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Fig. 1. Given a collection of singular and feature curves on a volumetric domain (far let), we compute the smoothest rotational derivative that winds around

these curves (center let), and describes a symmetric 3D cross field (center right) which can be directly used for hexahedral meshing (far right).

A basic challenge in ield-guided hexahedral meshing is to ind a spatially-

varying rotation ield that is adapted to the domain geometry and is con-

tinuous up to symmetries of the cube. We introduce a fundamentally new

representation of such 3D cross ields based on Cartan’s method of moving

frames. Our key observation is that cross ields and ordinary rotation ields

are locally characterized by identical conditions on their Darboux derivative.

Hence, by using derivatives as the principal representation (and only later

recovering the ield itself), one avoids the need to explicitly account for

symmetry during optimization. At the discrete level, derivatives are encoded

by skew-symmetric matrices associated with the edges of a tetrahedral mesh;

these matrices encode arbitrarily large rotations along each edge, and can

robustly capture singular behavior even on fairly coarse meshes. We ap-

ply this representation to compute 3D cross ields that are as smooth as

possible everywhere but on a prescribed network of singular curvesÐsince

these ields are adapted to curve tangents, they can be directly used as input

for ield-guided mesh generation algorithms. Optimization amounts to an

easy nonlinear least squares problem that does not require careful initializa-

tion. We study the numerical behavior of this procedure, and perform some

preliminary experiments with mesh generation.
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0 INTRODUCTION

A hexahedral mesh decomposes a solid region of three-dimensional

space into six-sided cells; such meshes play an important role in

numerical algorithms across geometry processing and scientiic

computing. An attractive approach to mesh generation is to irst

construct a guidance ield oriented along features of interest, then

extract a mesh aligned with this ield. However, there are major

open questions about how to even represent such ields in a way

that is compatible with the demands of hexahedral meshingÐthe

most elementary of which is how to identify frames that difer by

rotational symmetries of the cube. These so-called 3D cross ields

allow one to encode networks of singular features (Fig. 1, far left)

which are critical to achieving good element quality.

In diferential geometry, Cartan’s method of moving frames pro-

vides a rich theory for spatially-varying coordinate frames, but to

date has not been used for hexahedral meshingÐperhaps because,

classically, it does not consider ields with local rotational symmetry

(like cross ields). In this paper we show how the theory of moving

frames can be naturally applied in the symmetric case, and how

to incorporate constraints needed for hexahedral meshing, namely,

adaptation to a network of singular curveswhich correspond tomesh

edges of irregular degree. Speciically, we consider the following

problem: given a domain and a valid singularity network, ind the

smoothest 3D cross ield compatible with this network. Here, a valid

network means one that is compatible with the global topology of

some hexahedral mesh, as recently studied by Liu et al. [2018].

Computationally, our method amounts to solving an augmented

version of Cartan’s second structure equation

dω − ω ∧ ω = 0.

Much as the curl-free condition ∇×X = 0 characterizes vector ields

X that can be locally expressed as the gradient of a scalar potential,

the structure equation characterizes diferential 1-forms ω which

are the Darboux derivative of some spatially-varying frame ield.
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Fig. 2. Within small neighborhoods, a 2D or 3D cross field can be repre-

sented by an ordinary frame field. Its derivatives ω therefore obey standard

structure equations, which provide the basic constraints for our method.

Our key insight is thatÐat least locallyÐthe derivative of a cross

ield looks no diferent from the derivative of an ordinary frame ield.

To generate cross ields we can therefore optimize the derivatives,

without having to encode explicit łjumpsž or enumerate all possible

rotations. The inal ield is recovered via local integration, which

amounts to a simple breadth-irst traversal of the domain. This

ield can in turn be used as direct input to parameterization-based

meshing tools, yielding high-quality pure hexahedral meshes with

precise control over singular features (Fig. 1, far right).

0.1 Related Work

This paper is concerned solely with the representation and genera-

tion of 3D cross ields. A discussion of broader hexahedral meshing

is covered by several recent surveys [Armstrong et al. 2015; Yu

et al. 2015]; the speciic problem of inding meshable ields with

prescribed singularities is nicely motivated by Liu et al. [2018].

Moving Frames. Familiar examples of moving frames include

the Frenet frame of a space curve, and the Darboux frame of a surface

patch; these so-called adapted frames naturally arise in applications

ranging from elastic rod simulation [Bergou et al. 2008] to geometric

design [Pan et al. 2015]. Richer elements of the theory have seen

little use in computer graphics: Lipman et al. [2005, 2007] consider a

surface representation similar in spirit to moving frames but do not

directly discretize the structure equations; moreover, these methods

have no reason to consider volumetric domains or singular cross

ields, as are needed for hexahedral meshing. More broadly, spe-

cialized numerical treatments of moving frames have been applied

sporadically to problems ranging from general relativity to inte-

grable systems theory [Olver 2000; Frauendiener 2006; Mansield

et al. 2013], though none are suitable for the problem at hand.

Direction Field Representations. For surfaces, representation

of symmetric direction ields is fairly well understoodÐsee surveys

by Vaxman et al. [2016] and de Goes et al. [2016]. However, due to

non-commutativity of 3D rotations many of these representations

do not easily generalize to volumes, or lead to optimization problems

that are diicult to solve. Moreover, whereas singularities in a 2D

cross ield can always be realized as irregular vertices in a quadmesh,

singularities in a 3D cross ield cannot always be realized as irregular

edges in a hexahedral mesh since the ield direction may not be

tangent to the singular curve (Fig. 3). Therefore, although there are

many methods for generating smooth 3D cross ields, almost none

produce ields directly suitable for meshing.

Periodic Functions. Early methods used periodic, sinusoidal func-

tions to capture the 4-fold rotational symmetry of 2D cross ields

[Hertzmann and Zorin 2000, Sec. 5]; likewise, several 3D methods

use a function with cube symmetry expressed as a sum of low-

frequency spherical harmonics [Huang et al. 2011], or equivalent

polynomials [Li et al. 2012]. Ensuring that spherical harmonic coef-

icients correspond to rotations of this function entails high-degree

nonlinear constraints in a large number of variablesÐmoreover,

since optimization can easily get stuck in local minima, practical

success of such methods appears to depend strongly on careful

initialization of the ield [Li et al. 2012; Ray et al. 2016].

Representation Vectors. Symmetric ields can also be expressed as

a set of vectors at each point; in 2D, one can identify all elements of

this set with a single symmetric tensor [Palacios and Zhang 2007],

or a single complex number via the identiication z 7→ zk [Knöppel

et al. 2013]. In 3D, there does not appear to be any easy analogueÐfor

instance, 3D symmetric tensor ields do not exhibit the symmetry

needed for hex meshing [Palacios et al. 2017], and powers of quater-

nions identify rotations only around a single axis. Alternatively, one

can retain the full set of vectors and enumerate all possible rotations

during optimization, necessitating iterative local smoothing that

easily gets trapped in local minima [Gao et al. 2017].

Period Jumps. In 2D, cross ields can be encoded as angles θ ∈ R,

together with integer period jumps ormatchings n ∈ Zwhich encode

identiications between equivalent angles (e.g., θ1 = θ2 + nπ/2).

Optimization typically entails mixed integer programming [Bommes

et al. 2009], which in general is NP-hard. Recently, Liu et al. [2018]

developed the irst such approach for 3D cross ields; like ourmethod

(and unlike all other methods discussed so far) they ensure that ields

are compatible with the structure of a hexahedral mesh, providing

direct control over singularities. To obtain period jumps, the method

solves a large system of nonlinear mixed integer equations; in the

worst case, it resorts to exhaustive search over the entire solution

tree. It then solves for the smoothest cross ield by relaxing a unit-

norm constraint on individual quaternions to a principal eigenvector

problem over the entire domain. Implementation of this method

involves intricate merging and zippering procedures; moreover, the

eigenvector relaxation does not directly measure the smoothness of

rotations (Sec. 4.4), and can in principle introduce new singularities

(zeros) that were not part of the given networkÐsee discussion of

Vaxman et al. [2016, Figure 6].

Fig. 3. Control over the behavior of singularities is essential, since even

extremely smooth fields (let) may not be meshable. Using symmetric mov-

ing frames, we can ensure that one frame axis is always tangent to a given

singular curve (right), without having to determine this axis a priori.
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Fig. 4. A 2D cross field en-

coded by the change in an-

gle ω across each edge.

Diferential Representations. Our rep-

resentation naturally generalizes Crane

et al. [2010], who optimize the derivative

ω of a 2D cross ield rather than the ield

itself. This approach avoids the need to ex-

plicitly identify equivalent frames during

optimization, leading to a convex problem

easily solved via a sparse linear system.

The symmetric nature of the ield arises

purely from the fact that the derivative

may describe only quarter turns around

closed loops (Fig. 4). The only challenge

is ensuring that ω is integrable, i.e., that it really is the derivative of

some cross ield. In 2D, integrability is enforced via a simple linear

structure equation where ω ∧ ω = 0; in 3D we must discretize the

full structure equation, and consider singularities which are now

curves rather than isolated points (Sec. 3).

Contributions. Our main contributions are to (i) cast the prob-

lem of symmetric 3D cross ield generation in the language of mov-

ing frames, and to (ii) develop a principled discretization of moving

frames suitable for hexahedral meshing. In doing so, we build a

bridge between a rich body of knowledge from diferential geome-

try and the diicult computational challenge of mesh generation;

connections to established partial diferential equations (PDEs) en-

able us to build on principled numerical foundations for discrete

diferential forms [Hirani 2003; Desbrun et al. 2006]. Ultimately,

we obtain a simple, practical representation where cross ields are

encoded by an axis and angle of rotation across each edge. This

representation captures arbitrarily large rotations even on coarse

meshes (Fig. 9), and leads to a natural notion of ield smoothness

that considers only orientation, rather than magnitude (Sec. 3.1).

Our main application is computing 3D cross ields adapted to a

given singularity network; preserving these singularities is critical

for ensuring that the ield can actually be meshed. Computational

cost is dominated by a sparse nonlinear least squares problem arising

from equations that are at most quadratic and have no integer vari-

ables; such problems are easily solved using a small number of linear

solves, or scalable iterative solvers [DeVito et al. 2017]. In practice

this problem behaves like a convex program: it produces the same

result independent of initialization, and yields only the requested

singularities (Sec. 4.2). Representations that encode both direction

and magnitude are unattractive for this task since magnitudes may

go to zero (yielding unwanted singularities), or may get stuck in

local minima that do not exhibit the desired singularities. Moreover,

while Liu et al. [2018] must make all topological decisions a pri-

ori (e.g., total torsion around closed loops), our formulation allows

these choices to emerge naturally from the optimization of a simple

geometric energy (Sec. 3.2.2). See Sec. 4.4 for further comparisons.

0.2 Overview

Our algorithm can be broken down into two major steps:

• irst ind a 2D cross ield on the domain boundary compatible

with the prescribed singularity network;

• then ind a 3D cross ield on the interior adapted to both the

singularities and the boundary normal.

Note that, as in Crane et al. [2010], we do not aim to solve the

problem of inding singularities, but assume that a valid, łmeshablež

network is provided as input (in the sense of Liu et al. [2018]). Since

both steps amount to solving very similar structure equations, we

begin with a uniied treatment of 2D and 3D discretization in Sec. 1

before describing the boundary (2D) and volume (3D) optimization

problems (Secs. 2 and 3). App. A motivates this algorithm from the

smooth perspective; numerical experiments can be found in Sec. 4.

0.3 Background

Throughout we use SO(n) to denote the collection of n × n rotation

matrices QTQ = QQT
= I, det(Q ) > 0, where I is the identity.

We use so(n) to denote n × n skew-symmetric matrices AT
= −A,

whose nonzero components describe the axis and magnitude of

a rotation. The corresponding rotation matrix is obtained via the

exponential map exp : so(n) → SO(n). For instance, every A ∈ so(2)
is determined by a single angle θ , and we have the relationship

[
0 θ

−θ 0

]
exp
7−→

[
cosθ sinθ

− sinθ cosθ

]
. (1)

In 3D, a unit axis u = (u1,u2,u3) ∈ R
3 and angle θ ∈ R determines

a skew-symmetric matrix A = θû, where

û :=



0 −u3 u2
u3 0 −u1
−u2 u1 0


. (2)

The exponential map can then be evaluated via Rodrigues’ formula

exp(A) = I + sinθû + (1 − cosθ )û2.

Importantly, the exponential map is not one-to-one: as the angle

increases, exp will return to the same rotation many times. For a

given Q ∈ SO(3), the logarithmic map log : SO(3) → so(3) gives

the smallest matrix A such that exp(A) = Q , and can be evaluated

via the matrix logarithm. Throughout we will use the notation θ̂

and û to identify angles and vectors with skew-symmetric matrices,

as in Eqn. 1 and 2 (resp.); we will use |M|2 := tr(MTM) to denote

the (squared) Frobenius norm of any matrixM.

1 DISCRETIZATION

Our main object is a (2D or 3D) cross ield E and its Darboux de-

rivative ω, which encodes the change in the ield from one point

to another. In 2D, integrable Darboux derivatives are characterized

by linear equations describing the consistency of rotations around

closed loops [Crane et al. 2010]. In 3D, the chief diiculty is that

exponentiation of rotations no longer obeys the familiar relationship

exp(A) exp(B) = exp(A + B), (3)

which means we can no longer convert statements about products

of rotations into corresponding linear equations. To obtain eicient

algorithms, we must either approximate the exact but nonlinear

discrete integrability conditions via a truncated series expansion

(as in Sec. 3.1), or formulate integrability conditions in the smooth

setting and then discretize (as in App. A). Remarkably enough, both

approaches lead to an identical discrete structure equation (Eqn. 17),

which in practice provides highly accurate (second-order) enforce-

ment of integrability (Sec. 4.2).
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1.1 Domain

Fig. 5. uantities

associated with the

tetrahedral mesh K.

The domain is represented by a connected,

manifold tetrahedral mesh K embedded in R3.

We use Kk to denote the k-simplices of K

(e.g., K0 is the set of vertices). We likewise

use ∂K to denote the boundary surface, and

∂Kk to denote the k-simplices contained in

∂K. Ordered lists of vertex indices denote ori-

ented simplices, e.g., ij ∈ K1 is an edge from

vertex i to vertex j, and ji is the same edge

but with opposite orientation. Sums are im-

plicitly restricted to simplices containing ver-

tices that appear on both the left- and right-

hand side of an expressionÐfor instance,Ai :=
1
3

∑

i jk ∈∂K2
Ai jk deines the barycentric dual

area obtained by taking one-third the area of

triangles ijk containing vertex i . We use Ni to

denote the unit area-weighted vertex normal at any boundary ver-

tex i ∈ ∂K0, θ
jk
i to denote the interior angle at vertex i of triangle

ijk ∈ K2, and ℓi j to denote the length of edge ij ∈ K1.

Fig. 6. Field with a feature curve (red)

and boundary constraints (yellow).

1.1.1 Singularity Tubes. In 2D,

cross ields can have isolated

singular points where the direc-

tion is undeined, and around

which the ield łspinsž at a pre-

scribed rate; 3D ields can like-

wise have networks of singular

curves that form closed loops

or terminate at the boundary.

To represent such networks, we

use a mesh K with a special

structure: singular curves are

represented by tubes of triangu-

lar prisms (Fig. 5, bottom) which terminate at boundary triangles or

meet at interior tetrahedra (see Sec. 4.1 for details).

Each curve has an index σ ∈ R which determines how many

times the ield rotates as it goes around the tube (Fig. 9); meshable

cross ields can have fractional indices σ = ±n/4 for n ∈ Z. An index

σ = 0 speciies a feature curve, along which the cross ield is tangent

but not singular (Fig. 6). In order to bemeshable, indices must at least

satisfy a condition analogous to Poincaré-Hopf, given in Liu et al.

[2018, Equation 2], and interior nodes must exhibit conigurations

described in Liu et al. [2018, Sec. 3] (who note that global necessary

and suicient conditions remain diicult to establish.)

Fig. 7. Notation used to refer to elements of the singularity tubes.

Fig. 8. Let: Two crosses are equivalent only if they difer by quarter rotations

around their own axes. Such motions correspond to inverting the current

rotation (E−1), applying some symmetry of the standard cube (д), then

applying the original rotation (E ). Right: Simply applying a quarter rotation

around an arbitrary axis generally yields a diferent cross.

Notation. We use S0 ⊂ K0 to denote the set of vertices contained

in the singular tubes, S1 to denote edges running along their length,

∂S2 to denote triangles on tube boundaries, SA
2 to denote triangles

at the top/bottom of triangular prisms, and SB
2 to denote all other

interior triangles, which serve only to triangulate the tube (Fig. 7).

1.2 Discrete Cross Field

Let Γ ⊂ SO(n) denote the set of rotations thatmap then-dimensional

cube [−1, 1]n ⊂ Rn to itself. Two rotations Ei ,Ej ∈ SO(n) are

equivalent up to cube symmetry if their diference EjE
−1
i equals

EiдE
−1
i for some д ∈ Γ, as depicted in Fig. 8. A cross is then an

equivalence class of rotations, and a discrete cross ield is a cross

at each vertex i , encoded by a representative rotation Ei ∈ SO(n).

In 3D, these values encode rotations of the standard basis, and the

cross axes are given by the columns (not the rows) of the rotation

matrix. In 2D, they encode rotations of a canonical tangent frame

at each vertex (Sec. 1.3). Since cubes and octahedra have the same

symmetry, 3D cross ields are also sometimes called octahedral ields.

1.3 Boundary Coordinate Systems

To encode the boundary (2D) frame ield we

adopt the approach of Knöppel et al. [2013],

who express tangent vectors in local polar

coordinates (r ,φ) relative to some local co-

ordinate system at each vertex (see inset).

We irst deine normalized interior angles

θ̃
jk
i

:= 2πθ
jk
i /Θi ,

where Θi :=
∑

i jk ∈∂K2
θ
jk
i . At each vertex

i ∈ ∂K0, we then assign the angle φ = 0 to a ixed reference edge

ij0 ∈ ∂K1. The angles of all other edges ij1, . . . , ija are given by

partial sums of the augmented angles θ̃ :

φi ja :=

a−1
∑

p=0

θ̃
ja, ja+1
i .

The augmented angles also provide a deinition of Gaussian curva-

ture per boundary triangle ijk ∈ ∂K2, given by the deviation from

the angle sum of a standard Euclidean triangle:

Ki jk := θ̃
jk
i + θ̃

ki
j + θ̃

i j

k
− π . (4)
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Fig. 9. The index σ determines how many times the field winds around a singular curve. Since we directly encode the angular change along each edge, we can

robustly handle large rotations even on very coarse meshes.

1.4 Parallel Transport

To compare frames at neighboring vertices, we use matrices Ri j ∈

SO(n) that encode the change in local coordinates as we go from

i to j. For the volume (3D) ield, all rotations are expressed in the

same basis, and hence Ri j = I. For the 2D (boundary) ield, let

ρi j := (φ ji + π ) − φi j (5)

be the diference between the two angles encoding the shared edge

ij . The rotation Ri j = exp(ρ̂i j ) then describes the process of parallel

transport, i.e., moving along ij without unnecessary łtwisting.ž (Note

that ρ ji = −ρi j , and hence Rji = R−1i j .) In general, parallel transport

of a frame from i to j can be expressed as Ei 7→ Ri jEi .

An important relationship between curvature and parallel trans-

port is nicely preserved by the discretization from Sec. 1.3, namely,

the net rotation around any triangle ijk ∈ ∂K2 is determined by its

total Gaussian curvature:

RkiRjkRi j = exp(K̂i jk ). (6)

This relationship, and a corresponding index theorem (discussed

carefully in Knöppel et al. [2013, Appendix B]), will enable us to

formulate a precise version of the trivial connections algorithm of

Crane et al. [2010] with frames at vertices rather than faces (Sec. 2).

1.5 Discrete Darboux Derivative

A discrete frame ield is determined up to global rotation by the

change across each edge. Inspired by the theory of moving frames,

we will express this change relative to the frame itself. In particular,

we deine the (discrete) Darboux derivative along edge ij as

ωi j := log(Ej (Ri jEi )
−1), (7)

i.e., as the (smallest) łaxis-anglež representation of the rotation from

Ei to Ej , taking parallel transport into account (see also App. A.4).

For a cross ield, we let Ej be the representative rotation closest

to Ei . Although we use the smallest diference when taking the

derivative of a given ield E, in general we will allow ωi j to have

any magnitude, permitting very large rotations (Fig. 9).

1.5.1 Discrete Integrability. The Darboux derivative ω describes

how a given frame E changes across each edge. We can also ask the

opposite question: given values ωi j ∈ so(n) at edges, do there exist

frames Ei at vertices whose Darboux derivative is equal to ω? Any

such frame is called a development of ω. One can clearly develop ω

along any simple open path γ = (i0, . . . , iN ): start with some initial

frame Ei0 , and use parallel transport to obtain the development

Eip+1 = exp(ωip,ip+1 )Rip,ip+1Eip . (8)

However, ifγ is a closed loop, there is no reason the inal frame must

be equal to the initial one. In this case, ω does not describe a well-

deined frame ield, no matter how we pick Ei0 . More generally, for

a ield to be well-deined over the whole mesh, ω must be consistent

around every closed loop of edges. The (discrete) monodromy Φω
quantiies the failure of this condition around a given loop γ :

Φω (γ ) = exp(ωiN ,i0 )EN E−10 (9)

(where EN is deined by Eqn. 8). The values ω then describe an

ordinary frame ield if and only if Φω (γ ) = I for all closed loops γ .

1.5.2 Monodromy of Cross Fields. In a 2D or 3D cross ield, the total

rotation around a closed loop no longer needs to be equal to the

identity: instead, it can look like a symmetry of the square or cube

(resp.). More precisely, let Ei ∈ SO(3) be any rotation representing

a cross at vertex i , and let γ be a closed loop based at i . In order

for ω to be the Darboux derivative of a cross ield, the monodromy

around γ must be conjugate to a cube symmetry, i.e.,

Φω (γ ) = EiдE
−1
i (10)

for some д ∈ Γ. If this condition holds, we say that ω has trivial

(Γ)-monodromy around γ , with respect to Ei .

In 2D, Eqn. 10 is equivalent to simply asking that the monodromy

is an element of Γ, since here rotations commute and EiдE
−1
i =

EiE
−1
i д = д. But in 3D, merely asking that monodromy be an element

of Γ is not the right condition, as illustrated in Fig. 8: a rotation

that preserves a cross must be around the axes of the cross itself,

not the axes of the canonical cube. From here it is easy to show

that if Eqn. 10 is satisied for some loop around each triangle (for

some ixed choice of cross ield), then it is automatically satisied

around all contractible loops; if it also satisied around a collection of

generators for the irst fundamental group, then it is satisied around

all closed loops. This observation provides a discrete analogue of

the fundamental theorem discussed in App. A.2.1 and A.3.
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2 BOUNDARY CROSS FIELD (2D)

The irst step of our algorithm is to solve an optimization problem for

a 2D cross ield on the boundary surface, which provides boundary

data for our 3D problem (Sec. 3). The algorithm is essentially the one

described by Crane et al. [2010], with two important modiications:

irst, we store frames at vertices rather than faces; second, singular

points on the boundary are determined by the singular and feature

curves of our 3D problem.

2.1 Objective (2D)

In 2D, the only objective term is the squared norm

| |ω | |2 :=
∑

i j ∈∂K1

wi j |ωi j |
2. (11)

Since ω encodes the deviation from parallel transport, Eqn. 11 en-

courages the ield to be łas parallel as possible.ž The valueswi j are

the standard cotan weights

wi j :=
1
2 (cotθ

i j

k
+ cotθ

ji

l
), (12)

where k, l are the vertices opposite edge

ij on the boundary mesh ∂K. Eqn. 11 dis-

cretizes an SO(2)-valued Dirichlet energyÐ

see App. A.4 for further discussion.

2.2 Constraints (2D)

As discussed in Sec. 1.5.2, ω encodes a ield E as long as it has trivial

monodromy around all closed loops. This condition is enforced via

linear constraints mirroring those from Crane et al. [2010, Sec. 3.3].

Local Integrability. Recall that parallel transport around a triangle

ijk ∈ ∂K2 yields a change in angle determined by the Gaussian

curvature Ki jk (Eqn. 6). To consistently describe an ordinary frame

ield on ijk , ω must cancel this deviation, i.e., we must have

ωi j + ωjk + ωki = −K̂i jk + 2πσ̂i jk , (13)

for some integer σi jk ∈ Z. This condition also permits some number

of whole turns Ωi jk := 2πσi jk , corresponding to a singularity at ijk .

For cross ields, σi jk can be a multiple of π/2 (describing quarter

turns) rather than a whole integerÐany cross transported around a

contractible loop γ will then be indistinguishable from the initial

cross (Fig. 4). The only requirement is that the prescribed indices

satisfy a discrete Poincaré-Hopf condition
∑

i jk ∈∂K2
σi jk = χ , where

χ is the Euler characteristic of the boundary surface.

Fig. 10. Generators

on a torus.

Nonsimply-Connected Surfaces. Let beη1, . . . ,ηr
a collection of generating cycles for the funda-

mental group (as depicted in the inset). To en-

sure that ω has trivial monodromy around non-

contractible loops, we apply linear constraints
∑

i j ∈ηp

ωi j = −Φ0 (ηp ) (14)

which cancel the monodromy Φ0 (ηp ) due to parallel transport (i.e.,

just the sum of values ρ̂i j along ηp ). The only change from Crane

et al. [2010, Sec. 2.1] is that these generators are now paths along

ordinary (primal) edges; in practice we use tunnel and handle loops

computed via [Dey et al. 2013].

2.3 Optimization Problem (2D)

Overall, we obtain an optimization problem for the smoothest 2D

cross ield with prescribed singularities:

min
ω :∂K1→so(2)

| |ω | |2

s.t. ωi j + ωjk + ωki = −K̂i jk + Ω̂i jk , ∀ijk ∈ ∂K2,
∑

i j ∈ηp ωi j = −Φ0 (ηp ), p ∈ {1, . . . , r }.

(15)

In practice we encode all values by real angles, yielding a convex

quadratic program whose solution is described by a linear system

(see [Crane et al. 2010, Sec. 2.4] and [Crane et al. 2013, Sec. 8.4.1]).

Fig. 11. Data along

sharp (yellow) fea-

ture curves.

Singular Points and Sharp Features. To en-

sure the 2D ield is compatible with the 3D

curve network, we set Ωi jk = 2πσi jk for any

singularity tube of index σ terminating at a

boundary triangle ijk ∈ ∂K2. For domains

with sharp features (such as the edge of a

cube), one can also specify a graph of bound-

ary edgesÐthis graph can be interpreted as the

skeleton of a surface where all faces are axis-

aligned, and all nonzero dihedral angles are

equal to ±π/2. The value of Ωi jk at any vertex

of this graph is then the angle defect of the axis-aligned surface;

since we put singularities at triangles, sharp corners are replaced

with a small singular triangle (Fig. 11). Singular curves that do not

touch the boundary (e.g., a loop around a solid torus) have no impact

on boundary singularities, and all other values of Ω are set to zero.

2.4 Field Integration (2D)

To obtain the inal frames we perform a breadth-irst traversal:

starting at any vertex i0 ∈ ∂K0, we transport some initial frame

Ei ∈ SO(2) to all other boundary vertices via Eqn. 8. (The particular

choice of frame has no efect on our 3D problem, which only uses

the frame derivatives.) The constraints in Eqn. 15 ensure that the

change in the resulting ield E across any edge ij exactly agrees

with ωi j , independent of the starting point i0. In this sense, the 2D

theory is łexactž: any ω satisfying our constraints exactly describes

a 2D cross ield, up to a global rotation.

Extrinsic Field. For the 3D problem, we will need an extrinsic ver-

sion of the 2D ield, i.e., an element E0i ∈ SO(3) for each boundary

vertex i ∈ ∂K0, which we obtain by projecting each 2D frame onto

the plane of the vertex normal Ni , and using Ni to complete the

orthonormal basis.We also store the Darboux derivativeω0 of the ex-

trinsic ield on each edge ij ∈ ∂K1. Evaluating the discrete Darboux

derivative log(E0j (E
0
i )
−1) directly is not satisfactory since (i) it may

exhibit spurious quarter rotations across edges not in the breadth-

irst tree, and (ii) the log map may not properly account for large

rotations. Instead, we construct the smallest rotation Qi j ∈ SO(3)

from Ni to Nj , then set ω0
i j = log(Qi j ) +ωi jNi (being careful to use

the triangle rather than vertex normal for edges with one endpoint

on a sharp featureÐsee edge ij in Fig. 11). This value encodes a

twist-free change of tangent plane, together with a (potentially very

large) rotation around the normal. The inal values of E0 and ω0 are

the only data we need for the 3D stage of the algorithm.
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3 VOLUME CROSS FIELD (3D)

To obtain the 3D cross ield, we minimize an energy that measures

(i) the smoothness of values ω : K1 → so(3) and (ii) their failure

to be integrable, subject to linear constraints that adapt the ield to

the boundary and the singular curve network. Note that we do not

adapt all three directions of the 3D frame to the given (2D) boundary

frameÐwe ask only that it preserve the 2D singularities (Sec. 3.2.1).

3.1 Objective (3D)

Field Smoothness. As in 2D, smoothness is

quantiied via

| |ω | |2 :=
∑

i j ∈K1

wi j |ωi j |
2, (16)

which measures the Dirichlet energy of the ield (App. A.4). The

weights are now given bywi j = Ai j/ℓi j , where ℓi j is the length of

edge ij , and Ai j is the area of its circumcentric dual face (see inset).

This energy is particularly appropriate for ield-guided meshing

since it considers only smoothness in orientation and not magnitude.

Local Integrability. The 3D analogue of Eqn. 13 is given by the

discrete structure equation

(dω)i jk = (ω ∧ ω)i jk + Ωi jk , (17)

Here d denotes the discrete exterior derivative

(dω)i jk := ωi j + ωjk + ωki ,

and the symbol ∧ denotes the discrete wedge product

(α ∧ β )i jk := 1
6Ai jk

∑

pqr ∈S+
i jk

A
qr
p (αpqβrp − βrpαpq ), (18)

where S+
i jk

are the three even permutations

of ijk , Ai jk is the triangle area, and A
jk
i

are the (unsigned) Voronoi areas obtained

by connecting the circumcenter of ijk to its

edge midpoints (see inset). In 3D, the values

Ωi jk ∈ so(3) now describe both the speed

and axis of rotation around singular curves

(see Sec. 3.2.2).

There are two ways to derive Eqn. 17: either discretize a smooth

structure equation (App. A.4), or expand the monodromy around tri-

angle ijk (i.e., exp(ωki ) exp(ωjk ) exp(ωi j )) via the Baker-Campbell-

Hausdorf formula. The irst-order terms yield the discrete exterior

derivative; the second-order terms yield the discrete wedge product.

Since higher-order terms are omitted, values ω satisfying Eqn. 17

do not exactly characterize a discrete frameÐrather than a hard

constraint, we therefore use a penalty

R (ω) :=
∑

i jk ∈K∗2

|(dω)i jk − (ω ∧ ω)i jk + Ωi jk |
2. (19)

HereK∗2 := K2\ (∂K2∪S
B
2 ) denotes the set of triangles inK that are

neither on the domain boundary, nor on the interior of singularity

tubesÐfor these triangles, integrability ofω will be encoded by linear

constraints in Secs. 3.2.1 and 3.2.2, resp. In practice this penalty yields

values ω that are extremely close to integrable, as demonstrated in

Sec. 4.2.

3.2 Constraints (3D)

3.2.1 Boundary Adaptation. Along the domain boundary, the ield

must agree with singular curves at their endpoints; for hex meshing

it should also be adapted to the surface normal. Suppose that at

boundary vertices i ∈ ∂K0 we write the ield as Ei = exp(αi N̂i )E
0
i ,

i.e., as a rotation of the reference frame E0 (from Sec. 2.4) by an

angle αi around the normal. Letting these angles be free parameters

in the optimization, and letting Ni j :=
1
2 (Ni + Nj ), the constraint

ωi j = ω0
i j + (α j − αi )N̂i j , ij ∈ ∂K1 (20)

then allows the ield to freely rotate around the normal (App. A.4),

while ensuring the total rotation around closed loopsÐand in partic-

ular, around singular trianglesÐis ixed: consider summing α j − αi
around any loop (see also App. A.4.1). For most domains this con-

straint also ensures trivial monodromy around all noncontractible

loops (not just those on the boundary); see App. A.2.1.

3.2.2 Curve Adaptation. For meshing, the monodromy Ωi jk ∈

so(3) around any singular curve must have magnitude kπ/2, k ∈ Z,

and direction parallel to the curve tangent T . We must also apply

linear constraints that ensure frames are adapted (i.e., tangent) to

the curve. Both conditions are essential: a fractional turn around an

arbitrary axis does not deine a consistent frame (Fig. 8); a ield that

merely makes some consistent rotationÐbut not around the curve

tangentÐis generally not meshable (Fig. 3, left).

Monodromy. Recall the notation from Sec. 1.1.1. For triangles ijk ∈

SA
2 we set the value of Ωi jk to 2πσi jk N̂i jk , giving the unit normal

Ni jk the same orientation as the tube. Since these triangles already

contain all tube vertices, we omit the structure equation (Eqn. 17)

from interior triangles ijk ∈ SB
2 , which would be redundant. Finally,

for the nonsingular triangles ijk ∈ ∂S , we set Ωi jk = 0.

Adaptation. To adapt frames

to singularity and feature curves,

we include linear constraints

akin to Eqn. 20 for each edge

ij ∈ S1 running along a singular-

ity tube. For each vertex i ∈ S1,

let Ti denote the unit normal

Ni jk of the associated triangle

ijk (see inset) and let E0i be an arbitrary reference frame adapted

to S1 at i (e.g., the frame of least twist). For each edge ij ∈ S1, let

Ti j :=
1
2 (Ti +Tj ) and letω

0
i j be the Darboux derivative of E

0 (Eqn. 7).

We can then specify two diferent kinds of constraintsÐeither

ωi j = ω0
i j + αi jT̂i j , (21)

or

ωi j = ω0
i j + (α j − αi )T̂i j . (22)

In both cases, the values ω0
i j account for the bending of the curve,

ensuring that the frame remains adapted as it moves from i to j.

The T̂i j terms determine the frame’s torsion along the curve: using

free parameters αi j ∈ R per edge permits any torsion whatsoever,

whereas taking diferences of free parameters αi ∈ R per vertex

forces the total torsion around closed loops to equal the total torsion

of the reference frame E0 (since the diferences sum to zero).
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Fig. 12. Even when the constraint set has disconnected components, integrability of ω is typically suficient to ensure that the frame is correctly adapted

to boundary normals and curve tangentsÐeven in the absence of symmetry. Here we show a domain with disconnected feature curves (a), disconnected

boundary components (b), and singular loops that make no contact with the boundary (c). A rare exception is shown in (d), where the cross field on two nested

cubes can be globally represented by an ordinary rotation field; here we can simply connect components by a feature curve (in red) to ensure proper alignment.

While Eqn. 22 provides ex-

plicit control when there are

multiple solutions (say, a solid

torus without boundary adap-

tation), it is typically easier to

use Eqn. 21, since the torsional

period need not be chosen a pri-

ori. Consider for example the

twisted prism shown in the in-

set: to obtain a torsion compat-

ible with the boundary normals one could either use Eqn. 22 and

design an initial frame E0 along the singular (red) curve that rotates

by 4π/3 around the vertical axis, or use Eqn. 21 and simply let the

free parameters αi j automatically determine the correct torsion (as

done for the prism). Fig. 13 shows a similar example for closed loops.

Finally, for sharp feature curves along the boundary we simply

set ωi j = ω0
i j where ω

0 is the Darboux derivative of the cross ield

best adapted to the curve tangent and the boundary normals at each

vertex (see edge ab in Fig. 11); since crosses must remain adapted

to the normals, a free torsion parameter is not needed.

Fig. 13. We can allow the torsion of the frame along singular and feature

curves to be free during optimizationÐand hence do not have to determine

torsional periods a priori. Here for instance the frame automatically makes

the correct number of twists as it travels around the red loop (from let to

right: 0, 1, and 2), keeping it compatible with the boundary normals.

3.2.3 Disconnected Components. A special case to consider are

domains where the constraint set is disconnected (as in Fig. 12).

Since constraints on ω prescribe only the local change in the ieldÐ

and not its absolute orientationÐit is not immediately obvious that

a ield adapted to one boundary component will be adapted to all

others. Crane et al. [2010, Section 2.8] describe a similar situation

in 2D, where disconnected components of directional constraints

are joined by paths with prescribed angle sums. The same strategy

cannot be applied in 3D, due to the failure of Eqn. 3.

However, the situation turns out to be easier in 3D than in 2D:

any integrable 1-form ω already describes a frame that is correctly

adapted to all constraints. The basic reason is illustrated in Fig. 8:

suppose a cross ield E had Darboux derivative ω, but was not cor-

rectly adapted to the constraint set at some vertex i ∈ K0. Due

to the constraints in Sections 3.2.1 and 3.2.2, the monodromy of ω

around any loop γ based at i must be a cube symmetry around the

axes of the adapted frame. In general, then, developing an incorrectly

adapted frame Ei around such a loop would yield an inequivalent

frame E ′i , i.e., ω would not actually be the Darboux derivative of

EÐa contradiction. The only exception is when all loops based at all

boundary points have monodromy equal to the identity, i.e., when

the solution can be globally expressed as an ordinary frame ield

rather than a cross ield. (See also discussion in App. A.3.1.)

In short, as long as ω is integrable, special treatment of discon-

nected components is typically not needed. For example, Fig. 12c

shows correct adaptation to both singular curves and boundary

normals on an asymmetric torus with four disconnected singular

loops of index +1/4. In contrast, Fig. 12d, left shows misalignment

on an example where the solution can be expressed as an ordinary

frame ield. Here, connecting the two components by an index-0

feature curve with free torsion (à la Eqn. 21) restores proper align-

ment. In practice we often ind that no additional constraints are

needed even when the solution can be represented by an ordinary

frame ieldÐsee for instance Fig. 12a and b. Further analysis of this

behavior is an interesting question for future work.
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Fig. 14. Our discretization of Cartan’s structure equation exhibits second

order convergence with respect to mean edge length h, providing good

numerical behavior even on coarse models.

3.3 Optimization Problem (3D)

Our overall optimization problem is a nonlinear least squares prob-

lem subject to linear constraints:

min
ω :K1→so(3)
α :B→R

| |ω | |2 + aR (ω)

s.t. ωi j = ω0
i j +

1
2 (α j − αi ) (N̂i + N̂j ), ∀ij ∈ ∂K1

ωi j = ω0
i j +

1
2αi j (T̂i + T̂j ), ∀ij ∈ S1.

(23)

Here, B is the set of vertices and edges where the adaptation con-

straints have real degrees of freedom α . The relative strength of the

two objectives is controlled by the parameter a > 0, which afects

only the rate of convergence (we use a = 1000 in all examples). In

practice, we observe that this problem appears to produce globally

optimal solutions, since any (empirically) initial guess leads to an

identical minimizerÐsee Sec. 4.2 for further discussion.

Field Integration (3D). To recover the inal ield E, we propagate

ω across the domain via breadth-irst parallel transport exactly as

in 2D (Sec. 2.4), except that the parallel transport matrices are now

just Ri j = I. Since ω determines E only up to a global rotation we

start with a boundary-adapted frame, though the particular choice

of initial vertex i ∈ ∂K0 does not matterÐsee for instance Fig. 16.

4 EVALUATION AND RESULTS

4.1 Domain Generation

The volumemeshK is generated by specifying (i) the domain bound-

ary, as an ordinary triangle mesh, and (ii) a collection of triangular

singularity tubes, terminating at triangles on the domain bound-

ary. The composite triangle mesh is then handed to any standard

method for constrained Delaunay triangulationÐwe use TetGen [Si

2015] with default settings, and do not perform any subsequent

processing to the mesh. Mesh sizes in our examples ranged from

22k to 222k tets, with an average size around 100k tets. We construct

tubes by sweeping a triangle along a given collection of polylines;

tubes meeting at an interior node are joined by a single tetrahedron.

For complex or noisy singularity networks this simple sweeping

procedure can be error prone; see Sec. 5.

failure to close

closure

h
.05 .1 .2

Fig. 15. Due purely to discretization error, rotations exp(ωi j ) exhibit an

extremely small failure to close around triangles i jk , which vanishes rapidly

under refinement. Let: cross section of the example shown in the upper-let.

Right: convergence with respect to mean edge length h.

4.2 Validation

Numerical experiments help validate our formulation. Fig. 14 plots

the residual of the discrete structure equation (Eqn. 17) with respect

to mesh reinement, indicating second-order convergence; as is

standard for singular PDEs, we measure error on a ixed subdomain

away from singular curves. In Fig. 15 we quantify the integrability

of ω by measuring the magnitude of the monodromy in each face

ijk (à la Eqn. 9), which is no more than a small fraction of a degree

even on the coarsest mesh. Here again we observe the expected

second order convergence, strongly suggesting that any lack of

integrability is purely due to discretization error, rather than a

failure of the solver to produce an optimal solution. Fig. 16 further

conirms that our solution is almost perfectly integrable not only

locally but also globally: here we propagate ω in breadth-irst order

either from the domain boundary (where the ield is known), or

from an arbitrary point on the interior; in each case, the global

accumulation of error is small enough that the maximum change in

any cross is nomore than about 1◦. We also check that the integrated

frame E is closely adapted to the normal of the domain boundary

and the tangents of the singularity curves: across all examples in the

paper, the average error ranges from 0.014◦ to 1.72◦ with a standard

deviation of 0.64◦, even for the large index singularities in Fig. 9

and highly twisted boundary in Fig. 13. Overall, the discretization

appears to be extremely accurate, even on fairly coarse meshes.

Initialization. Fig. 17 shows the solutions obtained when initial-

izing ω with random values, constant values, or the solution to an

easier problemwhere we omit the quadratic termω∧ω from Eqn. 19

and can hence just solve a linear system. In each case the minimizer

is identical, up to loating point error. This behavior is representative

of our experience across a wide variety of examples: we always get

the same solution, independent of initialization; we do not require a

carefully-designed solver or optimization strategy. Though Eqn. 23

is not convex, such experiments strongly suggest that the solutions

we obtain are globally optimal, much as eigenvalue problems are

nonconvex, yet easily admit global minimizers. Further analysis of

this problem is an interesting topic for future work.
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angle deviation relative to (a)

(a)
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Fig. 16. Even on a fairly coarse mesh (4k vertices, pictured top let), local

integrability error is small enough that we obtain a virtually identical cross

field whether we integrate ω via a breadth-first search from the domain

boundary (a), or from an arbitrary interior point (b, c and d).
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Fig. 17. Independent of initial guess (let), our optimization problem yields

an identical solution (right) up to floating point error. Here we plot ω as a

vector per edge.

Local Smoothing. We also compared the raw output of our algo-

rithm with the ield obtained by performing additional local smooth-

ing, using a simple iterative scheme akin to Gao et al. [2017]. At

each iteration the frame Ei is replaced with the Karcher mean of its

neighbors, i.e., the minimizer of the energy
∑

i j wi jd (Ei ,Ej )
2, where

d (·, ·) is the distance on SO(3), and Ej ∈ SO(3) is the representative

of the cross at j closest to Ei . Even on coarse meshes, this procedure

yields virtually no change to our solution (Fig. 18). In other words,

our smoothness energy captures what one might naturally desire at

the discrete level: it minimizes the diference in rotation between

adjacent crosses. (Note that we do not use this smoothing procedure

for any other examples.)

original smoothed

angle deviation

Fig. 18. Applying additional local smoothingmakes an imperceptible change

to our solution, indicating that it also does a good job of minimizing ro-

tational diferences at the discrete level. Here we visualize a cross section

before and ater smoothing, as well as the change in angle due to smoothing.

4.3 Performance

The main cost in our algorithm is solving the optimization problem

for ω on the volume (Eqn. 23); here we used a standard Levenbergś

Marquardt solver without line search [Moré 1978], though many

eicient alternatives are available [DeVito et al. 2017]. Each iteration

entails solving a roughly |3E | × |3E | positive deinite linear system;

we made no efort whatsoever to optimize our code, and simply use

the backslash command in MATLAB (which performs Cholesky

factorization); Eqn. 15 was solved using quadprog in MATLAB, but

can easily be reformulated as a sparse linear system (Sec. 2.3). With

this implementation, setting up and solving our two optimization

problems on a mesh with 130,000 edges takes a couple minutes on

a 4GHz Intel Core i7 with 16GB of RAM. The number of iterations

does not seem to depend strongly on mesh resolution: all our ex-

amples take about 5ś10 iterations to converge. Other steps did not

contribute signiicantly to computational cost.

4.4 Comparisons

The only other method which generates a meshable ield compatible

with a given set of singular curves is the one of Liu et al. [2018].

Since both methods produced ields with the same global topology,

we can compare only ield smoothness, quantiied using either (i) the

quaternion Dirichlet energy optimized by Liu et al. [2018, Equation

23], or (ii) the ℓ2 norm of angle diferences between frames. More

precisely, we sum over interior faces to get

ϕH := (
∑

i jk wi jk |qi jka − qi jkb |
2)1/2, and

ϕθ := (
∑

i jk wi jkθ
2
i jk

)1/2.

Here qi jka ,qi jkb ∈ H are the frames in the two tets containing

ijk (expressed as quaternions), θi jk is the smallest angle between

the same two frames, and the weight wi jk ∈ R is triangle area

divided by the dual edge length (i.e., the diagonal Hodge star on

dual 1-forms). To provide a fair comparison, we sample our ields

onto the meshes used by Liu et al. On average we ind that our ields

exhibit about 20% and 32% lower energy with respect to ϕH and ϕθ ,

resp.; in other words they are smoother even with respect to Liu et

al.’s own measure of smoothness (which is not too surprising, given

their use of an eigenvalue relaxation). In the context of meshing,

the rotational smoothness ϕθ is likely a more natural measure of

ield quality, since frame magnitude plays no role.
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Fig. 19. Fields computed via our method; for each model we show the input

network (top), Darboux derivative ω (middle) and 3D cross field (botom).

In terms of performance, the bottleneck in our algorithm is a non-

linear least squares problem; for Liu et al.it is a principal eigenvalue

problem. In 2D both problems are eiciently solved via a small se-

quence of sparse linear systems using a ixed (symbolic or numeric)

factorization, but in 3D sparse direct solvers generally exhibit poor

scaling and hence neither method can beneit from the amortized

gains of prefactorization. Iterative solvers for least squares [DeVito

et al. 2017] or eigenvalue problems provide an attractive alternative,

min scaled Jacobian

Fig. 20. Hexahedral meshes generated from our fields; for each mesh we

show a łfallawayž view to visualize interior element quality. Even coarse

meshes (top row) respect the given singularity structure, and generally

exhibit good element quality.

though the real-world performance comparison is far from clear

given the broad range of options. Other aspects of computation

(such as our 2D problem, or the merging & zippering routine in

Liu et al.) seem not to contribute signiicantly to practical runtime.

Storage cost is also similar: we store three real values per edge (en-

coding an element of so(3)); Liu et al. store four real values per tet

(encoding a quaternion); in practice the ratio of edges to tets in a

Delaunay mesh is roughly 6:5, making the overall ratio of DOFs

very close to 1:1.

4.5 Examples

Fields. Examples of ields computed via our method are shown in

Figures 1, 6, 9, 12, 13 and 19. In each case the input to the algorithm

was a description of the domain boundary (blue), a valid network of

singularity curves (red), and curves along sharp features (yellow);

input data comes from Liu et al. [2018]. The Darboux derivative ω is

plotted by drawing vectors that show the axis and angle of rotationÐ

the length of these vectors indicates the rotational smoothness of the

ield, verifying that non-smoothness occurs only near singularities

(or sharp corners) and falls of rapidly everywhere else. To visualize

the cross ield E obtained from ω, we trace integral curves through

an interpolated ield (given by the barycentric weighted Karcher

mean on SO (3)).
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Meshing. Though our aim in this paper is not to build a full

end-to-end meshing pipeline, we performed several preliminary

experiments. In particular, we performed ield-aligned parameteri-

zation via CubeCover [Nieser et al. 2011] and extracted hexahedral

meshes using HexEx [Lyon et al. 2016]. To get frames on tetrahedra

(needed by CubeCover) we computed the (Karcher) mean of frames

at vertices; we also inserted the barycenter of each singular face

ijk ∈ SA
2 (updating our mesh via TetGen) and omitted these vertices

when taking averages. No additional processing was used; likewise,

we made no modiications to the meshing algorithms, apart from

using CoMISo for CubeCover [Bommes et al. 2012]. Matchings in

CubeCover were obtained by inding the closest rotation, but in

principle we should be able to make this step even more robust near

singularities by using angle information from ω. Several examples

are shown in Fig. 20, where we plot theminimum scaled Jacobian for

each cell, where 1 is ideal and negative values indicate inversion (see

[Vyas and Shimada 2009, Section 8.1] for a deinition). To visualize

element quality on the domain interior, we also provide a łfallawayž

view where we run a rigid body simulation on elements removed

by a cutaway plane. We applied no post-processing, and generally

obtained high-quality elements with no inversions; in all cases the

input singularity structure was preserved exactly.

5 LIMITATIONS AND FUTURE WORK

The main limitation of our method is that the user is required to

specify a valid singularity networkÐan enticing question is how

moving frames may help with automatic generation of such net-

works. Here our PDE-constrained optimization problem may it

nicely with recent techniques for computing optimal singularities

via measure relaxation [Soliman et al. 2018]. There is currently no

clear reason why our nonlinear least squares problem should always

yield a globally optimal (or even integrable) solution, as it appears

to do in practice (Fig. 17); a deeper understanding of this phenom-

enon may prove valuable. Pure rotation ields with disconnected

boundary components may be misaligned (Sec. 3.2.3), but this issue

is largely addressed via extra feature curves.

A practical nuisance is building

nicely-shaped tube geometryÐon more

complicated examples (as shown in

the inset), our naïve extrusion code of-

ten generated self-intersections (red)

which caused TetGen to fail. This limi-

tation is of course not fundamental to

our formulation, and might be easily

addressed by using more lexible node

geometry (e.g., octahedra rather than just tetrahedra) which would

also allow higher-degree nodes. Alternatively, it may be useful to

consider a numerical treatment that does not depend on a special

mesh structure, such as inite or boundary element methods [Arnold

et al. 2006; Solomon et al. 2017]. Finally, the machinery of moving

frames is not tied in any way to the rotation group SO (3), or to

symmetries of the cube (see App. A). Hence, much of our algorithm

can be directly applied to other Lie groupsG and/or other symmetry

groups, which may facilitate more general ield-guided anisotropic

meshing problems (e.g., for boundaries with sharp dihedral angles),

as recently explored in 2D [Diamanti et al. 2014; Jiang et al. 2015].
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A SMOOTH FORMULATION

Our formulation is based on Cartan’s method of moving framesÐthe

basic idea is to express the derivatives of a frame ield with respect

to the ield itself, akin to using body-centered angular velocities. Just

as the fundamental theorem of calculus asserts that an ordinary

function is determined by its derivative (up to a constant shift), an

analogous theorem tells us that a frame ield can be recovered from

its Darboux derivative, up to a global rotation (Thm. A.2). In this

section we provide essential background on moving frames, and

show how they can be extended to symmetric 3D cross ields.

Traditionally, moving frames are introduced using orthonormal

coordinate frames on Rn [do Carmo 1994]; a more modern approach

is to consider a principal bundle, where orthonormal frames are re-

placed by elements of some Lie groupG [Sharpe 2000]. This perspec-

tive helps make sense of 3D cross ields, since the space of crosses

can be described as the quotient of the rotation groupG = SO(3) by

the cube symmetries Γ. Although this space is no longer a group, it

is still a manifold on which the Darboux derivative locally satisies

the usual structure equation. Globally, the only diference is that

monodromies are no longer trivial, but instead look like symmetries

of the cube. An interesting consequence is that, in most cases, an

integrable Darboux derivative now uniquely determines a cross ield,

i.e., there is no longer a choice of global rotation (App. A.3.1).

We begin with a review of Lie groups (App. A.1), followed by a

discussion of moving frames (App. A.2), and inally its connection

to 3D cross ields (App. A.3). Throughout we make use of diferential

formsÐsee Crane et al. [2013] for a pedagogical introduction, and

Abraham et al. [1988] for a more detailed reference.

A.1 Lie Groups

Lie groups and Lie algebras provide a uniied picture of spatial trans-

formations and their derivatives (resp.). The basic idea is that, since

transformations can vary continuously, they can be viewed as points

on a smooth manifold; since they can be composed in a natural way,

they also have the structure of a group. For concreteness we will

consider the special case of rotations around the origin in Rn , since

this example captures the most important features of the general

case, and will be needed to describe cross ields. The cartoon in

Fig. 21 helps provide intuition for the discussion below. As noted

in Sec. 0.3, rotations of Rn can be represented by n × n orthogonal

matrices QTQ = I with positive determinant.

Fig. 21. Rotations of Rn can be viewed as a smooth manifold SO(n), where

a curve γ describes a continuous family of rotations, and its tangents hence

encode angular velocities. For example, the exponential map exp(tA) de-

scribes rotation at a constant velocity A for time t (right), starting at the

identity I. The Lie algebra so(n) is the set of velocities A at the identity; any

velocity at a point Q ∈ SO(n) can be expressed as AQ for some A ∈ so(n).

Group Structure. Rotations exhibit several natural properties: the

composition of two rotations Q1,Q2 is another rotation Q2 ◦ Q1;

there is an identity rotation I that does nothing; every rotation Q
can be undone by some inverse Q−1; and diferent groupings of

rotations have the same efect, i.e., (Q1 ◦Q2) ◦Q3 = Q1 ◦ (Q2 ◦Q3).

In general, any collection of objects with this behavior is called

a group. Since rotations are represented by orthogonal matrices,

the collection of all rotations is called the special orthogonal group

SO(n), where special refers to the fact that rotations also preserve

orientation (det(Q ) > 0).

Manifold Structure. Much as a smooth

surface can be expressed as the zero

level set of a smooth function f : Rn →

R, we can view the group O(n) of or-

thogonal matrices as the zero set of the

function f (Q ) = QTQ − I taking matrices to symmetric matrices.

This set has two components: one with positive determinant, corre-

sponding to the rotation group SO(n), and another with negative

determinant, corresponding to relections (which do not form a

group). This perspective allows us to think of rotations as a continu-

ous space where nearby points represent similar rotations. Formally,

since the zero matrix is a regular value of f , SO(n) is a smooth

manifold of dimension n(n− 1)/2Ðsee [Warner 2013, Example 1.40].

Lie Algebra. The identity rotation I can be thought of as a special

point on SO(n). Ininitesimal rotations of Rn are then described by

vectors A in the tangent spaceTISO(n), also known as the Lie algebra

so(n). Each Lie algebra element is represented by a skew-symmetric

matrix AT = −A. To see why, consider a time-varying rotation Q (t )

starting at Q (0) = I. Diferentiating the relationship QT (t )Q (t ) = I

at t = 0 yields d
dt

QT (0) = − d
dt

Q (0), i.e., any ininitesimal rotation

of the identity has the form AT
= −A, as discussed in Sec. 0.3.

Ininitesimal changes to any other rotation Q can then be expressed

as AQ for some A ∈ so(n). The Lie bracket [A1,A2] := A1A2 − A2A1
on so(n) captures the failure of small rotations to commute.
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Fig. 22. A frame field on a region U ⊂ Rn can be viewed as a map E to

the space SO(n) of rotations. The Darboux derivative ω (γ ′) expresses the

change in the field as one walks along a curve γ , relative to E itself.

Exponential Map. Given a unit tangent vectorA at the identity, the

exponential map exp(tA) gives the point obtained by walking along

the Lie group for a time t in the direction A along a straightest path

or geodesic. In SO(n), exp(tA) is the rotation obtained by starting

at the identity and integrating the angular velocity A for time t . In

2D for instance, where a skew-symmetric matrix A is determined

by a single number θ ∈ R, exp(A) is just the corresponding rotation
matrix given in Eqn. 1. Hence, when using angles to represent 2D

frames we are working in the Lie algebra; when working with 2 × 2

rotation matrices we are working in the Lie group.

A.2 Moving Frames

How can we express the change in a spatially-varying frame ield?

Consider a solid regionU ⊂ R3 bounded by a smooth surface ∂U .

A moving frame on U is a smoothly-varying orthonormal frame

E : U → SO(3) ⊂ R3×3 taking each point p ∈ U to a rotation E (p)

(Fig. 22). The irst-order change in E at a point p ∈ U is described by

the diferential dE, which maps any vector X ∈ R3 to the directional

derivative along X :

dEp (X ) := lim
ε→0

E (p + εX ) − E (p)

ε
.

The key idea behind moving frames is to express this change with

respect to the frame itself, via the Darboux derivative

ωp (X ) := (dEp (X ))E−1p . (24)

The transformation E−1p takes us from the global coordinate frame

to a local, moving frame that depends on the point p. In terms of the

Lie group SO(3), it takes a vector tangent to the point Ep ∈ SO(3),

and maps it to a tangent at the identity I, i.e., to an element of the Lie

algebra so(3). The Darboux derivative is therefore an so(3)-valued

1-form, i.e., a linear map ω : TU → so(3) from tangent vectors to

Lie algebra elements.

A.2.1 Integrability. Given a 1-form ω, can we construct a corre-

sponding frame E? For any initial value E0 ∈ SO(3), we can at least

integrate ω along a simple path γ : [0,L]→ U to get a development

γ̃ : [0,L]→ SO(3) whose Darboux derivative agrees with ω:

ω ◦ dγ = (dγ̃ )γ̃−1.

In general, however, a closed curve γ (0) = γ (L) may not have a

development, since the frames at the two endpoints may not agree.

This failure to close is called the monodromy of ω around γ :

Φω (γ ) := γ̃ (L)γ̃ (0)−1.

For ω to consistently describe a frame over all ofU , it must there-

fore have trivial monodromy Φω (γ ) = I around all closed loops γ .

Equivalently, ω must satisfy a structure equation that accounts for

monodromy around small, contractible loops; it must also exhibit

trivial monodromy around a collection of large, noncontractible

loops that generate the fundamental group π1 (U ).

Structure Equation. Viewing E as a map into SO(3) ⊂ R3×3, and

ω as a matrix-valued 1-form, we can write Eqn. 24 as

dE = ωE. (25)

Taking the exterior derivative yields

0 = d (dE) = (dω)E − ω ∧ dE = (dω)E − ω ∧ ωE, (26)

where in the inal step we apply Eqn. 25. Since E is invertible at

each point, Eqn. 26 is equivalent to Cartan’s 2nd structure equation

dω = ω ∧ ω . (27)

For so(3)-valued 1-forms α , β , the wedge product is given by

(α ∧ β ) (X ,Y ) = 1
2 ([α (X ), β (Y )] − [α (Y ), β (X )]) ,

where [·, ·] is the Lie bracket (App. A.1). The structure equation

provides a local integrability condition [Sharpe 2000, Thm. 6.1]:

Theorem A.1. On any simply-connected region B ⊆ U , an so(3)-

valued 1-form ω satisfying Eqn. 27 is the Darboux derivative of some

moving frame E : B → SO(3).

Nonsimply-Connected Domains. For domainswith nontrivial topol-

ogy (e.g., a solid torus), we must also ensure that ω encodes a well-

deined frame around noncontractible loops. If ω already satisies

Eqn. 27, then two homotopic loops γ1,γ2 starting and ending at

the same basepoint b ∈ U will have the same monodromy [Sharpe

2000, Thm. 7.7]; picking a diferent basepoint merely conjugates the

monodromy by a ixed element of SO(3) [Sharpe 2000, Thm. 7.11]. It

is therefore enough to ensure that ω has trivial monodromy around

a representative loop γ from each class in the fundamental group

π1 (U ,b) based at any point b ∈ U [Sharpe 2000, Thm. 7.14]:

Theorem A.2 (Fundamental theorem of nonabelian cal-

culus). Let ω be an so(3)-valued 1-form on a path connected do-

main U ⊂ R3. Then ω is the Darboux derivative of a moving frame

E : U → SO(3) if and only if

(i) it satisies the structure equation dω = ω ∧ ω, and

(ii) it has trivial monodromy around some representative loop γ in

each class of π1 (U ).

Moreover, for any two loops γ1,γ2 ∈ π1 (U ,b), the monodromy of

the concatenated loop γ1+γ2 is just the product Φ(γ1)Φ(γ2) [Sharpe

2000, Prp. 7.10]. Hence, it is suicient to have trivial monodromy

around a collection of generators for π1 (U ).
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not TP

TP
In fact, suppose that every closed

loop inU is freely homotopic to some

loop on the boundary ∂U , i.e., thatU is

totally peripheral (TP) [Brin et al. 1985].

Then it is enough to have trivial mon-

odromy around all loops on the bound-

ary, which we ensure by asking the

monodromy of ω to agree with the

Darboux derivative ω0 of some ixed

boundary frame E0 (Sec. 3.2.1). This

strategy works on most domainsÐfor

instance, the solid torus has a single

generator homotopic to a loop on the boundary (inset, top). In the

rare case whereU is not totally peripheral, such as the complement

of a trefoil knot (inset, bottom) one could explicitly compute the

generators [Kim et al. 2008] and include them as feature curves (à

la Sec. 3.2.2), though this strategy was not needed in our examples.

A.2.2 Curvature and Singularities. The failure of a 1-form ω to be

integrable is captured by the curvature 2-form

Ω := dω − ω ∧ ω .

Geometrically, Ω(u, v) describes the limit

monodromy around an ininitesimal paral-

lelogram with edges u, v (Ambrose-Singer).

If Ω = 0, then ω is at least locally integrable.

For a 2-manifold M , a key observation

from Crane et al. [2010] is that ω is still inte-

grable almost everywhere even if Ω is nonzero on a collection of

isolated singular points p1, . . . ,pn ∈ M . More speciically, suppose

Ω =

n
∑

i=1

2πσiδpi ,

where δp is a Dirac delta at p, and σi ∈ Z is the index of the

singularity at pi . Then ω encodes a well-deined frame ield on

M \ {p1, . . . ,pn }, where it still describes whole rotations around

closed loops (Fig. 4).

Likewise, in 3D, we can encode a network of singular curves

γ1 (s ), . . . ,γn (s ) with prescribed indices σ1, . . . ,σn (resp.) by letting

Ω be a distribution supported on these curves. In particular, let

Ω(s ) =

n
∑

i=1

σiH
1
γi T̂i (s ),

whereTi (s ) is the tangent toγi at s , andH
1
γ is the Hausdorfmeasure

associated with γ (i.e., H1
γ (B) :=

∫

γ∩B
ds for any subset B ⊂ U ). A

1-form ω satisfying the augmented structure equation

dω = ω ∧ ω + Ω (28)

then exhibits the prescribed number of rotations for small loops

around γ , and some whole number of rotations around all loops

in U \ (γ1 ∪ · · · ∪ γn ). If we also want the ield to be adapted to

a singular curve γ (e.g., to ensure the ield is locally meshable, as

illustrated in Fig. 3), we can require that ω = ω0
+ αT̂ , where ω0 is

the Darboux derivative of some ixed cross ield on γ and the 1-form

α : Tγ → R parameterizes the torsion along γ (see Sec. 3.2.2 for

further discussion).

Fig. 23. Even if a cross field F cannot be represented by any globally contin-

uous function θ , there are always several local trivializations θ̃ in a simply

connected neighborhood Bp around each point p , which difer only by

quarter rotations. Since the derivatives dθ̃k are all the same, they can be

used to define a globally continuous derivative dθ .

A.3 Symmetric Moving Frames

To represent 3D cross ields, we depart from the ordinary theory of

moving frames and replace SO(3) with its quotient by cube symme-

tries. Since SO(3) has no normal subgroups, this quotient cannot be

a (Lie) group; nonetheless, we can still take a quotient in the topo-

logical sense to obtain a smooth manifold where each point speciies

a unique cross. Even in the absence of group structure, the manifold

structure remains suicient to deine integrability conditions on ω.

More precisely, let Γ ⊂ SO(3) denote the rotational symmetries

of the standard cube (sometimes called the rotational octahedral

group), and let C := SO(3)/Γ denote the quotient of the manifold

SO(3) by the right action of Γ, i.e., two rotations E1,E2 ∈ SO(3)

are considered equivalent if E2 = E1д for some д ∈ Γ. It is then a

standard result that C is a smooth manifold, with a smooth covering

map P : SO(3) → C [Lee 2003, Proposition 9.26].

A (Γ-)symmetric moving frame on U is then a map F : U → C.

Although F is not a section of a principal bundle (since C is not

a Lie group), we can still deine a Darboux derivative globally. A

good analogy is a 2D cross ield on a region Ω ⊂ R2 expressed

as a function θ : Ω → R giving the angle of one of the four cross

directions (Fig. 23). Thoughwe cannot always ind a θ that is globally

diferentiable, we can ind a local trivialization θ̃ : Bp → R that is

diferentiable in a neighborhood Bp around any given point p ∈ Ω.

Moreover, the derivative of this function does not depend on which

function θ̃ we pick, since they all difer by constant shifts c ∈ π
2 Z.

Likewise, in a simply-connected neighborhood Bp ⊂ U around

each nonsingular point p ∈ U , a 3D cross ield F can be represented

by some ordinary frame ield, i.e., a map F̃ : Bp → SO(3) such that

P ◦ F̃ = F . All such maps have the same Darboux derivative: if ω

satisies dF̃ = ωF̃ , then it also satisies d (F̃д) = ω (F̃д) for any д ∈ Γ,

since d (F̃д) = (dF̃ )д. Hence, we obtain a global deinition for the

Darboux derivative ω : U → so(3) of a symmetric moving frame

F : at any point p, ωp is just the Darboux derivative of any local

trivialization. As long as ω satisies the usual structure equation, it

then encodes a well-deined 3D cross ield over any nonsingular and

simply-connected region ofU . If it satisies the augmented structure

equation (Eqn. 28) for an Ω with fractional indices σi ∈
π
2 Z, then it

describes a 3D cross ield with singular curves.
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A.3.1 Nonsimply-Connected Domains. More generally, letU be any

path connected domain, and let ω be an so(3)-valued 1-form onU

satisfying the local structure equation. Suppose that the monodromy

of each generating loop γ ∈ π1 (U ,b) is conjugate to some cube

symmetry д ∈ Γ with respect to the same frame Eb ∈ SO(3), i.e.,

Φω (γ ) = EbдE
−1
b
. Let γ̃ be the development of ω along γ , starting

at γ̃ (0) = Eb . Then the (right) quotient of γ̃ by Γ is a closed loop in

C, i.e., there is a well-deined 3D cross ield along γ . By arguments

virtually identical to those in Sharpe [2000, Chapter 3.7], the same

will be true for any loop based at any point, i.e.,ω is then the Darboux

derivative of some 3D cross ield on U . Moreover, this cross ield

is almost always unique: if we try to develop ω around a loop γ

starting with any frame Ẽb that is not equivalent to Eb , then in

general the inal frame will not be equivalent to the initial frame,

i.e., we do not obtain a consistent cross ield (consider Fig. 8). The

only exception is when the monodromy around every loop is trivial

in the usual sense, i.e., if д is always equal to the identityÐin this

case, as with ordinary frame ields, ω determines the ield only up

to a choice of global rotation.

A.4 Relationship to Discrete Algorithm

The discrete algorithm in Secs. 2 and 3 is a straightforward discretiza-

tion of the smooth formulation described above. In particular:

Darboux Derivative. The discrete Darboux derivative (Sec. 1.5)

can be given the following interpretation. Consider a frame rotating

at a constant angular velocity ωi j/ℓi j along each edge ij, where ℓi j
is the edge length. The values ωi j then coincide with the integral of

the smooth Darboux derivative ω along each edge (which can be

arbitrarily large). Moreover, since Ri j = R−1ji , we have

ωi j = log(Ej (Ri jEi )
−1) = − log(Ei (RjiEj )

−1) = −ωji ,

i.e., it reverses sign with a change in orientation. Hence, ωi j is a

discrete diferential 1-form in the sense of discrete exterior calcu-

lus [Hirani 2003; Desbrun et al. 2006].

Dirichlet Energy. The smoothness of a map E : U → SO(3) can

be measured via the Dirichlet energy

ED =
∫

U
|dE |2 dV . (29)

Since E is orthogonal we have |dE |2 = |(dE)E−1 | = |ω |2, and can

hence write the Dirichlet energy as

ED =
∫

U
|ω |2 dV .

The same energy can also be applied to cross ields, since ω depends

only on a local trivialization (App. A.3). The discretization in Eqn. 11

and 16 is then obtained via the diagonal norm on discrete diferential

1-forms [Desbrun et al. 2006, Section 5.4].

Integrability Conditions and Constraints. As outlined in Sec. 3.1,

our discrete structure equation is a direct translation of the smooth

structure equation using the discrete exterior derivative and primal-

primal wedge product from discrete exterior calculus [Hirani 2003,

Sections 3.6 & 7.1]; it also coincides with a 2nd-order expansion via

the Baker-Campbell-Hausdorf formula. Eqn. 20 is derived by view-

ing both α and N as piecewise linear functions interpolating values

αi , Ni (resp.) at vertices. Since dα is piecewise constant, integrating

Eqn. 30 along edge ij yields
∫

i j
ω0
+(dα )N̂ ds = ω0

i j+

∫

i j

α j−αi
ℓi j

N̂ ds = ω0
i j+

1
2 (α j−αi ) (N̂i+N̂j ).

Nearly identical calculations yield Equations 21 and 22.

A.4.1 Rotational Invariance of Boundary Singularities. Consider a

pair of 3D frame ields E, Ẽ on the boundary ∂U , and assume that Ẽ

is a pointwise rotation of E around the normal N by some smoothly-

varying angle α : ∂U → R, i.e., Ẽ = exp(αN̂ )E. Equivalently, if E

is encoded in global orthonormal coordinates (e1, e2, e3) such that

Ee3 = N , we can write Ẽ = E exp(αê3), i.e., rotate irst around e3,

then apply the frame. Noting that dexp(αA) = (dα )A exp(αA) for

any ixed matrix A, we get

dẼ = dE exp(αê3) + Edexp(αê3)

= ωE exp(αê3) + (dα )N̂ E exp(αê3)

= ωẼ + (dα )N̂ Ẽ,

which means the Darboux derivatives of E and Ẽ are related by

ω̃ = ω + (dα )N̂ . (30)

To see that these ields have the same singularities, we simply

need to compute their curvature 2-forms Ω, Ω̃. From Eqn. 28 we get

Ω̃ = dω̃ − ω̃ ∧ ω̃

= Ω + dα ∧ dN̂ − ω ∧ (dα )N̂ − (dα )N̂ ∧ ω − (dα )N̂ ∧ (dα )N̂

= Ω + dα ∧
(

dN̂ + ωN̂ − N̂ω
)

.

Since E is adapted to the boundary, the normal satisies dN = ωN .

In turn, the skew-symmetric matrix N̂ is solution of the equation

dN̂ = N̂ω −ωN̂ . Hence, the curvature 2-forms of E and Ẽ are equal.
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