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Abstract

We present a new method for non-rigid shape matching designed to enforce continuity of the resulting

correspondence. Our method is based on the recently proposed functional map representation, which

allows efficient manipulation and inference but often fails to provide a continuous point-to-point map-

ping. We address this problem by exploiting the connection between the operator representation of

mappings and flows of vector fields. In particular, starting from an arbitrary continuous map between

two surfaces we find an optimal flow that makes the final correspondence operator as close as possible to

the initial functional map. Our method also helps to address the symmetric ambiguity problem inherent

in many intrinsic correspondence methods when matching symmetric shapes. We provide practical and

theoretical results showing that our method can be used to obtain an orientation preserving or reversing

map starting from a functional map that represents the mixture of the two. We also show how this

method can be used to improve the quality of maps produced by existing shape matching methods, and

compare the resulting map’s continuity with results obtained by other operator-based techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: —Shape Analysis

1. Introduction

Computing correspondences or mappings between 3D
shapes is one of the key building blocks in many ar-
eas of digital geometry processing, including deforma-
tion transfer [SZGP05], shape interpolation (morph-
ing) [KMP07] and statistical shape analysis [HSS∗09]
among many others. This problem is particularly chal-
lenging in the case of shapes undergoing non-rigid de-
formations, where the notion of the optimal map may
be difficult to define and optimize for. Thus, although
a number of robust techniques have been proposed to
address the rigid alignment problem [MAM14], non-
rigid shape matching remains challenging [TCL∗13].

Most of the succesful global methods proposed to
find correspondences between pairs of non-rigid shapes
in the recent years have relied on a variant of the
conformal [WWJ∗07,LF09,KLF11] or fully isometric
[BBK06,TBW∗09,SY11,OBCS∗12] deformation mod-
els, which assume that either the angles or the geodesic
distances between pairs of points are approximately
preserved by the mapping. Although such models have
very appealing theoretical properties, using them di-
rectly can often lead to difficult non-linear, non-convex

optimization problems [BBK06]. Therefore, most re-
cent work in this direction have concentrated on find-
ing a low-dimensional parameterization of the space of
mappings, that allows for efficient optimization tech-
niques (e.g. [LF09,OMMG10,BWW∗14]).

Among such low-dimensional representations of the
space of correspondences, one particularly appealing
approach is based on the framework of functional
maps [OBCS∗12], which consider mappings as linear
operators between the corresponding function spaces.
This representation has the advantage of being com-
putationally efficient and easy to manipulate, since
typically it allows to encode a correspondence with
a small-sized matrix using a multi-scale functional
basis. Moreover, finding the optimal functional map,
can often be formulated using relatively simple opti-
mization problems [OBCS∗12, PBB∗13]. As a result,
methods based on this representation, have recently
been used to achieve state-of-the-art results for near-
isometric shape matching problems [PBB∗13] and co-
segmentation of shape collections [HWG14].

One of the weaknesses of the functional map repre-
sentation, however, is that by representing mappings
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as correspondences between functions, it requires an
additional post-processing step to obtain a point-to-
point map after computing the optimal functional
map. The basic approach for this conversion step, pro-
posed in [OBCS∗12] and used in most follow-up works,
assigns points by considering the mapping between the
corresponding Dirac delta-functions. Since each delta-
function is mapped independently, however, this ap-
proach can (and most often does) introduce signifi-
cant artifacts and discontinuities into the final point-
to-point mapping (see the first two columns of Figure
6). This makes the resulting correspondences unus-
able in settings that require continuity of the map-
ping, such as texture transfer. Additional pair-wise
terms can potentially be introduced in the conversion
procedure, but this would require creating variables
for points with potentially very expensive consistency
constraints, which very quickly loses the appeal of the
functional map framework, and reduces to direct op-
timization.

In this context, we propose a novel method for con-
verting a functional map to a point-to-point map,
which guarantees continuity and does not rely on any
pairwise consistency constraints, making it computa-
tionally efficient. Our main idea is to represent the
target point-to-point map as a composition of an ar-
bitrary continuous map between the two surfaces and
a flow associated with an unknown vector field on one
of them. By relying on the recently proposed oper-
ator representation of vector fields [ABCCO13], we
show that the optimal vector field can be computed
efficiently entirely within the functional map frame-
work, and the computation of the final map requires a
single discretization of vector field advection. We also
employ a recently proposed supervised learning tech-
nique [COC14] that not only helps to obtain better
functional maps but also helps to identify functional
subspaces where the map is reliable, which signifi-
cantly helps to improve the final point-to-point map.

Our method also helps to address the symmetric
ambiguity problem inherent in many intrinsic corre-
spondence methods when matching symmetric shapes.
We provide practical and theoretical results showing
that our method can be used to obtain an orientation
preserving or reversing map starting from a functional
map that represents the mixture of the two. Finally,
we test our method on a shape collection and show
that we can produce maps that are both continuous
and have smaller geodesic distortion compared to the
results obtained by existing techniques.

2. Related Work

Non-rigid shape matching is an extremely very well-
developed area and we refer the interested reader to

recent surveys (e.g., [BBK08, VKZHCO11, TCL∗13])
for an in-depth review of all of the related work. Be-
low we concentrate on the recent works that are di-
rectly related to ours, consisting of methods for global
near-isometric shape matching with special emphasis
on approaches that guarantee the continuity of the re-
sulting maps.

As mentioned in the introduction, most of the exist-
ing techniques for non-rigid shape matching use a de-
formation model for finding correspondences between
3D shapes. The two most common models in this
setting include approximate intrinsic isometries and
conformal mappings. The former model, which was
originally introduced by Bronstein et al. [BBK06] and
Mémoli [Mém07] assumes that pairwise geodesic dis-
tances are approximately preserved by the deforma-
tion. The first works that use this assumption lead to
continuous maps by design, but result in very challeng-
ing optimization problems that are difficult to solve
with more than a small number of points [BBK06].
As a result, many follow-up techniques have used a
relaxed version of the isometric mapping assumption,
which result in more manageable optimization prob-
lems, but can often fail to guarantee a low distor-
tion continuous mapping (e.g., [HAWG08, TBW∗09,
OMMG10, SY11, BWW∗14]). Furthermore, an addi-
tional challenge in using the isometric model assump-
tion is that exact intrinsic isometries are extremely
rare, both in theory [Glu75] and in practice, since most
deformable shapes induce some amount of distortion.

Another set of successful techniques, which are more
widely applicable than those based on the isometric
mapping assumption are those that assume that the
mapping is conformal, and thus only preserves angles
(e.g., [HAT∗00,WWJ∗07,HS09,LF09,KLF11]). These
techniques are appealing because a conformal map-
ping is known to exist between any pair of shapes
with the same topology, but also because the set of
such mappings can be parameterized relatively eas-
ily by using a canonical domain, such as a sphere for
genus zero surfaces. Moreover, the resulting maps ob-
tained by these approaches are typically continuous.
At the same time, conformal mappings can often in-
duce large area distortion, which can result in unreal-
istic correspondences between non-rigid shapes, which
limits their use significantly.

A recent set of approaches that overcome the
above-mentioned challenges to some extent is based
on the functional map representation, introduced in
[OBCS∗12]. This framework is based on represent-
ing maps as linear operators acting on real-valued
functions, and which can be encoded compactly by
small-sized matrices in the discrete setting by using a
multi-scale basis. Although the original approach and
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the follow-up works, including [KBB∗13,PBB∗13], all
implicitly use the isometric deformation assumption,
they have been shown to be very robust to small non-
isometric distortions, by extensive use of strong geo-
metric and linear-algebraic regularization techniques.
Moreover, several recent works have shown how this
framework can be used in the supervised learning set-
ting, where functional maps between unseen shapes
can be obtained by exploiting information present in
a small set of example maps [RBW∗14,COC14].

Despite its practical appeal, one of the limitations
of the functional map framework, however, is that a
post-processing step is necessary to convert a func-
tional map to a point-to-point one. The method used
in [OBCS∗12] is based on mapping Dirac delta func-
tions. However as the points are considered indepen-
dently the continuity of the resulting map is not en-
sured. This problem can be particularly prominent in
shapes that contain intrinsic symmetries, which con-
tain at least two equally good solutions for the optimal
functional map, and the computed one is at best a lin-
ear blending of the two.

Note that, closely related to our technique, espe-
cially in the use of flows for computing continuous
maps (diffeomorphisms) is the LDDMM framework
[BMTY05,MTY06], widely used in the medical imag-
ing community. Unlike these methods, however, our
approach is purely intrinsic and operates directly on
the surface of the target model, rather than deforming
a template in space.

Contributions In this paper we propose a novel
method for converting a functional map into a point-
to-point one, which combines the strengths of the
functional map framework that allows to compute
low-distortion functional maps, with those of the con-
formal mapping approaches, which produce continu-
ous correspondences. Namely, starting from a map
computed using the state-of-the-art conformal-based
Blended Intrinsic Map approach [KLF11], we modify
it by computing the optimal vector field, whose flow,
composed with the original map, would result in a
functional map as close as possible to the given one. By
using the recently proposed operator representation of
vector fields [ABCCO13] and the connection between
advection and matrix exponentiation, we propose an
efficient optimization approach for computing the op-
timal vector field entirely within the functional map
framework. Moreover, we show theoretically that this
approach is guaranteed to produce the correct contin-
uous map when the input functional map represents
a blending of the orientation preserving and revers-
ing maps under certain assumptions, and demonstrate
this projection step in practice.

3. Functional maps

The functional map representation introduced in
[OBCS∗12] provides a flexible framework for repre-
senting and manipulating maps between shapes. Given
two surfaces M and N , a point-to-point map T :
N → M induces a map between function spaces
CT : L2(M) → L2(N), where L2(M) is the set of
square-integrable functions defined on the surface M .
The functional map CT is defined by composition with
T as CT (f) = f ◦T . The operator CT is a linear trans-
formation and given a basis it can be represented as
a matrix in the discrete setting. This matrix can be
easily computed if the map T is known.

Following the pipeline proposed in [OBCS∗12], we
use a two stage algorithm to tackle the shape matching
problem.

3.1. Functional maps pipeline

If T is unknown the first step is to approximate
CT by formulating functional constraints of the type
CT f = g, where f and g are functions of N and M

respectively. The functional constraints used in the
original work [OBCS∗12] come from local shape de-
scriptors that are stable under nearly isometric defor-
mations. Common robust descriptors include the Heat
Kernel Signature (HKS) [SOG09] and the Wave Ker-
nel Signature (WKS) [ASC11], as well as descriptors
coming from segment correspondence constraints. We
will let F and G denote the matrices whose each col-
umn contains corresponding functions on N and M ,
which implies that CTF ≈ G. Additionally a regu-
larization is added using the assumption that the de-
formation is nearly isometric, which it is equivalent to
CT∆N ≈ ∆MCT , where ∆N and ∆M are the Laplace-
Beltrami operators on N and M respectively. This
leads to the least square problem:

C = argmin
X

‖XF −G‖2F + α‖X∆N −∆MX‖2F , (1)

where ‖.‖F denotes the Frobenius norm. It has been
shown that solving Eq. (1) can lead to good approxi-
mation C of the functional map CT . In this paper we
will use several modifications of this model introduced
in [COC14] that weighted the functional correspon-
dence by a diagonal matrix D: ‖(XF − G)D‖2. This
weight is automatically set using a learning procedure,
which leads to functional maps of significantly better
quality. Namely, from a set of shapes Ni with known
ground-truth functional maps C⋆

i : L2(M) → L2(Ni)
we find the set of weights D that minimizes the differ-
ence between the approximation and the actual map:

min
D

‖Ci(D)− C
⋆
i ‖,where Ci(D) = argmin

X

E(X)

E(X) = ‖(XF −G)D‖2F + α‖X∆Ni
−∆MX‖2F (2)
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Moreover this framework provides a way to learn a
basis Yp (where p is the basis size) of the functions
whose transfer is the most accurate, by minimizing
∑

i
‖(Ci(D)−C⋆

i )Yp‖, given a fixed weight matrix D.

The basis Yp is particularly useful in factoring out
badly matched functions, which typically represent the
parts of shapes, for which the descriptor constraints
fail to provide reliable information.

Once the functional map C is computed, the goal
of the second step is to convert it to a point-to-point
map. The method proposed in [OBCS∗12] and reused
in most of the follow-up work consists in finding the
nearest neighbors of the images of Dirac-delta func-
tions on M by C among the Dirac functions on N .
Namely, for each point x ∈ M , the map: T (x) is com-
puted as via T (x) = argminy ||δy − Cδx||, where δx
is an indicator function on vertex x, written in the
appropriate basis.

3.2. Main challenges

While both steps described above are very efficient
in practice, the second stage has a very serious limi-
tation, in that it processes each point independently,
meaning that the final map T may not be (and often
is not) continuous. The first two columns of Figure 6
provide examples of discontinuous maps resulting of
this conversion.

To illustrate this phenomenon, let us assume that
the target shape N has an orientation-reversing (re-
flectional) intrinsic symmetry S : N → N. In this
case, there exist at least two equally good potential
solutions for Eq. (1) and similarly, each point x may
have several candidate correspondences.

In practice the functional constraints are not suffi-
cient to resolve symmetric ambiguities, in large part
because most robust descriptors are invariant under
intrinsic isometries. The best we can hope for when
approximating CT is an exact functional map for sym-
metric functions (i.e. f , s.t. f ◦ S = f) and a noisy or
zero functional map for antisymmetric functions (i.e.
f ◦ S = −f). Since our approximations are obtained
by solving a linear system, most likely a solution of
the least squares problem will be a linear blending be-
tween the orientation preserving and reversing func-
tional map:

C
α
T = (1− α)CT + αCT◦S (3)

Note that α = 0.5 implies that all antisymmetric
functions are mapped to zero.

The conversion of C to a point-to-point map in it-
self gives no guaranty of continuity in the resulting
map. Since each Dirac function of a point x is treated

N M

M

TC

T 0
φt
V

L2(N) L2(M)

L2(M)

C

CT0

exp(tDV )

Figure 1: Left: the unknown continuous map TC is
a composition of the input T 0 and the flow φt

V of a
vector field V . Right: dual representation as functional
maps.

independently it can be mapped indifferently to its im-
age T−1(x) or to its symmetric alternative S(T−1(x)).
Moreover this process is not designed to be stable un-
der the blending noise α, as in (Eq. 3).

In this context, the key idea developed in this pa-
per is to construct a point-to-point map from the func-
tional map C by following a procedure that guarantees
continuity, while being robust to blending noise. In
particular, starting from an arbitrary continuous map
between M and N , we find an optimal vector field,
whose flow makes the final correspondence operator as
close as possible to the initial functional map. Since
the flow of a vector field provides a continuous, and
orientation-preserving map, the final correspondence
is both continuous and has the orientation of the ini-
tial map. As we show below, this can significantly im-
prove the quality of the resulting point-to-point map,
while remaining computationally tractable and avoid-
ing expensive second-order pairwise constraints.

3.3. Algorithm overview

The algorithm proposed in this paper takes as input
a functional map C : L2(M) → L2(N) and an arbi-
trary continuous map T 0 : N → M . It then outputs a
continuous point-to-point map TC : N → M .

As mentioned above, the main idea of our algorithm
is to construct the map TC by composing T 0 with the
flow φt

V of a well-chosen vector field V (see Figure 1).
We will choose the vector field V such that φt

V ◦T 0 rep-
resented as a functional map is as close as possible to
the input C. This can be done efficiently by represent-
ing φt

V as an operator (Section 4) and then solving a
small-scale optimization problem as explained in Sec-
tion 5. To find the map TC we solve a system of ODEs
with a simple solver (Section 6).

The main steps of the proposed algorithm are de-
scribed in Algorithm 1.

4. Family of diffeomorphisms

In this section we construct a family of diffeomor-
phisms which map N onto M and derive their repre-
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Algorithm 1: Functional Map Conversion

Input : C : L2(M) → L2(N) functional map
T 0 : N → M initial continuous map

Output: TC : C converted into a continuous map
1 Find Optimal Vector field (Section 5);

2 Convert T 0 to a functional map CT0
;

3 Solve: a⋆ ∈ argmin
a∈Rn

‖CT0
exp

(
∑n

i=1 aiDVi

)

−C‖φ;

4 Set: V :=
∑n

i=1 a
⋆
iDVi

;
5 Compute TC (Section 6);

6 Solve: d
dt
φt
V (p) = V

(

φt
V

(

p)), φ0
V (p) = p ∈ N ;

7 return TC := φ1
V ◦ T 0;

sentation as functional maps. The point-to-point map
which converts the given functional map C will be
chosen among this family.

Vector field flow Given a family of tangent vec-
tor fields {Vi}1≤i≤n on M , we let V be the space
spanned by the linear combinations of the Vi. Any
vector field V ∈ V, defines a one-parameter family of
maps φt

V : M → M called the flow of V . The flow is
formally defined as the unique solution to the differ-
ential equation:

d

dt
φ
t
V (p) = V

(

φ
t
V

(

p)), φ
0
V (p) = p ∈ N. (4)

Given an arbitrary diffeomorphism T : N → M we
construct a family of diffeomorphisms T parametrized
by t ∈ R and a ∈ R

n:

T
t
a
(p) = φ

t
Va

◦ T (p), Va =

n
∑

i=0

aiVi (5)

Remark that the orientation of a map T t
a
∈ T is

given by the orientation of T since the flow of a vector
field is orientation preserving.

Functional Representation of the family The
family of mappings T has an easy representation
in the functional map framework as explained in
[ABCCO13]. This is because, a vector field V on a
smooth manifold can be represented as an operator
DV acting on a function f :

DV (f)(p) = 〈V (p),∇f(p)〉p. (6)

Since the action of DV is linear, the operator is con-
veniently represented as a matrix in the discrete set-
ting.

It is well known that gt = f ◦ φt
V is the unique

solution of the PDE:

∂g

∂t
(t, p) = DV (g)(t, p), g(0, p) = f(p).

A key property of the operator representation of
vector fields, introduced in [ABCCO13] is that for an-
alytic functions the functional map Cφt

V

is represented
by the exponential of the operator DV since one has:

Cφt

V

f := f ◦ φt
V = exp(tDV )(f)

Since map composition is achieved via matrix mul-
tiplication in the functional representation, this yields
a simple way of describing our family of diffeomor-
phisms T . Let T t

a
∈ T then

CT t
a

= CT exp

(

t

n
∑

i=1

aiDVi

)

. (7)

5. Optimal vector field

5.1. Optimization Problem

Our main idea, developed in the section, is to project
the input functional map C onto the appropriate set of
diffeomorphisms T . Namely our goal is to find a vector
field V ∈ V such that the operator representation (7)
of T t

a
is as-close-as possible to C. This projection is

easily written thanks to the operator representation,
and computationally it reduces to solving the opti-
mization problem:

min
a∈Rn

‖CT exp

(

n
∑

i=1

aiDVi

)

− C‖φ, (8)

for an appropriate choice norm ‖.‖φ. Here we note
briefly that the norm is chosen to be differentiable.

In practice, the problem (8) can be solved using
a first order method such as the L-BFGS algorithm.
The main difficulty lies in finding the gradient of the
objective function is the computation of derivative of
exp

(
∑n

i=1 aiDVi

)

in the direction Vj . While there ex-
ists a vast literature on approximating the exponential
of a matrix (for a survey see [MVL03]), to the best
of our knowledge few methods address the problem
of computing the directional derivative of the matrix
exponential, which is conceptually non-trivial. As we
show in the Appendix, however, the directional deriva-
tive can be obtained as a block of the matrix exponen-
tial of a bigger operator.

5.2. Properties

One of the advantages of the formulation of the prob-
lem of finding the optimal point-to-point map from
a functional map via Eq. (8) is that it makes no as-
sumptions on the input map C. This is particularly
important since, as mentioned above, in the presence
of intrinsic symmetries the functional map C can,
even in the best case, be a linear blending of the
functional representation of an orientation-preserving
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and orientation-reversing map. However, one poten-
tial problem is that the presence of the “noisy” part
in the functional map can adversely affect the final
output map T obtained by optimizing Eq. (8).

Fortunately, both in theory and in practice this is
not the case. Namely, under some suitable assump-
tions, the orientation-preserving ground-truth func-
tional map, must be a local minimum of the problem
(8) even when the functional map C is given by the
symmetry blending defined at (3). In particular, as
we show in the Appendix if the norm ‖.‖φ = ‖.‖2F is
the squared Frobenius norm, the set of vector fields
considered V is divergence-free and the initial trans-
formation T approximately isometric, then CT must
be a local minimum of Eq. (8).

5.3. Practical choice of the norm

As stated before C is not reliable for antisymmetric
functions. Therefore there is some function subspace
on which C and CT exp

(

t
∑n

i=1 aiDVi

)

cannot agree.
The choice of the norm ‖.‖φ in the problem (8) is of
critical importance. The naive choice of the squared
Frobenius norm is not well-suited for this problem
since it is the sum of the squared singular values.
As such, it will give a large weight on badly matched
function subspace and a small weight on well matched
function subspace. However, since typically we have
almost no information about antisymmetric functions
so the optimization problem based on this problem
will put a lot of effort matching functions that we
cannot hope to match and few matching interesting
subspace. A better choice for ‖.‖φ is a regularization
of the nuclear norm. We choose

‖A‖φ = ‖AYp‖ǫ,⋆ (9)

where Yp is a basis of p functions that we want to focus
on obtained using the approach described in Section
3.1 and based on [COC14]. In the unsuperised setting
we chose Yp to be the identity. The norm ‖.‖ǫ,⋆ is a
defined by

∑N

i=1

√

σ2
i + ǫ the σi are the singular values

of the matrix. With this norm, we give smaller weight
to the subspaces that are difficult to align and focus
on task we are able to complete.

The parameter ǫ makes the function ‖.‖ǫ,⋆ differ-
entiable and should be small and is taken at 10−3.
Note that the Jacobian matrix of the singular values
is easily computable as explained in [PL00].

6. Vector field flow on manifold

Once the optimal vector field V is found using the
procedure described above, we obtain the final point-
to-point map by composing the initial map T with the
flow of V . To compute this flow, we need to solve the

p1

p2
p3

p4

p0

Figure 2: Example of a path trace starting point at p0.

system of equations (4) on the given triangle mesh.
In principle any advection solver will work with our
method. However since computing the flow is known
to be potentially difficult, we implemented our own
solution. The implementation we use gives a coarse
approximation of the flow and might not be accurate
for very large deformations. For more accurate solu-
tion of this problem we refer to [RS14,MPZ14] which
provide more guaranties of continuity of the flow and
faster convergence.

In all of our applications we assume that the shape
is a triangulated mesh and the vector field is given as
a single vector per face. Given this representation, we
assume that that the vector field is constant per face
and is interpolated at the edges.

Three main situations can occur: the current point
could be at inside face, an edge or a vertex.

At a Face Since inside a face the vector field is as-
sumed to be constant, we follow it until we reach an
edge or a vertex (Figure 2 from p0 to p1).

At an Edge When a point is at an edge, we try to
cross the face we did not come from (Figure 2 from p1
to p2). If the point did not move we follow the edge by
interpolating the vector field from the two neighboring
faces and end up at a vertex (Figure 2 from p2 to p3).

At a Vertex When the point is at a vertex, we try
to follow the vector of each of the neighboring faces
and choose the one that goes the furthest. If the point
cannot move, we try to follow the neighboring edges,
using interpolated directions and to potentially end
up at another vertex (Figure 2 from p3 to p4).

7. Results

For all the experiments we express all functions in
the basis given by the first 150 eigenfunctions of the
Laplace-Beltrami operator. We choose a family of 50
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Figure 3: Impact of the noisy functional map Cα
T on

the point-to-point correspondences for various values
of α.

tangent vector fields for the Vi given by the first
eigenfunctions of the 1-form Laplace-de Rham oper-
ator, constructed following the procedure described
in [FSDH07].

We have evaluated our method for computing point-
to-point correspondences on the shapes on the bench-
marks of Anguelov and al. [ASK∗05] and of Bronstein
and al. [BBK08]. In all of the cases, the input con-
tinuous map T 0 is the result of the BIM algorithm
[KLF11]. This map is most of the time continuous but
can be very distorted in some areas. We will show that
our method is able to detect the distorted areas and
correct them.

7.1. Symmetry blending

As stated above a plausible perturbation for the input
functional map C is given by equation (3). We test our
method when C is the linear blending of the ground-
truth functional map and the ground-truth orientation
reversing functional map for various values of α. In
this experiment Yp is the identity matrix. For this ex-
periment we choose a pair of shapes from the SCAPE
dataset.

The graph shown in Figure 3 shows the percentage
of correspondences smaller than a threshold. Of course
the closer Cα

T is to the ground-truth map the better
are the correspondences. However our results are ro-
bust even when the target functional map is an exact
blending of the direct and symmetric map and are al-
ways better than the map coming from BIM. Thus,
even when the assumptions of our theoretical obser-
vation are not fulfilled, our method can successfully
retrieve meaningful information from noisy data.

7.2. Error using a computed functional map

In a more realistic scenario, rather than using a
ground-truth functional map, we compute it via the
inference pipeline described in Section 3.1. In this sec-
tion the experiments are conducted on several pairs of
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Figure 4: Improvement of the BIM map using our
method.

shapes: 7 human pairs (SCAPE) and 5 animal pairs
(TOSCA). The functional map C is computed us-
ing the least squares problem (1), where each func-
tional constraints is weighted. The weights are learned
solving problem (2) using the algorithm described in
[COC14] which also outputs a matrix Yp correspond-
ing to the p best mapped functions, where we let p

equal to 70. The training set is composed of 8 ran-
domly chosen meshes for the SCAPE example and 4
meshes for the TOSCA centaur example. We compute
310 functional constraints equally distributed among
these categories:

• Heat Kernel Signature [SOG09],
• Wave Kernel Signature [ASC11] at three different

variances,
• Gaussian and Mean Curvature,
• Logarithm of the absolute value of Gaussian and

Mean Curvature,
• Mesh Saliency [LVJ05].

We compare our approach with BIM, that serves
as T 0, and with the functional map C converted to
point-to-point map using the method proposed in
[OBCS∗12]. The graph in Figure 4 shows the percent
of correspondences which have geodesic error smaller
than a threshold in average for SCAPE and TOSCA.
In this case, we only accept direct correspondences
as correct, and consider symmetric points as wrong.
Note that our method shows quality improvement over
Blended Intrinsic Maps. The direct conversion of C

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John

Wiley & Sons Ltd.



E. Corman & M. Ovsjanikov & A. Chambolle / Continuous Matching via Vector Field Flow

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Geo. Dist.

M
a
x
 C

o
rr

e
s
p
. 
G

e
o
. 
D

is
t.

 

 

Our

BIM

Direct Conversion

Exact

(a) Maximal distortion computed with Eq. (10)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area Ratio

%
 o

f 
T

ri
a
n
g
le

s

 

 

Flow

BIM

Direct Conversion

Exact

(b) Area ratio

Figure 5: Comparison of the distortion induced by var-
ious for a pair of centaur (TOSCA).

have some point with very large geodesic error due to
points mapped to their symmetric counterparts.

We evaluate the continuity of our map with two
measures of distortion. First the maximum radius cor-
responding to a geodesic ball of given size. For a map
T this is formally given by the function:

r(t) 7→ max
dN (x,y)≤t

dM (T (x), T (y)), (10)

where dN is the geodesic distance on N . If the map
is nearly isometric r should be close to identity. We
compare this measure for different mapping in Figure
5a for one example from TOSCA. Our method is com-
parable to BIM and to the ground truth in terms of
continuity while the direct conversion of C show some
very large distortions. Second we compare the ratio be-
tween the triangle’s area before and after deformation.
Since the deformations in our examples are almost iso-
metric this ratio should be close to one. The graph in
Figure 5b shows the percent of triangles which have an
area ration smaller than a threshold. We show only the
ratio greater than one since most of the discontinuous
behavior is due to large jumps. The area ratio of the
exact mapping are concentrated around one which is
consistent with the fact that the deformation is nearly
isometric. Again the direct conversion of C show some
very large area distortions compare to BIM and our
method.

This lack of continuity is confirmed by Figure 6
which provides on two examples a visualization of the

(a) (b) (c)

(d) (e) (f)

Figure 6: Visualization of the point-to-point mapping
through color correspondence. The texture of the first
column (6a, 6d) are transferred to the second using
the direct conversion of a functional map (6b, 6e) and
to the third using our method (6c, 6f).

point-to-point mapping using color correspondence.
The direct conversion of the functional map shows
some artifacts due to the blending between orienta-
tion preserving and orientation reversing maps.

Our method successfully repairs the areas distorted
by BIM as shown on Figure 7 for two different match-
ing problems. In this example the BIM maps transfer
poorly functions from the source meshes to the tar-
get meshes while our method corrects these incorrect
matches by providing a more accurate transfer. A vi-
sualization of the optimal vector field is provided on
Figure 8 for the human example. The vector field on
Figure 8b corresponds to the displacement needed to
repair the BIM map, the action of this correction can
be seen on the upper row of Figure 7.

7.3. Parameters dependence

In theory the quality of the initial map T 0 has no im-
pact on the final results. In practice we consider only
a small family of vector fields based on the first eigen-
functions of 1-form Laplace-de Rham operator. There-
fore in this setting our method will be more efficient
in repairing low frequency distortion rather than re-
covering a high frequency deformation that cannot be
represented by the flow of low frequency vector field.
Of course the bigger is the vector field basis the better
will be the repairs, and the slower will be the method.
In the experiments we presented the dimension of the
vector field family can be reduced to 40 without influ-
encing too much the point-to-point map.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Transfer of a function on the source meshes
7a and 7d to the target meshes using BIM 7b and 7e
compared to our method 7c and 7f.

(a) (b)

Figure 8: Visualization of the direction of the opti-
mal vector field corresponding to the experiment 7c:
complete shape 8a and close-up on the face 8b.

Another critical parameter is the number of eigen-
functions we choose to represent the functional map C

and CT0 . If the deformation is nearly isometric a small
number is sufficient as the functional map C is almost
diagonal. These considerations also apply to the initial
map T 0: a very distorted map is badly approximated
by a small number of eigenfunctions and can severely
influence our method. We found that lowering the size
a the function basis under 150 degrades rapidly the
quality of the results.

In principle our method should work for non-
isometric deformations provided we are given high-
quality functional map as input. To obtain such a
map, the choice of the functional basis would have to
be modified in order to successfully encode the func-
tional map in a reduced basis. This direction is left as
an interesting future work.

Mesh Vertices Optimization Flow

Horse 19248 369s 29.4s

Dog 25290 300s 20.4s

Centaur 15768 381s 39.0s

SCAPE 12500 231.8s 30.8s

Table 1: Average CPU time of each step for different
mesh size.

7.4. Performance

For performance evaluation the computation times are
given in the Table 1 in various cases. All the experi-
ments have been performed on laptop with a 1.4 GHz
processor and 4Go memory without parallelization.
The timings are given for the two steps of the method:
solving the problem (8) and tracing the flow lines. The
time spent solving the optimization problem is almost
independent of the number of vertices. The size of this
problem depends only on the number of computed
eigenfunctions of the Laplace-Beltrami operator and
on the dimension of the vector field family, which are
constant in all experiments. Note that the computa-
tion of the flow does not scale linearly with the number
of the vertices. This is explained by the fact we com-
pute a composition with the BIM map which may map
many vertices to a single point.

8. Conclusion, Limitations and Future Work

In this paper we presented a method for non-rigid
shape matching that is designed to output continu-
ous maps. Our approach combines the strengths of
conformal-based approaches, which often guarantee
continuity with the functional map framework, which
can enable low-distortion maps on the space of func-
tions. Key to our method is enforcing continuity via
the flow of a vector field, which allows our method
to remain efficient by avoiding expensive pairwise ver-
tex constraints. One of the limitations of our method
is that we only approximate the flow of a single vec-
tor field, whereas in practice, for complex motions, a
combination of flows may be necessary. Extending our
method to such cases is possible, while taking care of
the robustness and non-accumulation of numerical er-
rors. We are also planning to wider arrays of initial
maps and ways to incorporate the continuity directly
in the optimization of the functional maps.
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9. Appendix

Directional derivative of matrix exponen-

tial Let x0 be an arbitrary vector and x(t) =
exp

(

t
∑n

i=1 aiDVi

)

x0, it is well known that x(t) sat-
isfies the ODE:

x
′(t) =

n
∑

i=1

aiDVi
x(t), x(0) = x0.

Moreover xh(t) = exp
(

t(
∑n

i=1 aiDVi
+ hVj)

)

x0 is
solution of

x
′(t) = (

n
∑

i=1

aiDVi
+ hVj)x(t), x(0) = x0.

We denote y(t) the directional derivative in the di-
rection Vj :

y(t) = lim
h→0

1

h

(

exp

(

t(
n
∑

i=1

aiDVi
+ hVj)

)

− exp

(

t

n
∑

i=1

aiDVi

))

x0

Therefore the y(t) is the unique solution of
{

x′(t) =
∑n

i=1 aiDVi
x(t), x(0) = x0

y′(t) =
∑n

i=1 aiDVi
y(t) + Vjx(t), y(0) = 0

Finally, the directional derivative djE is a block of
the matrix exponential of a bigger operator:
(

E A

djE B

)

= exp

(

t
∑n

i=1 aiDVi
0

tVj t
∑n

i=1 aiDVi

)

Note that if there are n vectors in the family of vector
fields we have to compute n matrix exponentials.

Optimality under blending noise A necessary
condition for CT to be a local minimum is:

∀X ∈ T (CT ), 〈X,CT − C
α
T 〉F = 0

where T (CT ) is the tangent space of the set of all
functional map at the point CT . This tangent space
has a simple expression. Consider a small perturbation
of CT by the flow φt

V of vector field V ∈ V applied to
an arbitrary function f :

lim
t→0

1

t

(

Cφt

V
◦T f − CT f

)

= lim
t→0

1

t

(

f ◦ φt
V ◦ T − f ◦ T

)

=
d

dt
(f ◦ φt

V ◦ T ) |t=0

= 〈V,∇f〉 ◦ T

= CT (DV (f))

The necessary condition becomes:

∀V ∈ V, (1− α)〈CTDV , CT − CSCT 〉F = 0

If the deformation is nearly isometric isometric
C⊥

T ≈ CT−1 see [OBCS∗12], moreover C⊥
T CSCT is an

approximation of the internal symmetry on M .

Suppose that the functional basis is composed only
by even and odd functions with respect to the sym-
metry S. Therefore the functional map associated to
an internal symmetry is a diagonal matrix with 1 and
−1 on the diagonal correspong to the symmetric and
antisymmetric eigenfunctions.

The necessary condition becomes:

∀V, (1− α)〈DV , I − C
⊥
T CSCT 〉F = 0

If DV represents a divergence free vector field then
it is a skew symmetric operator as explained in (
[ABCCO13]). Since I − C⊥

T CSCT is a diagonal ma-
trix the scalar product is always zero. Therefore CT is
a critical point of (8).
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