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Abstract

We propose a generalized proximal point algorithm (PPA), in the generic setting
of finding a root of a maximal monotone operator. In addition to the classical PPA,
a number of benchmark operator splitting methods in the PDE and optimization
literatures can be retrieved by this generalized PPA scheme. We establish the con-
vergence rate of this generalized PPA scheme under different conditions, including
estimating its worst-case convergence rate measured by the iteration complexity un-
der mild assumptions and deriving its linear convergence rate under certain stronger
conditions. Throughout our discussion, we pay particular attention to the special
case where the operator is the sum of two maximal monotone operators, and specify
our theoretical results in generic setting to this special case. Our result turns out
to be a general and unified study on the convergence rate of a number of existing
methods, and subsumes some existing results in the literature.

Key words: Convex Optimization, Proximal Point Algorithm, Operator Splitting
Methods, Convergence Rate

1 Introduction

Let H be a Hilbert space with the scalar product 〈·〉 and norm ‖ · ‖; T : H → 2H be
a set-valued maximal monotone operator. A fundamental mathematical problem is to
find a root of T :

0 ∈ T (v). (1)

To solve (1), the proximal point algorithm (PPA) tracking back to [10, 23, 24, 30] is
a classical scheme. Starting from v0 ∈ H, the iterative scheme of PPA reads as

0 ∈ T (v) +
1

λ
(v − vn), (2)
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where λ > 0 is a proximal parameter. In fact, the PPA plays a significant theoretical
and algorithmic role in many areas such as optimization, PDE and image processing;
and a number of celebrated algorithms turn out to be specific cases of the PPA when the
operator T is specified accordingly. Such examples include the augmented Lagrangian
method [20, 28] (see [30]), the Douglas-Rachford splitting method in [7, 22] (see [9]), the
split inexact Uzawa method [33], and so on.

Recall (see e.g. [29]) the resolvent operator of a set-valued monotone operator is

JTλ = (I + λT )−1. (3)

Then, the PPA scheme for solving (1) can be written as

vn+1 = JTλ (vn). (4)

That is, at each iteration it requires an exact evaluation of the resolvent operator JTλ
1. Note that the resolvent operator of a set-valued monotone operator is always single-
valued.

The problem (1) is an abstract model in the generic setting, and it can be specified
as various concrete forms with special structures for different applications. For example,
a representative case is that the operator T in (1) is the sum of two maximal monotone
operators A and B. In this case, the problem (1) becomes

0 ∈ A(v) +B(v). (5)

A special case of (5) is the least-squares problem with the l1 regularization:

arg min
v∈Rl
{‖v‖1 +

1

2τ
‖Sv − t‖22}, (6)

where S ∈ Rm×l is a matrix, t ∈ Rm, τ > 0; ‖ · ‖1 and ‖ · ‖2 represent the standard
l1 and l2 norms, respectively. To recover (6) by (5), just take A(v) = ∂(‖v‖1) and
B(v) = 1

τ S
T (Sv − t) where ∂(·) denotes the subdifferential of a convex but nonsmooth

function. A very useful application of (6) is when m � l. For this case, (6) can be
explained as finding a sparse vector satisfying the equations Sv = t.

Applying the PPA to solve (5) results in the iterative scheme

vn+1 = JA+Bλ (vn). (7)

As we have analyzed, the scheme (7) requires evaluating the resolvent operator JA+Bλ at

each iteration. For many applications, however, evaluating JA+Bλ is much harder than

evaluating JAλ and JBλ individually. In fact, notice that the minimization problem

arg min
v∈Rl
{‖v‖1 +

1

2τ
‖v − vn‖2}

with τ > 0 has a closed-form solution given by the soft-shrinkage operator (see e.g.
[4]). Then obviously the model (6) is such an example. Thus, for solving (5), we are

1In practice, it is often too restrictive to estimate JTλ exactly. Thus, inexact versions of the PPA
which require only solving (4) approximately subject to certain inexactness criteria have been intensively
studied in the literature, see e.g.[30] for a seminal work. Later we will also discuss inexact versions of
the generalized PPA to be proposed in Section 3.2.

2



more interested in designing an algorithm that requires only evaluating JAλ and JBλ , than

just using the original PPA scheme (4) straightforwardly which needs to estimate JA+Bλ
—- the so-called operator splitting methods are thus named. Two influential operator
splitting methods are the Douglas-Rachford splitting method (DRSM) in [7, 22]

un+1 ∈ JBλ
(
JAλ (I − λB) + λB

)
un; (8)

and the Peaceman-Rachford splitting method (PRSM) in [22, 27]

un+1 ∈ JBλ (I − λA)JAλ (I − λB)un. (9)

Since A and B could be set-valued, it is necessary to explain how to read the schemes
(8) and (9). For a given u0, we choose b0 ∈ Bu0 and denote v0 = u0 + λb0 such that
u0 = JBλ v0 (the existence of such a pair is unique by the Representation Lemma, see
[9]). The algorithms (8) and (9) become respectively

vn+1 = JAλ (2JBλ − I)vn + (I − JBλ )vn (10)

and

vn+1 = (2JAλ − I)(2JBλ − I)vn. (11)

Obviously, these two schemes (10) and (11) can be retrieved by the scheme

vn+1 = vn + γ
(
JAλ (2JBλ − I)vn − JBλ vn

)
(12)

with γ = 1 and γ = 2, respectively.
In this paper, we propose the following generalized PPA scheme for solving (1):

vn+1 = γJTλ (vn) + (1− γ)vn, (13)

where λ > 0 and γ > 0. The original PPA (4) is obviously a special case of (13) with
γ = 1. One more motivation of studying this generalized PPA scheme is that the formula
(12) can be further written as

vn+1 = γGλ,A,Bvn + (1− γ)vn

with
Gλ,A,B = JAλ (2JBλ − I) + I − JBλ .

Thus, let
Sλ,A,B := G−1λ,A,B − I,

or, more precisely (see [9]),

Sλ,A,B = (Gλ,A,B)−1 − I = {(v + λb, u− v)|(u, b) ∈ B, (v, a) ∈ A, v + λa = u− λb},

we have

Gλ,A,B = J
1
λ
Sλ,A,B

λ .

Therefore, the scheme (12) is a special case of (13) with T = 1
λSλ,A,B. Note that it has

been studied in [9] that Sλ,A,B defined above is maximal monotone when A and B are
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both maximal monotone 2. Aiming at extending the scheme (12), we are thus interested
in the generalized PPA scheme (13).

Let us take a look at a particular convex minimization problem:

min
x∈Rl

f(x) + g(Mx), (14)

where f : Rl 7→] − ∞,+∞] and g : Rm 7→] − ∞,+∞] are closed, convex and proper
functions; andM ∈ Rm×l. Obviously, the model (6) is a special case of (14). Applications
of the model (14) include a range of image restoration models with the total variation
regularization in [31]. For such an application, f denotes a data-fidelity term (e.g., the
least-squares term), g represents a regularization term (e.g., the l1-norm term to induce
sparsity) and M is the matrix representation of a discrete gradient operator (e.g. the
total variation operator in [31]). Introducing an auxiliary variable y = Mx, the model
(14) can be reformulated as

min
x∈Rl,y∈Rm

{f(x) + g(y) |;Mx− y = 0}. (15)

A benchmark solver for (15) is the alternating direction method of multipliers (ADMM)
proposed originally in [11]. Its iterative scheme reads as

xn+1 = arg min
x∈Rl

{
f(x) + 〈pn,Mx〉+

λ

2
||Mx− yn||2

}
,

yn+1 = arg min
y∈Rm

{
g(y)− 〈pn, y〉+

λ

2
||Mxn+1 − y||2

}
,

pn+1 = pn + λ(Mxn+1 − yn+1),

(16)

where pn is the Lagrange multiplier of (15) and λ plays the role of a penalty parameter.
Then, the generalized ADMM scheme was proposed in [9]

xn+1 = arg min
x∈Rl

{
f(x) + 〈pn,Mx〉+

λ

2
||Mx− yn||2

}
,

yn+1 = arg min
y∈Rm

{
g(y)− 〈pn, y〉+

λ

2
||γMxn+1 + (1− γ)yn − y||2

}
,

pn+1 = pn + λ(γMxn+1 + (1− γ)yn − yn+1),

(17)

with γ ∈ (0, 2). Obviously, (17) includes (16) as a special case with γ = 1. In [8], it was
shown that the generalized ADMM scheme (17) can be obtained by applying the scheme
(12) with γ ∈ (0, 2) to the dual of (14):

min
p∈Rm

{f∗(−MT p) + g∗(p)}, (18)

where “∗” denotes the Fenchel transform, see, e.g., [29]. Note that (18) is a special case
of (5) with A = ∂

(
f∗ ◦ (−MT )

)
and B = ∂ (g∗). Hence, both the schemes (16) and (17)

are special cases of the generalized PPA scheme (13) under consideration.

2If (x, y), (x̄, ȳ) ∈ Sλ,A,B , then it exists (u, b), (ū, b̄) ∈ B, (v, a), (v̄, ā) ∈ A such that v + λa = u− λb
and v̄ + λā = ū− νb̄. We thus have 〈x− x̄, y − ȳ〉 = λ〈a− ā, v − v̄〉+ λ〈b− b̄, u− ū〉 ≥ 0.
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Now, we explain the allowable range for γ in (13). As we just showed, in the literature
it is often required to choose γ ∈ (0, 2] and the case with γ > 2 is seldom addressed (to
the best of our knowledge). Note that for a root v of T , we have

||vn+1 −
1

2
(γv + (2− γ)vn)||2 = ||γ(JTλ (vn)− JTλ (v)) +

γ

2
(v − vn)||2

= ||γ
2

(v − vn)||2

+ γ2
(
||JTλ (vn)− JTλ (v)||2 − 〈JTλ (v)− JTλ (vn), v − vn〉

)
≤ ||γ

2
(v − vn)||2,

where the inequality is due to the firm non-expansiveness of JTλ (see e.g. [29]) and the
fact that v is a root of T . Therefore, a big difference between the cases γ ∈ (0, 2) and
γ = 2 occurs: If γ = 2, we only have ‖vn+1−v‖ ≤ ‖v−vn‖ and thus the sequence (vn)n≥0
might not be strictly contractive with respect to the root set of T . When γ ∈ (0, 2), the
above fact illuminates that vn+1 lies in the ball centered at 1

2(γv + (2− γ)vn) with the
radius ||γ2 (v−vn)||. This fact thus raises the difference in analyzing the convergence rate
of (13) for the cases γ ∈ (0, 2) and γ = 2. We use Figure 1 to illustrate this fact. Finally,
we notice that the case γ > 2 is also worth investigation although in the literature, to
the best of our knowledge, there is no rigorous convergence study for this case. The
necessity of studying the case where γ > 2 can be seen from the following example.

Example 1: Let T : x ∈ R2 → y ∈ R2 be defined as {y1 =
x31

1+x21
, y2 =

x32
1+|x2|3 }. Then

(0, 0) is a root of this T .

Let the scheme (13) be implemented with λ = 1 and the starting point (−2,−2). We
plot the iterative procedure of (13) with different values of γ in Figure 2, and we can see
for this example that γ > 2 can accelerate the convergence.

Our main purpose is to analyze the convergence rate for the generalized PPA scheme
(13) with a generic T and γ > 0. As we have mentioned, the value of γ results in different
iterative performance of the scheme (13). We thus will discuss three cases individually:
γ ∈ (0, 2), γ = 2 and γ ∈ (0, ν) with ν > 2. We first estimate a worst-case convergence
rate measured by the iteration complexity for (13). Note that as [25, 26], the worst-case
convergence rate of an iterative scheme can be measured by the iteration complexity,
which means precisely that we can find an approximate root of T with an accuracy
of O

(
1
n

)
after n iterations of (13). Then, we shall discuss under which conditions the

scheme (13) converges to a root of T on a linear rate.
We briefly review existing convergence rate results for some special cases of the

scheme (13). For some special optimization models, the ADMM which is a special case
of (13) with γ = 1 was shown to have a worst-case O

(
1
n

)
convergence rate in [17] (the

ergodic sense) and [18] (a nonergodic sense). Later, the O
(
1
n

)
convergence rate of the

ADMM was improved in [5] to an order of o
(
1
n

)
. Recently, the linear convergence of

ADMM for some special cases and under some stronger conditions has been discussed
in [2, 6, 15], and the linear convergence of some extended versions of the ADMM scheme
can be found in [16, 21]. A more comprehensive convergence rate analysis for operator
splitting methods was presented most recently in [32]. In [13], the author established a
worst-case O

(
1
n

)
convergence rate for the application of the classical PPA to a convex

minimization model, and an accelerated version with a worst-case O
(

1
n2

)
convergence

rate. For the generic DRSM scheme (8), a worst-case O
(
1
n

)
convergence rate can be
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Figure 1: The firm non-expansiveness of the JTλ implies that the iterate vn+1 lies in a
ball whose size depends on v and γ.

Figure 2: ||vn − v||2 with regard to the iterations in log scale. We compare various
choices of γ. For γ > 2 the algorithm is still convergent and more efficient than some
choices γ ∈ (0, 2].
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found in [19]. The linear convergence of the DRSM scheme (8) and PRSM scheme (9)
were discussed in [22] under some additional conditions on A and B. We also refer to
[12], where the convergence rates of the DRSM and PRSM schemes were discussed for
some special cases of (5).

The rest of this paper is organized as follows. In Section 2, some preliminaries are
presented. Then, we discuss the convergence rate of (13) in Sections 3-5 for different
cases of γ. In Section 6, we discuss the linear convergence rate of (13). Finally, we make
some conclusions in Section 7.

2 Preliminaries

In this section, we summarize some known results and then prove some basic propositions
which are useful for further discussion.

2.1 Yosida Approximation

We first recall the Yosida approximation operator and some of its properties. All results
in this subsection can be found in the literature, e.g., [3]. Since the proofs of the
properties to be stated are very short, we include them for completeness.

For a set-valued maximal monotone operator T :∈ H→ 2H, the Yoshida approxima-
tion operator (with parameter λ > 0) is defined as

Tλ =
1

λ
(I − JTλ ),

where JTλ is the resolvent operator of T . The Yosida approximation operator Tλ is

single-valued, and it is related to the operator T (JTλ ) (which could be set-valued) in the
following proposition.

Proposition 2.1 For a set-valued maximal monotone operator T :∈ H→ 2H, let JTλ be
the resolvent operator and Tλ be the Yosida approximation operator of T . Then, we have

∀v ∈ H, Tλ(v) ∈ T (JTλ (v)).

Proof According to the definitions of JTλ and Tλ, we have

Tλ(v) =
1

λ
(v − JTλ (v)) ∈ 1

λ
((I + λT )JTλ (v)− JTλ (v)) = T (JTλ (v)).

This completes the proof. �

The following identity is very useful in our analysis.

Proposition 2.2 For a set-valued maximal monotone operator T :∈ H → 2H, let JTλ
be the resolvent operator and Tλ be the Yosida approximation operator of T . Then,
∀v1, v2 ∈ H, we have

〈Tλ(v1)− Tλ(v2), v1 − v2〉 = λ||Tλ(v1)− Tλ(v2)||2 + 〈Tλ(v1)− Tλ(v2), J
T
λ (v1)− JTλ (v2)〉.
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Proof Using the definition of JTλ , we have

〈Tλ(v1)− Tλ(v2), v1 − v2〉 = 〈Tλ(v1)− Tλ(v2), λTλ(v1)− λTλ(v2)〉
+〈Tλ(v1)− Tλ(v2), J

T
λ (v1)− JTλ (v2)〉

= λ||Tλ(v1)− Tλ(v2)||2 + 〈Tλ(v1)− Tλ(v2), J
T
λ (v1)− JTλ (v2)〉.

The assertion is proved. �

Based on Propositions 2.1 and 2.2, we immediately have the following proposition.

Proposition 2.3 For a set-valued maximal monotone operator T :∈ H→ 2H, let JTλ be
the resolvent operator and Tλ be the Yosida approximation operator of T . Then, Tλ is
λ-firmly non-expansive and 1

λ -Lipschitz continuous.

Proof It follows from Proposition 2.1 that Tλ(v) ∈ T (JTλ (v)). We thus have

∀v1, v2 ∈ H, 〈Tλ(v1)− Tλ(v2), J
T
λ (v1)− JTλ (v2)〉 ≥ 0.

Then, substituting this inequality into the assertion of Proposition 2.2, we conclude
immediately that Tλ is λ-firmly non-expansive and 1

λ -Lipschitz continuous. �

The following proposition inspires us to measure the accuracy of an iterate to a root
of T by ‖Tλ(v)‖2.

Proposition 2.4 For a set-valued maximal monotone operator T :∈ H→ 2H, let Tλ be
the Yosida approximation operator of T . Then we have

∀λ > 0, 0 ∈ T (v) ⇔ Tλ(v) = 0.

Proof Because of the definition of Tλ, we know that u ∈ Tλ(v)⇔ u ∈ T (v−λu). Hence,
we have

0 ∈ T (v) ⇔ 0 ∈ T (v − λ0) ⇔ 0 ∈ Tλ(v).

But Tλ is indeed single-valued. Thus, we have Tλ(v) = 0. The proof is complete. �

Remark A natural way to measure the accuracy of an iterate vn is to calculate ‖T (vn)‖.
Here, we use ‖Tλ(vn)‖, rather than ‖T (vn)‖, as the measurement of accuracy for the
iterate vn to a root of T . In fact, we can show that ‖T (vn)‖ and ‖Tλ(vn)‖ are comparable
in measuring the accuracy for an iterate. First we use Proposition 2.1:

Tλ(vn) ∈ T (JTλ (vn)) = T (vn + (vn+1 − vn)/γ)

and thus have
min

tn∈T (vn+(vn+1−vn)/γ)
‖tn‖ ≤ ‖Tλ(vn)‖.

Moreover, Proposition 2.1 implies that

〈tn − Tλ(vn), vn − JTλ (vn)〉 ≥ 0, ∀tn ∈ T (vn),

which leads to
‖Tλ(vn)‖ ≤ ‖tn‖, ∀tn ∈ T (vn).

Hence, we have
min

t∈T (vn+(vn+1−vn)/γ)
‖t‖ ≤ ‖Tλ(vn)‖ ≤ min

t∈T (vn)
‖t‖

which shows that the accuracy of vn to a root of T can be measured by either ‖Tλ(vn)‖2
or ‖T (vn)‖2.
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2.2 Some preliminary properties

In this subsection, we prove some properties of the sequence (vn)n≥0 generated by the
proposed generalized PPA scheme (13), and they will be used often later.

First of all, by using the Yosida approximation operator, we can rewrite the scheme
(13) as

vn+1 = vn − γλTλ(vn). (19)

We first compare the difference of the proximity to a root of T (denoted by v) for
two consecutive iterates vn+1 and vn generated by (13).

Lemma 2.5 For a set-valued maximal monotone operator T :∈ H → 2H, let JTλ be the
resolvent operator and Tλ be the Yosida approximation operator of T . Let (vn)n≥0 be the
sequence generated by the generalized PPA scheme (13) and v be a root of T . For any
λ > 0, we have

||vn+1 − v||2 = ||vn − v||2 − γ(2− γ)λ2||Tλ(vn)||2 − 2γλ〈Tλ(vn), JTλ (vn)− JTλ (v)〉.

Proof Using the expression (19), we have

||vn+1 − v||2 = ||vn − v − γλTλ(vn)||2

= ||vn − v||2 + γ2λ2||Tλ(vn)||2 − 2γλ〈Tλ(vn), vn − v〉.

Then, applying the assertion of Proposition 2.2 and using the fact that Tλ(v) = 0, we
get

||vn+1 − v||2 = ||vn − v||2 − γ(2− γ)λ2||Tλ(vn)||2 − 2γλ〈Tλ(vn), JTλ (vn)− JTλ (v)〉.
The proof is complete. �

Remark Since T is maximal monotone and Tλ(v) ∈ T (JTλ (v)), we have

〈Tλ(vn), JTλ (vn)− JTλ (v)〉 ≥ 0.

Therefore, the assertion of Lemma 2.5 implies that the sequence (‖vn − v‖2)n≥0 is non-
increasing if γ ∈ (0, 2]. Moreover, the sequence (vn)n≥0 is strictly contractive with
respect to the root set of T when γ ∈ (0, 2). Based on this fact, the convergence of
the generalized PPA scheme (13) with γ ∈ (0, 2) can be readily derived by standard
techniques of contraction methods, see. e.g. [1].

In the following, we study the monotonicity of the sequence (‖Tλ(vn)‖2)n≥0 where
(vn)n≥0 is generated by the generalized PPA scheme (13). Recall we have shown that
‖Tλ(vn)‖2 can be used to measure the accuracy of vn to a root of T .

Lemma 2.6 For a set-valued maximal monotone operator T :∈ H → 2H, let JTλ be the
resolvent operator and Tλ be the Yosida approximation operator of T . Let (vn)n≥0 be the
sequence generated by the generalized PPA scheme (13) and v be a root of T . For any
λ > 0, we have

||Tλ(vn+1)||2 = ||Tλ(vn)||2 − 2− γ
γ
||Tλ(vn+1)− Tλ(vn)||2

− 2

γλ
〈Tλ(vn+1)− Tλ(vn), JTλ (vn+1)− JTλ (vn)〉.
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Proof Using the formula (13), we have

||Tλ(vn+1)||2 = ||Tλ(vn+1)− Tλ(vn)||2 + ||Tλ(vn)||2 + 2〈Tλ(vn+1)− Tλ(vn), Tλ(vn)〉

= ||Tλ(vn+1)− Tλ(vn)||2 + ||Tλ(vn)||2 − 2

γλ
〈Tλ(vn+1)− Tλ(vn), vn+1 − vn〉.

Then, applying the assertion of Proposition 2.2, we get

||Tλ(vn+1)||2 = ||Tλ(vn)||2 − 2− γ
γ
||Tλ(vn+1)− Tλ(vn)||2

− 2

γλ
〈Tλ(vn+1)− Tλ(vn), JTλ (vn+1)− JTλ (vn)〉.

The proof is complete. �

Remark Recall Proposition 2.1 and the monotonicity of T . We know that

〈Tλ(vn+1)− Tλ(vn), JTλ (vn+1)− JTλ (vn)〉 ≥ 0.

Hence, Lemma 2.6 shows that the sequence {||Tλ(vn)||}2 is non-increasing when γ ∈
(0, 2].

Finally, we recall Lemma 2.1 in [5] which is useful for refining the O
(
1
n

)
convergence

rate to be established to an order of o
(
1
n

)
. We omit the proof which can be found in [5].

Lemma 2.7 Let (un)n be a non-negative, monotonically non-increasing and summable
sequence (

∑∞
n=1 un < +∞). Then we have un = o

(
1
n

)
.

3 Case 1: γ ∈ (0, 2)

Now, we start to estimate the convergence rate of the generalized PPA scheme (13).
We first focus on estimating its worst-case convergence rate measured by the iteration
complexity without additional assumptions on the operator T . As we have mentioned,
the techniques to derive the worst-case convergence rate for different values of γ are
different (e.g., it follows from Lemma 2.6 that the sequence (vn)n≥0 generated by (13)
is contractive with respect to the root set of T when γ ∈ (0, 2], but it does not hold
when γ > 2). Thus we discuss the cases γ ∈ (0, 2), γ = 2 and γ ∈ (0, ν) with ν > 2
individually in the coming sections.

3.1 Convergence rate with the exact evaluation of JTλ

We first assume that the resolvent operator JTλ can be evaluated accurately at any point
for implementing the generalized PPA scheme (13). For this case, we can estimate the
worst-case convergence rate of (13) in terms of ‖Tλ(vn)‖2, as shown in the following
theorem.
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Theorem 3.1 For a set-valued maximal monotone operator T :∈ H → 2H, let Tλ be
the Yosida approximation operator of T . Let (vn)n≥0 be the sequence generated by the
generalized PPA scheme (13) with γ ∈ (0, 2) and v be a root of T . For any λ > 0, we
have

||Tλ(vn)||2 ≤ ||v0 − v||2

γ(2− γ)λ2(n+ 1)
.

Proof It follows from Lemma 2.5 and its remark that

||vn+1 − v||2 ≤ ||vn − v||2 − γ(2− γ)λ2||Tλ(vn)||2.

Summing this inequality over i = 0, 1, 2, · · · , n, we get

γ(2− γ)λ2
n∑
i=0

||Tλ(vi)||2 ≤ ||v0 − v||2 − ||vn+1 − v||2

≤ ||v0 − v||2.

Then, it follows from Lemma 2.6 that

||Tλ(vi+1)||2 ≤ ||Tλ(vi)||2

when γ ∈ (0, 2). Thus, we have

||Tλ(vn)||2 ≤ ||v0 − v||2

γ(2− γ)λ2(n+ 1)
.

The proof is complete. �

Recall that ‖Tλ(vn)‖2 can be used to measure the accuracy of vn to a root of T (see
Proposition 2.4). Thus, Theorem 3.1 shows that after n iterations, the iterate generated
by (13) with γ ∈ (0, 2) produces an approximate root of T with an accuracy of O

(
1
n

)
.

Thus, a worst-case O
(
1
n

)
convergence rate measured by the iteration complexity is

established for (13) with γ ∈ (0, 2). This is an extended result of the work [18] which is
only for the special scheme (16). Moreover, note that the sequence (||Tλ(vn)||2)n≥0 fulfills
all the requirements of Lemma 2.7. Therefore we can refine the assertion in Theorem
3.1 as

||Tλ(vn)||2 = o

(
1

n

)
,

which means a worst-case o
(
1
n

)
convergence rate of (13) with γ ∈ (0, 2).

3.2 Convergence rate with an estimate of JTλ

We then discuss the case where the resolvent operator JTλ can only be estimated ap-
proximately. This consideration makes senses for many applications, and it has inspired
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the seminal work of approximate PPA in [30]. Let us consider an inexact version of the
generalized PPA scheme (13) with γ ∈ (0, 2) as following:

vn+1 = γwn + (1− γ)vn
s.t ||wn − JTλ (vn)|| ≤ εn.

(20)

In (20), wn represents an estimate of JTλ at the point vn and εn denotes the accuracy of
this estimate. Choosing different εn leads to different inexact versions of the generalized
PPA (13), and there are many ways to design appropriate inexact criteria to control the
accuracy εn. In fact, some well-studied criteria in the PPA literature (e.g. [14, 30]) can
be used here for (20). Also, there are alternative criteria which do not involve JTλ (vn) and
thus can be implemented directly. However, for the succinctness and a clearer exposition
of our main result, we just discuss an inexact criterion analogous to that in [30] for the
classical PPA (4). This is a conceptual criterion but also a fundamental one scalable to
other existing criteria in the PPA literature.

A necessary rule of choosing εn is that εn → 0 when n → +∞, i.e., the accuracy of
solving the subproblems should tend to more and more accurate as the iteration goes
on. We choose εn as

∀n ≥ 0, εn = O

(
1

(n+ 1)α

)
, α > 1, (21)

and then estimate the convergence rate for the inexact version of generalized PPA (20)
with the criterion (21).

For notational simplicity, we denote

E1 =

∞∑
i=0

εi and E2 =

∞∑
i=0

ε2i .

With the choice (21), obviously it holds that

E1 < +∞ and E2 < +∞.

Now, we derive a worst-case convergence rate for the scheme (20) with γ ∈ (0, 2) and
the criterion (21) in the following theorem.

Theorem 3.2 For a set-valued maximal monotone operator T :∈ H→ 2H, let Tλ be the
Yosida approximation of T . Let (vn)n≥0 be the sequence generated by the inexact version
of generalized PPA scheme (20) with γ ∈ (0, 2) and the criterion (21), and v be a root
of T . For any λ > 0, we have

||Tλ(vn)||2 = O

(
1

n+ 1

)
, ∀n ≥ 0.

Proof We denote by v̄n+1 the iterate generated by the generalized PPA (13). That is,

v̄n+1 = γJTλ (vn) + (1− γ)vn.

By Lemma 2.5 we have

||v̄n+1 − v||2 ≤ ||vn − v||2 − γ(2− γ)λ2||Tλ(vn)||2.

12



Now we find a bound for the proximity of vn+1 to v. In fact, the scheme (20) shows
||vn+1 − v̄n+1|| ≤ γεn. So, we have

||vn+1 − v|| ≤ ||v̄n+1 − v||+ ||vn+1 − v̄n+1||
≤ ||v̄n+1 − v||+ γεn

≤ ||v0 − v||+
n∑
i=0

γεi

≤ ||v0 − v||+ γE1.

Moreover, simple manipulation gives us

||vn+1 − v||2 = ||v̄n+1 − v||2 + ||vn+1 − v̄n+1||2 + 2〈v̄n+1 − v, vn+1 − v̄n+1〉
≤ ||v̄n+1 − v||2 + ||vn+1 − v̄n+1||2 + 2||v̄n+1 − v|| ||vn+1 − v̄n+1||
≤ ||vn − v||2 − γ(2− γ)λ2||Tλ(vn)||2 + γ2ε2n + 2γεn(||v0 − v||+ γE1).

Summarizing this inequality over i = 0, 1, · · · , n, we get

γ(2− γ)λ2
n∑
i=0

||Tλ(vi)||2 ≤ ||v0 − v||2 − ||vn+1 − v||2 +
n∑
i=0

(
γ2ε2i + 2γεi(||v0 − v||+ γE1)

)
≤ (||v0 − v||+ γE1)

2 + γ2(E2 + E2
1).

We also have

||Tλ(vn+1)||2 = ||Tλ(vn)||2 + ||Tλ(vn+1)− Tλ(vn)||2 + 2〈Tλ(vn+1)− Tλ(vn), Tλ(vn)〉

≤ ||Tλ(vn)||2 − 2− γ
γ
||Tλ(vn+1)− Tλ(vn)||2

+
2

λ
||Tλ(vn+1)− Tλ(vn)|| ||wn − JTλ (vn)||.

Using the Young inequality on the last term above, we get

2

λ
||Tλ(vn+1)− Tλ(vn)|| ||wn − JTλ (vn)|| ≤ 2− γ

γ
||Tλ(vn+1)− Tλ(vn)||2 +

γ

2− γ
ε2n
λ2
.

Therefore, we have

||Tλ(vn+1)||2 ≤ ||Tλ(vn)||2 +
γ

2− γ
ε2n
λ2
. (22)

Combining this equation from p to n− 1 yields

||Tλ(vn)||2 ≤ ||Tλ(vp)||2 +
γ

2− γ

n−1∑
j=p

ε2j
λ2
.

Hence, we have

||Tλ(vn)||2 ≤ (||v0 − v||+ γE1)
2 + γ2(E2 + E2

1)

γ(2− γ)λ2(n+ 1)
+ γ

∑n
i=0

∑n−1
j=i ε

2
j

(2− γ)λ2(n+ 1)
.

13



As εn satisfies the requirement (21), there exists a constant K > 0 such that

n∑
i=0

n−1∑
j=i

ε2j ≤ K
∫ n+1

0

∫ n+1

y
(x+ 1)−2α dx dy

≤ K

2(2α− 1)(α− 1)
, since α > 1.

Finally, we have

||Tλ(vn)||2 = O

(
1

n+ 1

)
,

and the proof is complete. �

Theorem 3.2 thus shows that the accuracy of vn to a root of T (measured by
‖Tλ(vn)‖2) is in order of O

(
1
n

)
. A worst-case O

(
1
n

)
convergence rate is thus estab-

lished for the inexact version of generalized PPA (20). We can also refine the result in
Theorem 3.2 to an order of o

(
1
n

)
. In fact, Lemma 2.7 is not applicable for this purpose.

But, using (22), we have

n||Tλ(v2n)||2 ≤
2n∑
i=n

||Tλ(vi)||2 +
γ

(2− γ)λ2

2n∑
i=n

2n−1∑
j=i

ε2j .

As εn satisfies the requirement (21), the right-hand term above goes to zero as n goes
to infinity. Thus, we have

||Tλ(vn)||2 = o

(
1

n

)
.

A worst-case o
(
1
n

)
convergence rate is thus established for the inexact version of gener-

alized PPA (20) with the criterion (21).

Remark The analysis in Theorem 3.2 also shows an interesting fact: If the accuracy εn
is increased rapidly enough, e.g., α is increased rapidly enough, the inexact version of
generalized PPA (13) admits a sublinear convergence rate.

4 Case 2: γ = 2

Now, we discuss the convergence rate of the generalized PPA (13) with γ = 2. As we
have shown in the introduction and Lemma 2.5, this case differs from the case γ ∈ (0, 2)
significantly in that its sequence might not be strictly contractive with respect to the
root set of T . This makes the convergence analysis much more challenging. Therefore,
in this section we first analyze some convergence issues for this case and then derive its
convergence rate under one additional assumption on T . Note that we only discuss the
exact version (13) where JTλ is assumed to be evaluated exactly, and skip the discussion

on inexact versions of (13) with estimates of JTλ .
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4.1 Convergence issues

In Lemma 2.5, we show that the sequence generated by the generalized PPA scheme
(13) is strictly contractive with respect to the root set of T if γ ∈ (0, 2). Thus, the
convergence for this case can be easily established, see [9, 19] for more details. Let us
now explain more why the case with γ = 2 deserves special consideration. In fact, by
Lemma 2.5, we know that if γ = 2, we have

||vn+1 − v||2 = ||vn − v||2 − 4λ〈Tλ(vn), JTλ (vn)− JTλ (v)〉.

Hence, whether or not the new iterate vn+1 is closer to a root of T than the previous
iterate vn is determined by the scalar product

〈Tλ(vn), JTλ (vn)− JTλ (v)〉. (23)

If it happens that this scalar product remains zero during the iteration, then the sequence
(vn)n≥0 generated by (13) with γ = 2 maintains a constant distance from a root of T
and it never converges.

To compare the difference of convergence for the cases where γ ∈ (0, 2) and γ = 2,
let us consider the following example.

Example 2 Let T : v ∈ R2 → u ∈ R2 be defined as {y1 = −x2, y2 = x1}. The root of
this T is (0, 0).

It is easy to verify that 〈T (v), v〉 = 0 for all v ∈ R2. Thus, if γ takes 2 in (13),
all the iterates generated by (13) maintain a constant distance from (0, 0). However, if
γ ∈ (0, 2), the sequence generated by (13) converges to (0, 0) (in fact, the convergent
rate is linear). In Figure 3, we plot the difference of convergence for the cases where
γ = 1 and γ = 2 in (13).

Considering the analysis before, we thus need to pose certain additional assumptions
on T in order to ensure the convergence of the generalized PPA (13) with γ = 2. Our
assumption is as follows.

Assumption 1 Let T : H → 2H be set-valued maximal monotone; JTλ be the resolvent
operator, Tλ be the Yosida approximation operator, and v be a root of T . The following
property is assumed to hold for T :

∀u ∈ H, 〈Tλ(u), JTλ (u)− JTλ (v)〉 = 0 ⇒ 0 ∈ T (JTλ (u)).

4.2 Convergence rate

In this subsection, we derive a worst-case convergence rate for the generalized PPA
(13) with γ = 2 under Assumption 1. Different from the case where γ ∈ (0, 2), the
convergence rate to be derived is in the ergodic sense.

Under Assumption 1, the scalar product 〈Tλ(vn), Jλ(vn) − Jλ(v)〉 can be used to
measure the accuracy of JTλ (vn) to a root of T . We are interested in the average of
〈Tλ(vn), Jλ(vn)− Jλ(v)〉 over all the first n+ 1 iterations. That is, let

δn :=
1

n+ 1

n∑
i=0

〈Tλ(vi), J
T
λ (vi)− JTλ (v)〉, (24)

we will find a bound of δn in the following theorem.
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Figure 3: T : v ∈ R2 → u ∈ R2 is defined as {y1 = −x2, y2 = x1}. Starting point:
(−2,−2); and λ = 1 in (13). The arrows represent the vector field of T . The case
γ = 2 (in plain line) does not converge and the sequence has four cluster points (corner
points); and the case γ = 1 (in dash line) converges to (0, 0).

Theorem 4.1 For a set-valued maximal monotone operator T :∈ H → 2H, let δn be
defined in (24). Let (vn)n≥0 be the sequence generated by the generalized PPA scheme
(13) with γ = 2 and v be a root of T . For any λ > 0, we have

∀n ≥ 1, δn ≤
||v0 − v||2

4λ(n+ 1)
.

Proof The assertion is obtained by setting γ = 2 in Lemma 2.5 and taking the average
over all the first n+ 1 iterates. The proof is complete. �

Theorem 4.1 shows a worst-case O
(
1
n

)
convergence rate for the generalized PPA

scheme (13) with γ = 2 in the ergodic sense. On the other hand, notice that the
sequence (〈Tλ(vn), JTλ (vn)−JTλ (v)〉)n≥0 is in general not monotone. Thus the conclusion
in Lemma 2.7 is not applicable. However, if we take the minimum over the set {1...n},
and uses Lemmas 2.5 and 2.7, then we obtain

min
i∈{1...n}

〈Tλ(vi), J
T
λ (vi)− JTλ (v)〉 = o

(
1

n

)
,

which implies a worst-case o
(
1
n

)
convergence rate of (13) with γ = 2.

5 Case 3: γ ∈ (0, ν) with ν > 2

As we have shown, for some cases the generalized PPA scheme (13) with γ > 2 can
converge faster. It is thus necessary to discuss the convergence rate of (13) which allows

16



γ to be greater than 2. Again, we skip the discussion for inexact versions of (13). To the
best of our knowledge, even for the special cases (17) for solving the convex optimization
model (14), there is no rigorous convergence analysis when γ > 2.

Due to the more aggressive range of γ, it is expected that certain additional assump-
tions onto T should be posed in order to derive the same worst-case convergence rate
as the cases with narrower ranges of γ. Our analysis is conducted under the following
assumption.

Assumption 2 Let T : H → 2H be set-valued maximal monotone and F-firmly non-
expansive, i.e.,

〈T (v1)− T (v2), v1 − v2〉 ≥ F ||T (v1)− T (v2)||2, ∀v1, v2 ∈ H.

Remark Let us specify Assumption 2 to some special cases of T .

• Scheme (12)
In this case, T = 1

λSλ,A,B. Then, Sλ,A,B is F-firmly (with F = 1
2λ min(α, β))

non-expansive when one of the following conditions is true:

1. A is α-firmly non-expansive and B is β-firmly non-expansive;

2. A is α-strongly monotone and B is β-strongly monotone.

• Convex optimization model (14)
For (14), Assumption 2 is satisfied when one of the following conditions is met:

1. f and g are strongly convex;

2. M is full rank, ∇f and ∇g are Lipschitz continuous.

Under Assumption 2, we can estimate a worst-case O
(
1
n

)
convergence rate measured

by the iteration complexity for (13) where γ could be greater than 2.

Theorem 5.1 Let T : H→ 2H be set-valued maximal monotone and Assumption 2 hold,
(vn)n≥0 be the sequence generated by the generalized PPA scheme (13) with γ ∈ (0, 2+ 2F

λ )
and v be a root of T . Then we have

||Tλ(vn)||2 ≤ ||v0 − v||2

(2(λ+ F )− λγ)λγ(n+ 1)
.

Proof Combining Assumption 2 with Lemma 2.5, we have

(2(λ+ F )− λγ)λγ||Tλ(vn)||2 ≤ ||vn − v||2 − ||vn+1 − v||2.

Summing all the inequalities for i = 0, 1, · · · , n, we get

n∑
i=0

||Tλ(vi)||2 ≤
||v0 − v||2

(2(λ+ F )− λγ)λγ
.

Moreover, it follows from Assumption 2 and Lemma 2.6 that

||Tλ(vn+1)||2 ≤ ||Tλ(vn)||2 −
(

2− γ
γ

+
2F

γλ

)
||Tλ(vn+1)− Tλ(vn)||2,
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so (||Tλ(vn)||2)n≥0 is non-increasing when 0 < γ < 2 + 2F
λ . Finally, we have

(n+ 1)||Tλ(vn)||2 ≤
n∑
i=0

||Tλ(vi)||2 ≤
||v0 − v||2

(2(λ+ F )− λγ)λγ
.

The proof is complete. �

Theorem 5.1 indicates that the generalized PPA (13) still holds a worst-case O
(
1
n

)
convergence rate (in term of ‖Tλ(vn)‖2) even if γ ∈ (2, 2 + 2F

λ ). Furthermore, it is easy

to check that the sequence (||Tλ(vn)||2)n≥0 fulfils all the requirements of Lemma 2.7.
Therefore, we can refine the result in Theorem 5.1 to

||Tλ(vn)||2 = o

(
1

n

)
,

which means a worst-case o
(
1
n

)
convergence rate of (13) with γ ∈ (0, 2 + 2F

λ ).

Moreover, the bound in Theorem 5.1 is minimized when γ = 1 + F
λ . This fact

provides a useful strategy of choosing an appropriate γ provides that F is known when
implementing the scheme (13). To see if γ = 1 + F

λ can accelerate convergence, we use

Example 1 again. For this example, F = 9
8 . In Figure 4, we implement the scheme (13)

with the initial iterate (−2,−2) and λ = 1, and compare the convergence with different
values of γ. We can see that the choice γopt = 1 + F

λ = 2.125 outperforms other choices
such as 0.5, 1, or 2.

Finally, we would mention that γ ∈ (0, 2 + 2F
λ ) is just a sufficient condition to ensure

the worst-case O
(
1
n

)
convergence rare of (13) in Theorem 5.1. For some applications,

the scheme (13) with γ > 2 + 2F
λ also works very well, even though its convergence

rate is not yet provable. Nevertheless, we illustrate this fact by the same example just
mentioned. For this example, we have 2 + 2F

λ = 4.25. In fact, the scheme (13) converges
even for some values of γ > 4.25, and sometimes values larger than 4.25 are even faster.
In Figure 5, we plot the convergence performance for some cases.

6 Linear convergence

In Sections 3-5, we have analyzed worst-case convergence rates for the generalized PPA
(13) with various choices of γ under mild conditions. When the operator T has special
properties, we expect that the scheme (13) has sharper convergence rates. In this section,
we discuss the linear convergence rate of (13) under certain additional assumptions on
T . We split the discussion into two cases γ ∈ (0, 2) and γ ∈ (0, ν) with ν ≥ 2. Note
that we combine the cases γ = 2 and γ ∈ (0, ν) with ν > 2 in the discussion of linear
convergence, as they share the same analysis. Again, throughout our discussion we
specify the conditions on T in the generic setting (1) to the specific settings (5) and
(14).

6.1 Case 1: γ ∈ (0, 2)

In this subsection, we focus on the case where γ ∈ (0, 2). Let us make the following
assumption.
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Figure 4: ||Tλ(vn)||2 with regard to the iterations in log scale. We compare the choices
of γ = 0.5, 1, 2 with γopt = 1 + F

λ to minimize the bound obtained in Theorem 5.1.

Figure 5: ||Tλ(vn)||2 with regard to the iterations in log scale. We compare γopt =

1 + F
λ = 2.125, γ = 4.1, γmax = 2 + 2F

λ = 4.25 and γ = 5.29.
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Assumption 3 Let T : H→ 2H be set-valued maximal monotone and α-strongly mono-
tone, i.e.

〈T (v1)− T (v2), v1 − v2〉 ≥ α||v1 − v2||2,

with α > 0.

Note that when T is α-strongly monotone, the linear convergence of PPA (4), i.e.,
the special case of (13) with γ = 1, has been shown in [30]. Here, we shall show the
same convergence rate under the same assumption, but for the generalized PPA scheme
(13) with γ ∈ (0, 2). We first prove a proposition of JTλ under Assumption 3.

Proposition 6.1 Let T : H → 2H be set-valued maximal monotone and Assumption 3
hold. Then we have

||JTλ (vn)− JTλ (v)|| ≤ (1 + αλ)−1||vn − v||.

Proof Let u := JTλ (v). Then we have

||v − v̄||2 = ||u− ū||2 + λ2||T (u)− T (ū)||2 + 2λ〈T (u)− T (ū), u− ū〉.

Using Assumption 3, we have

〈T (u)− T (ū), u− ū〉 ≥ α‖u− ū‖2.

So, together with ||T (u)− T (ū)|| ≥ α||u− ū||, we obtain

||v − v̄||2 ≥ (1 + αλ)2||u− ū||2

= (1 + αλ)2||JTλ (v)− JTλ (v̄)||2.

The proof is complete. �

Now, we are ready to prove the linear convergence rate for the scheme (13) with
γ ∈ (0, 2) under Assumption 3.

Theorem 6.2 Let T : H→ 2H be set-valued maximal monotone and Assumption 3 hold.
Let the sequence (vn)n≥0 be generated by (13) with γ ∈ (0, 2). Then, (vn)n≥0 converges
to a root of T on a linear rate. More specifically, we have

• If 0 < γ ≤ 1 + 1
1+2αλ , then

||vn − v|| ≤ Kn||v0 − v||

where K =
∣∣∣1− γλα

1+λα

∣∣∣; and

• If 1 + 1
1+2αλ ≤ γ < 2 then

||vn − v|| ≤ |1− γ|n||v0 − v||.
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Proof Recall the expression (13). We have

||vn+1 − v||2 =(1− γ)2||vn − v||2 + γ2||JTλ (vn)− JTλ (v)||2

+ 2γ(1− γ)〈JTλ (vn)− JTλ (v), vn − v〉. (25)

This identity is our basis of proof. To know the sign of the last scalar product, we need
to consider two cases separately: 1 ≤ γ < 2 and 0 < γ < 1.

• The case 1 ≤ γ < 2. For this case, we can rewrite (25) as

||vn+1 − v||2 = (1− γ)2||vn − v||2 + (γ2 + 2γ(1− γ))||JTλ (vn)− JTλ (v)||2

+ 2λγ(1− γ)〈JTλ (vn)− JTλ (v), Tλ(vn)〉.

Since 1−γ ≤ 0, using the strong monotonicity of T and Proposition 2.1, we obtain

||vn+1 − v||2 ≤ (1− γ)2||vn − v||2 + (γ2 + 2γ(1− γ)(1 + λα))||JTλ (vn)− JTλ (v)||2.
(26)

Now we should consider the sign of (γ2+2γ(1−γ)(1+λα)) and discuss the following
cases individually.

– If γ ≥ 1 + 1
1+2αλ , then (γ2 + 2γ(1− γ)(1 + λα)) is negative. So, we have

||vn+1 − v||2 ≤ (1− γ)2||vn − v||2,

which ensures a linear convergence rate (recall that γ < 2).

– If γ ≤ 1 + 1
1+2αλ , then using Proposition 6.1 we have

||vn+1 − v||2 ≤ K2||vn − v||2,

with K2 =
(

1− γλα
1+λα

)2
. Obviously, when γ < 1 + 1

1+2αλ , it is ensured that

K2 < 1, and a linear convergence rate is ensured.

• The case 0 < γ ≤ 1. For this case, we have

2λγ(1− γ)〈JTλ (vn)− JTλ (v), Tλ(vn)〉 ≥ 0.

Using Cauchy-Schwarz inequality, we can show that

||vn+1 − v||2 ≤(1− γ)2||vn − v||2 + γ2||JTλ (vn)− JTλ (v)||2

+ 2γ(1− γ)||JTλ (vn)− JTλ (v)|| ||vn − v||
≤K2||vn − v||2

where K =
∣∣∣1− γλα

1+λα

∣∣∣.
The proof is complete. �
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Finally, we specify some interesting cases where Assumption 3 is satisfied and thus
the linear convergence of (13) is ensured.

• Scheme (12)
In this case, T = 1

λSλ,A,B. Then Sλ,A,B is α-strongly monotone (with α =
1
2 min(λν, βλ )) when one of the following conditions is satisfied:

1. A is ν-strongly monotone and B is β-firmly non-expansive;

2. B is ν-strongly monotone and A is β-firmly non-expansive.

Note that the linear convergence of the special DRSM and PRSM schemes has
been shown when B is both Lipschitz and strongly monotone in [22]. Here, in
order to show the linear convergence for the general case (13), we need the firm
non-expansiveness of at least one operator; this is an assumption stronger than the
Lipschitz continuity.

• Convex optimization model (14)
For the model (14), Assumption 3 is satisfied if one of the following conditions is
satisfied:

1. M is full rank, f is convex and smooth and ∇f is Lipschitz continuous, and
g is strongly convex;

2. f is strongly convex, g is convex and smooth and ∇g is Lipschitz continuous.

6.2 Case 2: γ ∈ (0, ν) with ν ≥ 2

In this subsection, we discuss the linear convergence of the generalized PPA (13) where γ
is allowed to be greater than 2. Since γ is allowed to be in a wider range, the conditions
to ensure the linear convergence of (13) is expected to be stronger. First, we would show
that Assumption 3 is not sufficient to ensure the linear convergence of (13) when γ ≥ 2.
In fact, recall the inequality (26). If γ ≥ 1 + 1

1+2αλ , then we have

γ2 + 2γ(1− γ)(1 + λα) ≤ 0.

Then, the inequality (26) does not give us any information about the reduction of the
proximity to v, and thus we cannot establish the linear convergence rate for (13) in this
case. Recall Example 2, which shows that the generalized PPA (13) is divergent with
γ = 2 while linearly convergent with γ ∈ (0, 2) (see Figure 3).

We need the following assumption.

Assumption 4 Let T : H→ 2H be set-valued maximal monotone and L-Lipschitz con-
tinuous, i.e.,

∀(v1, v2) ∈ H×H, ||T (v1)− T (v2)|| ≤ L||v1 − v2||,

with L > 0.

With Assumption 4, we can show a useful proposition of JTλ .

Proposition 6.3 Let T : H → 2H be set-valued maximal monotone and Assumption 4
hold. Then, we have

||JTλ (vn)− JTλ (v)|| ≥ (1 + Lλ)−1||vn − v||.
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Proof Let u := JTλ (v). Then, it is easy to derive that

||v − v̄||2 = ||u− ū||2 + λ2||T (u)− T (ū)||2 + 2λ〈T (u)− T (ū), u− ū〉
≤ (1 + Lλ)2||u− ū||2

= (1 + Lλ)2||JTλ (v)− JTλ (v̄)||2.

The proof is complete. �

Now, under Assumptions 3 and 4 we are ready to establish the linear convergence
rate for the generalized PPA (13) where γ could be greater than 2.

Theorem 6.4 Let T : H → 2H be set-valued maximal monotone, Assumptions 3 and 4
hold. Then, the sequence (vn)n≥0 generated by he generalized PPA (13) converges to a
root of T on a linear rate when γ ∈ (0, 2 + 2α

L(2+λL)−2α). More specifically, we have

• If 0 < γ ≤ 1 + 1
1+2αλ , then

||vn − v|| ≤ Kn||v0 − v||,

where K =
∣∣∣1− γλα

1+λα

∣∣∣.
• If 1 + 1

1+2αλ ≤ γ < 2 + 2α
L(2+λL)−2α , then

||vn − v|| ≤ Kn||v0 − v||,

where K =
(

(1− γ)2 + γ2+2γ(1−γ)(1+λα)
(1+Lλ)2

) 1
2 ∈ (0, 1).

Proof The proof of the first case is the same as that of Theorem 6.2. Now, we prove
the second case. Since γ > 1, the inequality (26) holds:

||vn+1 − v||2 ≤ (1− γ)2||vn − v||2 + (γ2 + 2γ(1− γ)(1 + λα))||Jλ(vn)− Jλ(v)||2.

When γ ≥ 1+ 1
1+2αλ , then (γ2+2γ(1−γ)(1+λα)) is negative. So we use Proposition

6.3 and obtain the following:

||vn+1 − v||2 ≤
(

(1− γ)2 +
γ2 + 2γ(1− γ)(1 + λα)

(1 + Lλ)2

)
||vn − v||2

= K2||vn − v||2.

Note K < 1 whenever γ < 2 + 2α
L(2+λL)−2α . The proof is complete. �

Remark The bound given in Theorem 6.4 is actually tight. This can be easily checked
if we take T = αI where α is the strong monotone modulus of T .
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Theorem 6.4 also indicates that an informative choice of γ is

γ = max(1 +
1

1 + 2αλ
, 1 +

α

2(L− α) + L2λ
)

in order to minimize the basis K in the bounds derived. For the case where L > 1.5α,
we know that

1 +
1

1 + 2αλ
> 1 +

α

2(L− α) + L2λ
.

Thus it is suggested to choose γ = 1 + 1
1+2αλ which is independent of the Lipschitiz

continuous constant L. Nevertheless, this is just a general suggestion to choosing γ. At
the same time, if we know enough information of L and α (which does not take place
often in practice), the optimal choice of γ might not coincide with this general rule. For
instance, if we know that the difference of these two constants L and α is very big, then
γ = 1 is already a good choice. We use the following example for illustration.

Example 3 Let T be a linear mapping defined on R2, i.e., T (v) =

(
α β
−β α

)
v where α

and β being real positive numbers.

Then Assumptions 3 and 4 are both satisfied. In fact, we have

〈T (v1)− T (v2), v1 − v2〉 = α||v1 − v2||2

and
||T (v1)− T (v2)|| = L||v1 − v2||,

with L =
√
α2 + β2. For this example, the generalized PPA (13) reduces to

||vn|| =
∣∣∣∣(1− γ)2 +

γ2 + 2γ(1− γ)(1 + λα)

1 + 2λα+ λ2L2

∣∣∣∣n ||v0||.
Then, the optimal choice of γ is obviously γopt := 1 + α

λL2 . Therefore, if α � L, the
optimal choice of γ should be very close 1, which is different from the general rule
suggested by Theorem 6.4: 1 + 1

1+2αλ .

We first choose α = 1 and β = 0.5. Then, α ≈ L. To implement (13), we choose
λ = 1 and (1, 1) as the starting point. In this case, the choice γa := 1+ α

2(L−α)+L2λ
= 1.67

suggested by Theorem 6.4 works very well. In fact, it works almost the same as the real
optimal choice γopt := 1 + α

λL2 = 1.8. In Figure 6, we plot the convergence performance
of the scheme (13) with γa and γopt. For comparison, we also plot the simple choices:
γ = 0.5, 1, 2. All cases exhibit linear convergence. Moreover, we see from this figure that
γa and γopt lead to much better numerical performance. Thus, it is verified that the
bound given by Theorem 6.4 is useful for us to choose a more suitable γ for the scenario
where the strongly monotone modulus and Lipschitz continuous constants are known.

Then, we choose α = 1 and β = 3. For this case, we have L =
√

10 > α = 1 (but the
difference is not too much). To implement (13), we choose λ = 1 and (1,1) as the starting
point. In this case, the choice γa := 1 + 1

1+2αλ = 1.33 suggested by Theorem 6.4 works
less efficiently than the real optimal choice γopt := 1+ α

λL2 = 1.1. In Figure 7, we plot the
convergence performance of the scheme (13) with γa and γopt. For comparison, we also
plot the simple choices: γ = 0.5, 1, 2. All cases exhibit linear convergence. Moreover, we
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see from this figure that γ = 1 works almost the same as γopt. Thus, for the case where α
differs significantly from L, the bound given by Theorem 6.4 does not necessarily make
us find the optimal choice of γ. But for this case, simply taking γ = 1 is already good
enough.

Finally, we specify the requirements on T in the generic setting (1) to ensure the
linear convergence of (13) where γ is allowed to be greater than 2 to the specific settings
(5) and (14).

• Scheme (12)
In this case, T = 1

λSλ,A,B. Then, Assumptions 3 and 4 are satisfied if one of the
following conditions holds:

1. A is strongly monotone, B is strongly monotone and firmly non-expansive;

2. A is strongly monotone and firmly non-expansive, B is strongly monotone;

3. A is firmly non-expansive, B is strongly monotone and firmly non-expansive;

4. A is strongly monotone and firmly non-expansive, B is firmly non-expansive.

• Convex optimization model (14)
Assumptions 3 and 4 are satisfied if one of the following conditions holds:

1. f is strongly convex, g is strongly convex and ∇g is Lipschitz continuous;

2. M is full rank, f is strongly convex and ∇f is Lipschitz continuous, g is
strongly convex;

3. M is full rank, f is strongly convex and ∇f is Lipschitz continuous, ∇g is
Lipschitz continuous;

4. M is full rank, ∇f is Lipschitz continuous, g is strongly convex and ∇g is
Lipschitz continuous.

7 Conclusions

We propose a generalized proximal point algorithm (PPA), in the generic setting of
fining a root of a set-valued maximal monotone operator in a Hilbert space. A number
of benchmark algorithms in the PDE and optimization literatures are special cases of
this generalized PPA scheme. Our main result is to analyze the convergence rate of
this generalized PPA scheme—-estimating its worst-case convergence rate measured by
the iteration complexity under mild assumptions and its linear convergence rate under
stronger assumptions. Some operator splitting methods in the PDE and optimization
literatures are particularly treated in our analysis, and some existing convergence rate
results in these areas fall into the general result established by this paper. Using the
Yosida approximation operator is critical in our analysis. With it, it becomes convenient
to measure the accuracy of an iterate to a root of the operator under consideration and
thus the analysis for deriving convergence rates in the generic setting becomes doable.
This may shed some light on deriving sharper results of the convergence rate for relevant
problems.
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Figure 6: ||vn − v|| with regard to the iterations, coordinate in log scale; α = 1 and
β = 0.5 for Example 3; γa = 1.67; γopt = 1.8; and γ = 0.5, 1, 2.

Figure 7: ||vn−v|| with regard to the iterations, coordinate in log scale; α = 1 and β = 3
for Example 3; γa = 1.33; γopt = 1.1; and γ = 0.5, 1, 2.
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