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Abstract

We present an approach for transferring the style of an exemplar
curve to a target curve by analyzing and matching their distribu-
tion of curvatures at multiple scales. The user inputs two curves,
an exemplar curve possessing a desired style and a guide curve de-
termining the overall path of the output curve. We hypothesize that
curvature is one of the fundamental features describing the style and
use statistical analysis of the curvatures to transfer elements of the
style to the guide curve. Histograms of curvatures of both curves
are matched progressively by an iterative re-weighting scheme that
minimizes an energy function balancing closeness of the curvature
distributions and distance from the guide curve to the output curve.
Our algorithm is able to match histograms well and produces in-
teresting outputs in the single and multi-scale approach. Our re-
sults show that curves of similar style have similarly matching his-
tograms at multiple scales, which leads to the transfer of elements
of the style.
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1 Introduction

Style is an inherent part of line drawings, paintings, fonts and vir-
tually all forms of art as an expression of the artist conveying a
message to the viewer. In this paper, we target curves from line
drawings and draw motivation from the different ways they can be
portrayed. Style gives a deeper level of meaning to a drawing vary-
ing from artist to artist and depends on the application it is intended
for. It isn’t completely understood how style is conceived by an
artist, however it is hypothesized that the style of a drawing can
be separated from its underlying content, implying that it could be
stored and applied to other content. The cartoon bear of Figure 1
will serve as our main motivating example. Depending on the con-
text, the cartoon can be drawn in different styles providing differ-
ent looks and feels while the underlying content remains the same,
namely the bear. The intent in the illustrations of Figure 1 is to
present the same bear, only with a different style. Fonts are another
similar example where the font itself is the style with the underlying
content across fonts, namely the character, remaining the same.

Talented artists carry the ability to draw graceful strokes and curves
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Figure 1: “Retro-Style” left, “Classic Cartoon-Style” right.
source: The Cartoonist’s Big Book of Drawing Animals, Christo-
pher Hart, page 21.

that make drawings highly expressive. Most casual users, however,
do not have these skills and wish to be able to compose artistic-
looking drawings. As a motivation to provide novice users tools to
achieve this as well as to enhance the work of professional artists,
we wish to learn more about the style of drawings. In doing so
we hope to discover novel ways of transferring style by better un-
derstanding what its best descriptors are while building on previ-
ous techniques that have been researched. Although this has been
studied [Tenenbaum and Freeman 2000], it remains a difficult and
unsolved problem as we do not completely know how humans per-
ceive and decouple style from content.

A notable feature of curves that give a drawing style is curvature.
We believe this to be an important feature that holds stylistic infor-
mation and believe it to have the potential to form the basis for
a novel algorithm. Line drawings exhibit curves featuring high
curvatures, smooth curves with low curvatures and sharp corners
with infinite curvature, among others. A set of hand drawn curves
that can be described with curvature is shown in Figure 3. Wiggles
form a style that exhibits varying curvature adding a certain touch to
curves. For example, Figure 2 displays a cartoon given a meaning-
ful jelly-like look using this style. Smooth round curves can give
another perspective to a line drawing as in the right of Figure 1.
Clothoids are mathematical curves that possess a uniform curva-
ture profile. That is curvature varies linearly along its arc length
and such curves can be described concisely by means of this fea-
ture. They appear naturally in some art forms and give pleasing
gracious strokes. Improving curves by fitting [McCrae and Singh
2009] piecewise clothoids can greatly beautify hand drawn strokes.
Curvature may vary as well with the scale in which the drawing is
observed. For example, an illustration drawn with many wiggles
has high fine-scale curvatures as can be seen in the left of Figure 6.
Regardless of the scale in which it is observed, curvature is an ob-
vious feature that describe curves in how they are shaped on paper.

We approach the problem of transferring curvature statistics from
an exemplar curve with a desired style to a target curve. We
believe that curvature is a good descriptor of style and thus curves
of the same style are likely to have similar curvature statistics at
different scales. Following this hypothesis, matching the statistics
of curvatures in a curve to those of a curve with a desired style will
transfer the style. For instance, it should be possible to transfer
the wiggles of an exemplar curve to a smooth target path. While
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Figure 2: The wiggly body has high curvature in the low-scale but
low curvature in the high-scale. In other words, the overall path is
relatively straight but the finer details are not.
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(b) Sharp corners.
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(d) Overall smooth.

(a) Fine scale wiggles.

(¢) Sharp corners and smooth.

(e) Uniformly wiggly. (f) Piecewise clothoids.
Figure 3: All curves are hand drawn and traced. Curve (a) has
natural variation in curvatures; (b) & (c) have sharp corners; (d)
has a relatively smooth curvature profile; (e) is overall uniform in
its curvature variation at the fine scale; (f) is a curve composed
of piecewise clothoid splines with a smooth curvature profile (fit to
a hand drawn polyline using the approach of [McCrae and Singh
2009]).

transferring statistics, curves are analyzed at multiple scales due to
the fact that the curvature can be described differently according to
scale. Curves may have low-scale variations, high-scale variations
and a varying mixture in the spectrum of scales.

Taking inspiration from a gradient distribution matching technique
for image restoration [Cho et al. 2012], we develop a similar al-
gorithm for curvature distribution matching. By globally matching
histograms of curvature, we are able to introduce elements of the
style onto a target curve while retaining its original content.

2 Related Work

2.1 By-Example Line Drawing Stylization

There have been several works in the area of style transfer using
various techniques for capturing style. Early notable works include
Skeletal Strokes [Hsu et al. 1993], which deal with texture map-
ping onto a known base path. To add expressiveness to the path, a
“skeleton” with a reference x-axis and thickness-axis is drawn onto
an image or rastered texture, defining a stroke. Using this stroke

definition, the image can be deformed by stretching, compressing
or bending over arbitrary user-drawn paths to create stylized strokes
and abstract deformations of images. This simple and effective ap-
proach made it possible for users to draw vector graphics with styles
at interactive rates, greatly enhancing style in computer graphic art.
This method however is limited in that it stretches an image to give
a curve an apparent style, which can look distorted depending on
the degree of stretching.

Texture synthesis, much related to style synthesis, saw great strides
in advancements by Portilla and Simoncelli [2000] who presented a
parametric statistical approach to visual textures. By sampling un-
der their model, new textures can be synthesized producing many
images in the same style. Using this statistical approach, sampling
can generate new images avoiding severe distortions when stretch-
ing the texture or unnatural repetitions when tiling. The style of a
curve can be abstracted away from its base path so as to decou-
ple the two pieces of information. In this case, the style itself
is defined by the details on the underlying base path, however a
preexisting decomposition between the two is not known ahead of
time. The approach of Bénard et al. [2012] exploit similar geom-
etry and self-similarity in styles using offset synthesis to achieve a
parametric, style-by-example approach at varying levels of detail.
Non-parametric methods to style transfer have been approached by
Kalnins et al. [2002] by taking a style’s brush geometry and treat-
ing it as a texture. By formulating it as displacement mappings of
the vertices of a base, synthesized styles over new paths are formed.

Novel ways of building a decomposition to automatically extract
displacement offsets from curves can be done through the use
of multiresolution wavelet decomposition [Finkelstein and Salesin
1994], whereby a curve is decomposed into multiple scales of lower
resolutions with diminishing detail. The lost details at each coarser
resolution are captured as a separate signal that can be used inde-
pendently. With the path isolated from the style, it can be modified
into a new path with the style later reapplied to it. As well, the style
information can be extracted and transferred to a different curve al-
together [Brunn et al. 2004]. With this approach, varying styles can
be reproduced extremely well.

Extracting the decomposition of curves is a challenging approach
that mostly captures the detail of the style. The following work
examines a broader description of style, considering the curve as
a whole. A novel non-parametric approach for synthesizing style
by “analogy” was conceived by Hertzmann et al. [2002]. Given
an “unstyled” curve A along with a styled version A’, the trans-
formation between them is learned for application to a new curve
B. Local, well-matching pieces of the styled curves are used to
synthesize the style along the path of the input curve B. This is
similar to constrained texture synthesis applied on curves instead
of pixels. This paper considers the transfer of statistics at multiple
scales of curves inspiring some of the work we undertake in this
paper. Learning-based approaches are a different perspective on
style transfer whereby a training set of curves of different styles are
used to modify the content of another drawing to take on the style
of the training set [Freeman et al. 2003]. Using a linear combina-
tion algorithm to form a mixture of the k nearest neighbour curves,
line drawings take on varied styles from the set of supplied curves.
A major drawback of this approach is the requirement of an ade-
quately sized dataset to capture enough sample curves of a style.

A key goal in style transfer is for the synthesis of strokes for
novice users. By drawing a rough outline of their intention, strokes
can be improved via an interactive system. Synthesizing strokes
for users of lower-end tablets in HelpingHand [Lu et al. 2012] is
done through the use of data generated from artists using higher-
end tablets that allow for higher degrees of input. Using higher-
dimensional curve descriptors to engineer feature vectors for train-



ing strokes, new strokes are synthesized for the user in real time
using optimal matching. Simhon and Dudek’s [2004] developed an
interactive system for automatically generating illustrations from
coarse curve strokes. They make use of Hidden Markov Models
to synthesize 2D curves through the use of a training set of styl-
ized examples with the ability to mix instances of the training set.
Using their statistical model, they achieve some similar results to
Hertzmann et al.[2002].

2.2 Histogram Matching

Cho et al. [2012] developed a novel algorithm for the restoration of
images such that their reconstructions have similar gradient distri-
bution to a reference distribution. By imposing a global constraint
on the gradients of the image, an iterative penalizing scheme is used
to modify its statistics in order to bring the gradient distribution
closer to that of a desired distribution. By reassessing the penalty
function iteratively using the KL divergence of the distributions, the
penalty function is progressively fine-tuned to bring the distribution
of the image gradients closer to the desired distribution.

This statistical approach leads to pleasing restorations in images
and inspires the underlying idea for use in curves. We develop a
similar penalty function using a curvature measure for polylines and
use a desired distribution of an exemplar curve as our “reference”
distribution. We perform a similar iterative scheme that updates the
penalty function as the distribution of curvatures changes, in order
to modify the statistics of a curve to have distribution similar to that
of a desired distribution. This is done at multiple scales of the curve
in order to introduce details of the style present over the spectrum
of scales.

Our approach in the transfer of a style by means of example curves
and capturing their statistics is very much complementary to the
work of Hertzmann et al. [2002] in which local neighbourhoods are
matched non-parametrically. Our approach however is parametric,
using curvature to globally match the statistics of a supplied curve
with those of a desired style. Following our hypothesis on curvature
as a meaningful descriptor of style, we apply a similar statistical
matching algorithm for images as presented in the work of Cho et
al. [2012].

3 Overview

We now describe the general setup of how curves are represented
and the intuitive goal of our algorithm. We experiment with both
curvature approximation on polylines as well as turning angles,
each having their own tradeoffs, however for simplicity, we refer to
our main feature as “curvature” when overviewing the algorithm.
Turning angles have a few advantages such as being bounded to
[0, 7) and independence to the distance between the sample points.
A drawback of turning angles is their dependence on the sampling
rate. A dense sampling rate will produce turning angles nearly all
close to 0 while a sparse sampling may increase the turning angles
for the same sample point. The curvature approximation measure
takes into account the distance to neighbouring points attempting to
remain invariant to sampling.

Let the curve describing the path of the final output be referred to
as the guide curve denoted by g and the curve possessing the de-
sired style be referred to as the exemplar curve denoted by e. The
exemplar curve is used to extract statistical information of curva-
ture to build a desired histogram Hq. Though the input curves are
in analytic form, we focus on discrete polyline approximations of
curves using N points sufficing at capturing elements of the curve’s
style. The terms “polyline” and “curve” are used interchangeably.

We define an energy function over the sampled points, perturbing
the points to find an energy minimum.

The polyline p € RN approximates a curve with the points
P; = (xi,9:), ¢ = 1,..., N. The interior points of the curve have a
turning angle 6; associated with them where 6; denotes the turning
angle at the point P; for ¢ = 2,..., N — 1, defined in terms of the
dot product:
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where k; is the curvature measure at the point P;.

The problem statement is the following: given an exemplar curve
e and a guide curve g, we would like the output of our algorithm
to be a target curve ¢ that captures the style of e while remaining
close to g. To this end, we begin with the target curve as the guide
curve and attempt to match the target histogram H; (the histogram
of curvatures of the target curve t) with the desired histogram Hy
of e, while maintaining a close distance to g. Over a set number
of iterations we transform ¢ so that H; and H, are matching under
a histogram distance metric. With the goal of transferring statistics
from e to t, we wish for elements of the style of e to appear in t. We
illustrate in Figure 4 the two required inputs and the desired output.

guide curve

(—) g (shape)

exemplar curve

(style) e M

t

7

output curve

Figure 4: The exemplar curve e gives style information while the
guide curve g gives path information in order to create an output
curve t having closely matching histogram with e while remaining
close to the guide curve.

4 Energy-based model

Our goal is to minimize a distance between histograms. This how-
ever is not easy to perform directly as finding the gradients of such
an energy function is challenging. Gradient-free optimization meth-
ods such as Covariance Matrix Adaptation (CMA) can be used,
however they may be very slow. Therefore, we design a curvature
penalty function as in the Cho ef al. paper [Cho et al. 2012]. It is
used in the general formulation of our energy function and is mod-
ified over successive iterations to minimize indirectly the distance
between histograms.

We express this problem as the minimization of the sequence of
energy functions (E(”)), each of them being formulated as:

E(t; 9, Ha) = Eguide(t; 9) + Enist(t; Ha), 3)



where ¢ is the curve being optimized. It is important to note that
this energy function is dynamic and changes over the course of iter-
ations. This is the general formula and not a static energy function
but rather the energy for a particular step of our minimization.

The energy function consists of two terms. The guide term Egyide
encourages the target curve to stay close to the guide curve while
the histogram term E};,: enforces the target distribution of curva-
tures H; to match the desired one, Hy. The guide term Egyiqc iS @
distance metric between the argument curve ¢ being minimized and
the guide curve g which we set to the sum of squared distances:

N
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where T;, G; are the points on the target and guide curve respec-
tively. The target curve ¢ is initially set to the guide curve g and the
sample points are perturbed while the energy is evaluated. As such,
both the guide curve and the target curve have the same number of
sample points.

The histogram term E};s: is based on the definition of a penalty
function p, which seeks to deter or encourage curvatures in a de-
sired range. It is defined as follows:
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where p(ngt)) is the penalty for the curvature «; at the point 7; on

the polyline ¢. Each E™ has its respective penalty function p(™.
The penalty function p is defined in terms of the desired histogram
Hg and the target histogram H;. Intuitively, it attempts to deter
curvatures that are too great in abundance by penalizing them (giv-
ing them a higher energy value) and encourage desired curvatures
that are not present enough by rewarding them (giving them a lower
energy value). With this approach in mind, we build a penalty func-
tion that assigns penalty values to curvature ranges and assesses the
overall energy of the curve being optimized to find one with low
energy.

5 Iterative re-weighting minimization

We first describe the penalty function p and its initialization that
paves the way for the single-scale approach, explained in sec-
tion 5.1. The basic overview of the algorithm is to minimize the
sequence of energy functions (E(") ), effectively perturbing the set
of points in ¢ until a good balance between both Eyyiqe and Ep st
is found. Once achieved, the output curve ¢ should have closely
matching histograms with e while following the overall path of the
guide curve, as outlined in Figure 4. The minimization of F is done
by an iterative scheme that penalizes and rewards certain ranges of
curvature in order to match the histograms H; and H;. We mea-
sure the distance between histograms using the Quadratic-Chi (QC)
[Pele and Werman 2010] distance. To construct H 4, a suitable num-
ber of bins n must be chosen so as to give a good representation of
the underlying distribution of the exemplar curve. There are var-
ious heuristics to find a good number (e.g. Freedman-Diaconis’,
Scott’s and Sturges’ among others). Once H, has been computed,
the penalty function p is initialized to:

P\ (k) = -w1 In(Ha(r)) ©)

where w1 is an initialization weight parameter responsible for set-
ting the initial penalties to drive the curvatures toward the range of
those found in the desired histogram. In other words, curvatures ly-
ing far out where frequencies in H, are low receive a high penalty.
This approach follows closely the work of Cho er al. [Cho et al.
2012]. With this initialization, p is set to a reasonable starting point
encouraging the desired curvatures in the exemplar curve to be in-
troduced in the target curve. Once initialized, F is minimized with
respect to ¢ by gradient descent using finite differences for gradient
vector approximations.

We note that since dealing with discrete probability distributions,
the result of p at any stage is a step function and penalties are
assigned to respective bins. However when computing penalties,
rather than assigning curvatures within the same bin the same
penalty, we linearly interpolate between the penalties of neighbour-
ing bins and assign curvatures this value for a smoother overall
penalty function.

Following this minimization step, the penalty function is updated
and penalties for particular ranges are reassessed such that curva-
tures too high in abundance are penalized further while curvatures
not present enough are rewarded to produce a new updated penalty
function. The update rule after each iteration is:

"V (k) ¢ o) () + w2 In(
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where wo is a correction parameter responsible for adjusting the
penalty function as it is reassessed. The update rule uses the his-
togram H; of the current curve ¢ and compares it with H4. By
using the natural logarithm, frequencies in curvature ranges that
surpass that of H, cause the curvatures in those bins to be penal-
ized and frequencies in curvature ranges that are below those of Hy
to be rewarded. Moreover, frequencies that match those of Hy are
left unchanged, noticing that the correction sum in equation (7) is
0. This is illustrated with an example in Figure 5. This iterative re-
weighting scheme encourages desired curvatures to approach the
frequencies present in H,; and fine-tunes the penalty function to
reach a solution curve that has low energy with H, close to Hg.

Using the updated function we minimize the new energy function
and repeat the procedure. This is done for a set number of itera-
tions while storing the curve ¢t between iterations that produces the
closest histogram H; to Hy.

Ht
In| H, >1
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Figure 5: Desired histogram superimposed with the histogram of
the target curve as it is being optimized. Penalties for the curvature
ranges are updated according to equation (7).



5.1 Matching at one scale

Here we describe the general framework of Algorithm 1 used to
match histograms at a single-scale that becomes the basis for the
multi-scale approach. The idea behind the algorithm is to itera-
tively reassess the penalty function with the goal of introducing the
desired curvatures in the target curve until the histograms H; and
H are relatively close, based on the QC distance. Beginning with
inputs e and g sampled by arc length, we initialize ¢ = g and com-
pute their histograms Hy and H; respectively. Using equation (6),
p is set to its initial value.

We set a maximum number of iterations for the “outer loop” in
line 8 of the algorithm. Between these iterations, p is updated us-
ing equation (7) and the curve ¢ having the lowest QC distance is
stored. If the QC distance in subsequent iterations rises and con-
tinues to do so, we stop the optimization and use the best matching
curve as our final output. We presume that there exists a close curve
with a matching histogram, however this is affected by a number of
variables. Our iterative re-weighting scheme seeks to find this curve
of low energy though it does not guarantee convergence to the de-
sired histogram. As such, we continue to minimize until the lowest
attainable energy of a curve is reached, always storing the one with
best histogram distance and using it as our final output.

Algorithm 1 Histogram Matching at One Scale

Our multi-scale approach works iteratively matching coarser to
finer scale histograms of the desired and target curves using the
single-scale approach at each step. A curve ¢ at scale s is denoted
as t° and increasing values of s represent coarser scales of the curve
(where t® = t). There are more sophisticated ways to decompose
a curve into scales [Hahmann et al. 2007; Finkelstein and Salesin
1994], however for the purposes of our experiments, a curve at scale
s is constructed by only considering every k** = 2% sample point,
dependent on the total number of sample points in the curve. This
is done in line 6 of Algorithm 2.

We initialize the target curve ¢ to g, which is an overall “coarse” rep-
resentation of the guide curve’s path when input to the algorithm.
We wish to match histograms of the exemplar curve e with coarser
to finer representations of the input curve ¢ in an iterative fashion,
beginning with the coarsest scale of e. Setting a chosen number of
scales S = s, we set the variable step_size to 2°, keeping track of
the samples to skip on the curve e. We begin by using this sample
step to give us exemplar curve e® and use the single-scale matching
with the initial ¢. After each iteration of matching, we subdivide
the output curve ¢ into ¢’ in line 7 to double its sample points. As
well, we halve step_size to produce the finer scale version e®~ .
At this point the process is repeated with the matching of e~ ! and
t’. This process continues until we have reached the finest scale of
exemplar curve e (i.e. e orel).

1: procedure HISTMATCH(e, g)
2: mazlterations = C
3 n=1

4: compute H, > Histogram of curve e with desired style
5: p(K) < -~wi In(Hq(k))
6.

7

8

9

t<g

compute H; > Histogram of curve ¢ being optimized

while n < maxIterations do

Hyi(k
plk) < p(k) + w2 In(FEE3)
10: t + argmin F(t)> Gradient descent using Finite Diff
t

11: n+<n+1
12: end while
13: returnt > Curve with closely matching histogram to Hg

14: end procedure

5.2 Matching at multiple scales

Drawn curves have detail at multiple scales which together com-
pose the overall style of the curve. There are various finer to coarser
details that must be analyzed over the spectrum of scales. For ex-
ample in Figure 6, the hand drawn curve has an overall relatively
smooth path as seen on the right scale, however its finer details fol-
lowing this path are seen on the left scale. Such wiggles are an
example of fine-scale detail, which can only be captured by analyz-
ing the various scales. Therefore to apply our statistical approach
of style transfer, we analyze multiple scales and match histograms
in this spectrum in order to capture the fine wiggles.

Figure 6: Hand drawn curve in two scales: left scale captures
wiggles, right scale captures overall path.

Algorithm 2 Histogram Matching at Multiple Scales

1: procedure MULTISCALEMATCH(e, g)

2: nume-scales < s > Number of scales to consider
3 step_size < 2° > Number of samples to skip
4: t<g

5: for i = 1 to num_scales do

6 e_step « everyKthSample(e, step_size)

7 t «+ HistMatch(e_step,t)

8 t < subdivideLine(t)

9: step_size < Step-size
10: end for
11: return ¢

12: end procedure

6 Experiments

6.1 Technical details

In this section we evaluate the potential of our histogram matching
algorithm with some experiments at one and multiple scales. For
the single-scale experiments we use a simple “style” curve. For the
multi-scale experiments we use a more stylish hand drawn curve
shown on the left of Figure 6. We assess the accuracy of our algo-
rithm by comparing the histogram of the output curve with that of
the input curve. We also visually assess the meaningfulness of the
resulting output curve. Our focus is mainly on smoothing and intro-
ducing fine-scale wiggles alongside simpler synthetic experiments
to test some special interesting outcomes. In section 7 we explain
the limitations of our implementation. We leave the details of a
more sophisticated energy function as an interesting open research
problem.

We divide our experiments into two sets: single-scale and multi-
scale. In the single-scale we minimize the energy function until
a sufficiently close histogram to the desired histogram is achieved
while in the multi-scale we match histograms one scale at a time us-
ing the iterative approach outlined in 5.2. To this end, and by using
carefully chosen parameter settings of w; and w2, our algorithm is



able to produce a curve with a histogram close to the desired his-
togram. In some experiments of the multi-scale approach, we are
able to output a curve with a close histogram and with visual ele-
ments of the desired style serving as a feasible basis for evaluation.
Introducing wiggles is more challenging, which we were able to do
in two of our experiments.

Beginning with a small setting for the main parameters w; and w2
and a suitable number of bins for the desired histogram, we run
the algorithm repeatedly with increasing wi and ws values until
histograms are suitably matched at which point we assess the visual
effect of style transfer of the output curve. The parameters w; and
w2 are increased in unison where w is set to a low starting value
and held for a number of iterations while the correction parameter
wo is progressively increased to find a good balance between it and
wi. If no decent histogram matching is performed or if the output
curve does not behave as expected, w is increased and the process
is repeated. If the output curve behaves “wildly” (i.e. the result is a
scribble) then likely w; has been set to too large a value. To achieve
decent results, it is important to choose these parameters sensibly
to find the right balance of the initialization parameter w; and the
correction parameter we. Otherwise the penalty function will be
over-corrected resulting in rubbish or under-corrected resulting in
slow to no results.

The histograms are computed using a modified version of the hist
function in MATLAB (histnorm) that ensures histograms are nor-
malized with area summing to one. This way histograms can be
compared on an equal footing. It is important that both histograms
use the same bin width and range so that the bins line up and can
be compared for the construction of the penalty function. The de-
sired histogram is computed first by creating a row vector Tp;s¢ of
n (the number of bins chosen using the Freedman-Diaconis rule)
linearly spaced points that is bounded at each extreme by the floor
(ceiling) of the smallest (largest) value rounded to a number rea-
sonable for that range. Then, using xx;s; and the curvature data of
t as input, histnorm returns the target histogram. When computing
H,, if any data values fall beyond the range of s+, histnorm bins
them at the very last bin which is not an issue given the following
workaround: any values k; falling outside of this range have their
penalty assigned as

max(p(endpoint), -w1ln(epist)) @)

which will be a high number as a result of the binning procedure.
Since in these cases H:’s data range lies outside of Hy, the fre-
quency of data values of H; at the end points of xp;s+ is greater
than H4 and data values in that bin are already penalized. We assign
out-of-bounds values the penalty that is maximal between these two
numbers to deter them in the output curve.

Histograms can be smoothed out by adding to the frequency of a bar
a fraction of the distance between it and the average of its neigh-
bours’ frequencies. This has the effect of smoothing out the his-
togram without affecting the overall area and can be used in order
to deal with 0 values posing an issue for the quotient in equation (6).
However, for the purposes of our experiments, a small €p;5¢ value
was added to both histograms to mitigate this issue.

We use a combination of hand drawn (Figure 6) or computer gen-
erated curves (Figures 8 and 9). The curves are either open (e.g. a
curve as in Figure 6), or closed (i.e. a curve with equal starting and
ending points), the latter being dealt with by using an input option
to our algorithm making the small trivial modification. The hand
drawn paths were scanned and manually traced using the Pen Tool
in Adobe Illustrator and the resulting curves saved using the SVG
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Figure 8: (a) Input circle. (b) Desired histogram in yellow super-
imposed with histogram of circle in blue. (c¢) Output curve (square-
like) after histogram matching. (d) Desired histogram in yellow su-
perimposed with histogram of target curve; both same in this case.

image format. A custom interface for extracting control point in-
formation from each separate curve in the SVG file was written in
JavaScript allowing for the user to select which curve information
to extract. Using this tool, the control points are output to a text
file used to define the Bézier curves which are then rendered and
sampled in MATLAB for processing.

6.2 Single-scale results
6.2.1 Smoothing a noisy curve

The simplest test to perform is to smooth a curve by using as target
the histogram of a smooth curve. To begin with, we use as input a
curve that has been altered by adding random noise giving it varia-
tion in curvature making for a non-smooth curve. The intent behind
smoothing is to perturb the points such that the output curve has rel-
atively close path to the input curve with the majority of curvatures
close to 0.

In the top row of Figure 7 we show the input noisy curve along with
its histogram, in blue. It is contrasted with the histogram of the de-
sired style in yellow to show their initial disparity. The output of
the algorithm, shown in the bottom row, displays the output curve
along with its histogram, contrasted with the desired histogram. We
see a smooth curve following the general path of the input curve
with most of the noise dissolved, as expected. The minimization
of the energy function found a new solution able to push inward
the higher curvature frequencies towards 0 and matching the fre-
quencies of curvatures. This experiment was run with several pa-
rameter settings giving good results for 0.025 < w; < 1.6635
and 0.0025 < wa < 0.1875 and with n = 10 bins. We found
that smoothing was not as sensitive to parameter settings as in other
experiments.

6.2.2 Square as desired

This is a synthetic experiment carried out to test the histogram
matching performance of our algorithm. We used as input a unit
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Figure 7: Input noisy curve with desired distribution of a smooth curve: (a) Input noisy curve. (b) Desired histogram in yellow superim-
posed with histogram of the input noisy curve in blue. (c) Output smooth curve after histogram matching. (d) Desired histogram in yellow

superimposed with histogram of target curve, both nearly the same.

circle with 20 sample points and the histogram of a square (i.e. the
desired curve), with the same number of points (though this was
done only for simplicity). In Figure 8, the matching results are suc-
cessfully shown. The top row shows the input circle along with the
disparate histograms while the bottom shows the resulting output
curve and the matched histograms. Using n = 10 bins for the his-
togram and parameter settings wy = 0.05972, wo = 0.025678, the
algorithm is able to perturb the point on the circle into a new curve
with matching histograms. We notice that in this particular test
case, the output curve with matching histogram has been somewhat
morphed into the square. In more sophisticated experiments, we
seek a solution curve that isn’t morphed into the input curve as this
would be a trivial solution. However, this experiment is included
to show the success in matching histograms as well as to contrast it
with the next experiment.

6.2.3 Circle as desired

Here we perform a similar experiment with the desired distribu-
tion as that of a circle’s. The input curve used is a square, hence
we are performing the inverse of the previous experiment. We use
the same number of sample points as in the previous experiment,
namely 20. The results in Figure 9 show the successful matching
of the histograms. The top row shows the input square with the
disparate histograms while the bottom row shows the output curve
and the matched histograms. The parameter settings are n = 5,
wy = 0.025 and w2 = 0.0025. In this particular test case, the out-
put curve with matching histogram is not simply a morphing into
the input curve but rather another shape. It is more inline with what
we wish for: a curve close to the original (the square) with matching
histograms.

6.3 Multi-scale results

In the following two experiments, we show results using our multi-
scale approach with a hand drawn curve possessing fine-scale wig-
gles where we are able to transfer elements of the style.

6.3.1 Introducing fine-scale wiggles to a smooth curve

In this experiment, we wish to introduce fine-scale wiggles to a rel-
atively smooth curve. We do this by inputing the guide curve g at
the right of Figure 10 along with the hand drawn exemplar curve
e with the desired style on the left. We match at three scales be-
ginning with a sampling of 25 points on the input guide curve. We
experimented with n = 5 bins, w1 = 0.025 and w2 = 0.0045. We
optimized with a cap of 5 outer loop iterations using the multi-scale
approach described in section 5.2. We evaluated the experiment
based on the result of the histogram matching and visually to find
transferred elements of the desired style

6.3.2 Input circle with desired hand drawn curve

In this experiment we evaluate the effect of using the same exemplar
curve as in 6.3.1 along with a unit circle as the input guide curve.
We hope to achieve similar results as in 6.3.1, introducing fine scale
wiggles to the circle. The output curve ¢ in Figure 11 shows the
result of running our algorithm on four scales using n = 10 bins,
wi = 0.075 and we = 0.0085. We achieved these results with a
cap of 30 outer loop iterations.

7 Conclusions and Future Work

Our algorithm is able to perform histogram matching with the right
parameter settings for several cases of our experiments. It serves

6
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Figure 9: (a) Input square. (b) Desired histogram in yellow su-
perimposed with histogram of the input square in blue. (c) Output
curve after histogram matching. (d) Desired histogram in yellow
superimposed with histogram of target curve; both same in this
case.
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Figure 10: Input smooth guide curve g with input exemplar curve e
with desired style. Output of algorithm is target curve t possessing
visual elements of the style.

as a proof of concept that our approach at minimizing a distance
between histograms can be done by using the iterative re-weighing
scheme. Though we were able to produce some interesting results
with some transfer of style, we ran into difficulties by using discrete
polyline approximations of curves and having to resort to curvature
approximations.

A drawback of this measure is its sensitivity to the sampling den-
sity of the curve, which varies as we optimize. Furthermore while
optimizing the points of the polyline, curve information is lost and
cannot be recovered in order to resample evenly. Another drawback
of this approach is that when moving in the gradient directions,
perturbing one point in one direction and computing the discrete
curvature at this new point, it does not produce an accurate descrip-
tion of how a real curve behaves when a local part is modified. The
movement of one point changes slightly the sampling density on the
curve and what began as a uniformly sampled curve is no longer the
case. This leads to sharp corners being formed while optimizing as
a result of moving points on a polyline and does not guarantee for
them to move in unison. Ideally we seek to perturb various points

8

Figure 11: Input circle g with input exemplar curve e with desired

style. Output of algorithm is target curve t possessing visual ele-
ments of the style.

in unison so that the area local to this perturbation experiences a
smooth change.

The use of polylines and thus the curvature estimator or turning an-
gles leads to another issue in setting the number of bins in the his-
togram. Ideally we would like to have a large number of samples
that will give a good underlying representation of the curvature dis-
tribution. Due to sensitivity in sampling, histograms are not always
accurately representative of the distribution.

These drawbacks point us to using parametric curves, setting an
energy function over the control points of the curves instead. Us-
ing the control points, the analytic curve can be used during opti-
mization and resampled as necessary while using the exact curva-
ture to compute histograms. This will remove doubts on the curva-
ture measure and its dependence on sampling. The original control
points are available when storing curves in the initial steps of the
pipeline and can be used directly.

Using the analytic curvature we could sample as many points as re-
quired to generate a good distribution. Moreover, when optimizing
over control points, the movement of one control point would affect
the curve much more gracefully than the movement of one sample
point on a polyline, creating a break in its shape. A control point has
the potential to affect the locality of the curve in conjunction with
other control points, to create shapely wiggles with the constraint
of keeping control points between splines symmetric. This would
ensure C'* continuity at the join point. The energy could then be
computed by sampling the curve defined by those control points. A
natural extension to this would be to introduce sharp corners as in
Figure 3 (b, ) by relaxing the C'* continuity constraint and using a
separate bin in the histogram for “corners” (i.e. infinite curvature).

Finally, our multiscale approach is iterative, matching histograms
progressively from coarser to finer scales. Though this approach is
able to produce some interesting results, it does not in any way guar-
antee that by the time the final scale is matched that previous match-
ings will survive the process. Ideally we would like the final output
curve to have matching histograms at all scales with the exemplar
curve. To achieve this, histograms would need to be matched at
multiple scales simultaneously by perturbing control points, com-
puting the energy of the curve and comparing its multi-scale his-
tograms with the corresponding histograms of the exemplar curve.
A pyramid of all scales would be precomputed and stored to be ac-
cessed during optimization. We would then seek to find a curve
with similar histograms at all scales while remaining close to the
guide curve.
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