEW VOLUME

SCREEN SPACE

Hence, our last step will be

Tscreen Tecanonical
Yscreen Ycanonical
. = M, _
Zcanonical Zcanonical
1 1

Ok, now let's work our way up:

How do we get the data from the
orthographic view volume to the canonical

view volume, i.e. ...

The orthographic view volume

(r,t,f)

... how do we get the data b)
from the axis-aligned box ' I’n
L7] x [b,8] x [n, f] to 2 \ 4
2 X 2 X 2 box around the

. . : (1,1,-1)
origin? Y

= -Z
X
j SESIE (1,-1,-1)

The orthographic view volume

(r,t,f)
e ;S
2
First we need to move the .
center to the origin: B T b,n)
l 4
1 00 —45F
010 -4t y (1,1,-1)
00 1 ™ Z
0 00 1 X
.................................. (1,-1,-1)

(-1 -1 1)

The orthographic view volume

(r,tf)
Then we have to scale
everything to [-1,1]: [ez
2.0 0 0 (L b7
0 ;% 0 0 3
0 0 % 0
0 0 0 1 Y (1,1,-1)

Note: we divide by the length, e.g.

1 _ coordi
= for the z—coordinate value P e B (1,-1,-1)

The orthographic view volume

Since these are just matrix multiplications (associative!), we can
combine them into one matrix:

20 0 0\ /1 00 -Y4r
0 -2 0 0|0 1 0 -—bit
— t—b 2
Morth =1 o 7o 25 0ffo o0 1 -2
o 0 o0 1/\0 00 1

&0 0 -

2 b

|0 & 0 -

0 0 X -

0 0 0 1

Topic 7/

3D Viewing

e Camera transformation

Overview

G

ToS >
WORLD SPACE ’

A CAMERA
SPACE ..o

A

ORTHOGRAPHIC

VIEW VOLUME ‘
»

CANONICAL
VIEW VOLUME

44>

Hence, our last step becomes

Tpizel
Ypizel
P = Mvaorth

Zcanonical

1

N e 8

Now, how do we get the data in the
orthographic view volume?

That's more difficult, so let's look at
camera transformation first.

Aligning coordinate systems

WORLD
SPACE

How do we get the camera to the
origin, i.e. how do we move from
world space to camera space?

Remember:

@ world space is expressed by the
base vectors Z, ¥, and 2

CAMERA
SPACE ..

e the camera is specified by eye
vector € and gaze vector g

Aligning coordinate systems

To map one space to another, we
need a coordinate system for both
spaces.

We can easily get that using a view
up vector { i.e. a vector in the plane
bisecting the viewer's head into left
and right halves and “pointing to the
sky"

This gives us an orthonormal base
(i, U, W) of our camera coordinate
system (how?)

e

Aligning coordinate systems

First base vector: ¢ x § = @
2nd base vector: g X @ = v

3rd base vector: —g =: W
(“-" for looking in negative
z—direction)

Don’t forget to normalize, i.e.

multiply with “—1”

i

~

Aligning coordinate systems

How do we align the two coordinate
systems?

O align the origins
@ align the base vectors

Aligning coordinate systems

1 0 0 —=z

° . . - . - M . O 1 0 _ye

Aligning the origins is a simple translation: 00 1 -2z
0 0 O 1

Aligning coordinate systems

Aligning the axes is a simple rotation, if you remember that the columns of our
matrix are just the images of the base vectors under the linear transformation.

Aligning coordinate systems

These are easy to find for the reverse rotation:

Aligning coordinate systems

Ly Yu Zu 0
. . . €T
Hence, our rotation matrix is: v Y 2 0
w Yw Zw 0
0 0 0 1

(Remember: the inverse of an orthogonal matrix is always its transposed)

Aligning coordinate systems

For the total transformation we get

wu y’u, z'u, O]. 0 O _xe

lze oy oz 001 0 -y
Meam = Tw Yw 2w O 0 0 1 —=z
0 0 0 1 0 0 O 1

Topic 7/

3D Viewing

* Perspective transformation

Overview

e If it wasn't for perspective projection, we'd
%,W‘ be done:

Tpizel

omnoc.l:upmc A y jzel
VIEW VOLUME , - p - MvaorthMcam

_— N < 8

— o Zcanonical
S 1

SCREEN SPACE

Parallel vs perspective projection

With this, we could already do some nice stuff using orthographic projection,
e.g. funny games:

(from " The Simpsons Tapped Out” game)

Yet, for realistic graphics, we need to put things into perspective ...

Transforming the view frustum

cf. book, fig. 7.13 (3rd ed.) or 7.12 (2nd ed.)

View frustum Orthographic view volume

Perspective projection Parallel /orthographic projection

Transforming the view frustum

cf. book, fig. 7.10 (2nd ed.; not in 3rd one)

view plane

Transforming the view frustum

We have to transform the view
frustum into the orthographic view
volume. The transformation needs to

® Map lines through the origin to
lines parallel to the z axis

@ Map points on the viewing
plane to themselves.

@ Map points on the far plane to
(other) points on the far plane.

@ Preserve the near-to-far order of
points on a line.

VIEW
FRUSTUM .

ORTHOGRAPHIC
VIEW VOLUME

Transforming the view frustum

How do we calculate this? (cf. book, fig. 7.8/7.9 (3rd/2nd ed.))

A A

\

From basic geometry we know:

Ys _ d —
) =z and thus Ys =

[SHIS]

Transforming the view frustum

In the following, we assume that
@ we are looking in negative z—direction and

@ we project onto the near plane.

Hence, the distance d = —n, and we need a matrix that gives us
R
d n
o yS e :% = —zy

and a z-value that
@ stays the same for all points on the near and fare planes

@ does not change the order along the Z—axis for all other

points

Problem:

we can't do division with matrix multiplication

Extending homogeneous coordinates

Remember: matrix multiplication is a linear transformation, i.e. it
can only produce values such as:

= a1z + by + 12

Introducing homogeneous coordinates and representing points as
(x,y,2,1), enables us to do affine transformations, i.e. create
values such as:

' =a1xz+by+ciz+d;

Now we introduce projective transformation (aka homography)
that allows us to create values such as:

! — a1z+biyteiztds

* ex+fy+gz+h

Extending homogeneous coordinates

How can we transform

’ a1z+b1y+c1z+d
x x ea:_*:}b fyigztfi_zd
/ S a2T102YTCa2z 2
avector | y | toavector |y | = ot fy+azth
P o a3z+bsy+csz+ds
ex+ fy+gz+h

using matrix multiplication?

We do this by replacing “the 1" in the 4th coordinate with a value
w that serves as denominator.

Extending homogeneous coordinates

With homogeneous coordinates, the vector
(x,y,2,1) represents the point (z,y, 2).
Now we extend this in a way that the homogeneous vector
(x,y,z,w) represents the point (z/w,y/w,z/w).

And matrix transformation becomes:

ap b1 ¢ di
az by c2 do
az bz c3 ds
e f g h

£, @ 8
N e 8

Extending homogeneous coordinates

Notice that this doesn't change our existing framework
(i.e. all affine transformations “still work™).

We just have to set
e=f=g=0and h=1.

Then our resulting vector

~

(z,9,2,w) becomes (Z,7,z,1),

and it represents the point

(Z/w,§/w,Z2/w) = (2/1,5/1,2/1)

Extending homogeneous coordinates

With this extension, we do matrix multiplication:

ar b1 ¢ di x a1z + by +c1z+ dy T
ag by co da| [y | _ [aex+boyt+coztda| _ | ¥
ag by c3 ds z as3x + by + c3z + d3 |z
e f g h 1 ex+ fy+gz+h w
Followed by a step called homogenization:
+b1y+eiz+d
a1+ by +ci1z+dy afxﬁ}gigiifdl
a2z+boy+caz+do
02T + bay + cp2 + da homogenize | , ‘;ﬁ},f gigZ;’}d
\ 3 3 3 3
azx + b3y +c3z + d3 ’ ex+ fy+gz+h
exr + fy + gz -+ h ex+ fy+gz+h

ex+ fy+gz+h

Perspective transformation matrix

So, by multiplication with this matrix Q: how do we chose the

aq bl c1 dl ai7b’i7c‘i7;l’i and eafagf’-h
ay by ¢y do to get w. at we_wapt or
as by cs ds Persp:ctlve projection,
e f g A I.e. the vector
nT
and homogenization, ny
we can create this vector zz*
a1x+b1y+c1z+d; 1
ex+fy+gz+h
asx+boy+coz+ds
ex+ fy+gz+h z* denotes a z-value
a3zz+b3y+csz+ds (. . u
ex+fy+gz+h fulfilling the conditions

1 that we specified)

Perspective transformation matrix

The following matrix will do the trick:

n 0 0 0
0 n 0 0
0 0 n+f —fn
0 O 1 0

Remember that
@ we are looking in negative Z-direction
@ n, f denote the near and far plane of the view frustum
@ n serves as projection plane

Let's verify that ...

Perspective transformation matrix

n 0 0 0 T x e
0 n 0 0 vyl Y b : oY
0 0 n+f —fn z | z%—f fothogenize n+f—fz—"
oo 1 o/\1 £ 1

Indeed, that gives the correct values for 5 and ys.

But what about z? Remember our requirements for z:
@ stays the same for all points on the near and fare planes

@ does not change the order along the Z—axis for all other
points

Homogeneous coordinates and perspective
transformation

We have zg =n+ f — % and need to prove that ...

@ points on the near plane are mapped to themselves,
i.e. if z=n, then z;, = n:

and obviously z; = * =z and y; = 7> =y.

@ points on the far plane stay on the far plane,
i.e. if z = f, then z5 = f:

and ...

Homogeneous coordinates and perspective
transformation

We have zg =n+ f — % and need to prove that ...

@ z—values for points within the view frustum stay within the
view frustum,
i.e. if z >n then zg > n:

zs=n+f—%>n+f—%=n
and if z < f then z; < f:
se=nt+f-T<ntf-=f

and ...

Homogeneous coordinates and perspective
transformation

We have zs =n+ f — % and need to prove that ...

e the order along the Z-axis is preserved, i.e. if
0>mn2> 21> 29> f then 215 > 294:

With z13=n+f—£—?and z23=n+f—’;—2'weget:

n n z1—2z2)fn
zls—22s="%_’L=—(1) .

21 z122

Because of f, 21, 29,n < 0 we have ;% > 0, and
because of z; > 29, we have z; — 29 > 0, so

21s — 225 > 0 or

21s > 22s

Homogeneous coordinates and perspective
transformation

Hence, the order is preserved. But how?

ew plane

zs=n+f—/;—n,

so 2z, is proportional to —1

z

Perspective transformation matrix

With this, we got our final matrix P. To map the perspective view
frustum to the orthographic view volume, we need to combine it
with the orthographic projection matrix Myyip, i.€. Mper =

n 0 0 0 2n, 20 Z% 0

0 n 0 0 0 2n 24t 0
Morin P = Morin 0 0 n+f _fn = 0 tob JQ‘*‘_"EZ }?ﬂ

0 O 1 0 0 0 nl On

Another look at projective transformations

Linear transformations: Points represented by vectors (z,y, z)

x—x =ar+by+cz

Affine transformations: (z,y, 2,1) represents point (z,y, z)

z—z' =ax+by+cz+d

Geometric interpretation (in 2D)

Extending homogeneous coordinates

Linear transformations: Points represented by vectors (z,y, 2)

r—x =ar+by+cz

Affine transformations: (z,y, z,1) represents point (z,y, z)

z—x' =ar+by+cz+d

Projective transformations: (Z, g, Z, w) represents (Z/w, §/w, Z/w, 1)
which in turn represents (Z/w, §/w, Z/w)
which in turn represents point (z,y, 2).

ax+by+cz+d
ex+ fy+gz+h

r—z =

Geometric interpretation (in 1D)

Translation in 1D
(with 2D homo-
geneous coords.)

A 2D

(x,1) (x+d,21)
‘i g d "

Y ¥

(x) (x+d)

>1D

Point (x, 1) represents point (x).

(X+d, w)
X, w)

(xrw, 1) Xrw, 1) F ~
: (Oc+d)/w, 1)

:
> > v >
> > >

) (x+d, 1)
Point (X, w) represents point (X/w, 1) which represents (X/w) which represents (x)

Another important characteristic

Matrix multiplication:

T aq bl C1 dl Z a1 + bly +cC12 + dl
Y| _|az b2 c2 do| |y | _ [G27+boy+coz+do
z a3 by c3 dj 2 a3z + b3y + c3z + d3
W e f g h 1 ex+ fy+gz+h
Homogenization:
+biy+erz+d
a1z + b1y + c1z + da alfxﬁ }iiziifdl
asx + boy + coz + da : R
a3z + bsy + c3z + d3 homogenm(? a3%x+b€g+g:z+d3

+fy+gz+th
ex+ fy+gz+h « fylgz

Extending homogeneous coordinates

Matrix multiplication:

z a; by ¢ d x cla1z + by + c12 + dy)
Yy az by co da| |y c(ao + boy + coz + d3)
- = C =
z az by c3 ds z c(asx + b3y + c3z + d3)
W e f g h 1 clex+ fy+gz+h)
Homogenization:
c(a1z+biy+ciz+d;)
claiz + b1y + c12 + d1) (c(eﬁfyigzﬁzg :
c(aox + boy + coz + d2) . £ a(zmm+;y+czzih)2
C((1,3£L' + b3y + c3z + d3) homogenge C(fclsic+bsz+z32+d3)
clex+ fy+gz+h) clez+fy+gz-+h)

1

Extending homogeneous coordinates

Hence, both of these two matrices can be used as perspective
matrix:

n 0 0 0 10 0 O
0n O 0 01 0 O
0 0 ntf —fn and 0 0 n:_f _f and . ..
00 1 0 00 + 0

Overview

ORTHOGRAPHIC A

The following achieved parallel projection:

Tpizel
Irizel | — My Mopin M
— VlypiVMorthicam

Zeanonical

1

— N 8

And if we replace My ¢p, with My, we get
perspective projection:

Tpizel
Ypizel | _ aAr A M.
— {VlypiViperiVlicam

Zcanonical

1

— N e 8

Wrap up

Now we can draw points and lines.
But there's more . ..

@ Triangles that lie (partly)
outside the view frustum need
not be projected, and are
clipped.

@ The remaining triangles are
projected if they are front
facing.

@ Projected triangles have to be
shaded and/or textured.

We will talk about this in the
upcoming lectures.

