
IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 1

APPENDIX A
PREDICTING GRAPHIC DESIGN IMPORTANCE

A.1 Crowdsourced Design Importance

We performed an MTurk study asking users to label im-
portant regions in a design. We did not provide an explicit
definition of importance, but instead showed 7 example
labelings. 1,075 graphic designs were shown to 35 MTurk
users who labeled the most important regions. See the
supplementary material for the MTurk study materials.
Users were paid 30¢ for labeling each set of 20 designs, and
758 MTurk users completed the study. Duplicate designs
were added randomly and inconsistent users were removed.
These individual importance maps are often quite noisy,
with significant variation between users. However, one
important result of this study is that, averaged over a large
number of users (20-30), the mean importance maps often
give a plausible ranking of importance. See Fig. 1 for an
example of individual and averaged maps.

A.2 Features

Our features includes crowdsourced labeling of people,
faces, and text. Fig. 2 shows some examples of these
features. When creating features, efficiency is a concern
since the model is used as part of the energy function
for optimizing designs. A feature set which requires many
seconds to compute is not practical. However, we also
experimented with more time-consuming features including
other saliency detectors [6], [7], [3], steerable pyramid
filters [10], and object detectors [1] for more accurate
modeling of importance. In the next section we describe
results using both the fast and full model. In practice, we
found the fast feature set worked well, and was used for
the model in the accompanying paper.

A.3 Prediction Results

The model computes features y(p) for each pixel p and
predicts importance r(p) using a linear regression of the
features: r(p) = wTy(p) + b. Parameters w and b are
learned with LASSO [11], using L1 regularization:

min
w,b

∑
i

(wTyi + b− ri)2 + λ||w||1 (1)

where ri is the mean importance from MTurk users. The
optimal parameters w and b are computed via a convex
optimization [2] (glmnet package), with λ = 0.00037
selected by cross-validation.

Table 1 compares our two models and existing image
saliency models, using 10-fold cross-validation with a
0.9/0.1 random train/test split of our 1,075 designs, with
1,000 pixels randomly sampled from each image. Fig. 3
shows a few example designs from the test set. We report
the root-mean-square error (RMSE) for our predictor, as
well as the R2 coefficient where 1 is a perfect predictor and

0 0.5 1

Fig. 1: Importance Maps. Given a design (top left),
MTurk users mark what they consider important. While
the individual maps are noisy, when averaged over 20-30
users (bottom right), the mean maps are reasonable.

Input People Face Text Size

Fig. 2: Crowdsourced Features. We use crowdsourcing
to extract high-quality features including people and face
detection, and text size. Designs courtesy of Natasha
Mileshina and Ben Keenan.

0 is the baseline of simply predicting the mean importance
value ȳ.

R2 = 1−
∑
i(yi − fi)2∑
i(yi − ȳ)2

(2)

These results show that existing image saliency models
poorly predict the human-created importance maps. This
result is unsurprising since these methods predict eye-
fixations, not importance. Existing saliency methods are
also designed for natural images, so they fail to capture
text importance. Both our feature sets work quite well at
predicting human importance, with the full model perform-
ing slightly better.

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 2

0 0.5 1

Input MTurk Goferman Full Fast

Fig. 3: Design Importance. Given an design from a test set, we show the mean MTurk importance map, the saliency
model of Goferman [3], and our full and fast importance models. The fast model is used in the accompanying paper.
Designs courtesy of William Berry, Dániel Perlaky, and Ben Keenan.

Fixed IK HZ J G Full Fast
RMSE 0.304 0.295 0.253 0.280 0.251 0.155 0.165
R2 0 0.054 0.306 0.154 0.318 0.739 0.702

TABLE 1: Comparison of Saliency and Importance Models.
(IK) Itti and Koch [6], (HZ) Hou and Zhang [5], (J) Judd et
al. [7], (G) Goferman et al. [3] (Full/Fast) our importance
modeling approach

Text FP Sal TFP G+TFP Full
RMSE 0.223 0.297 0.231 0.200 0.175 0.155
R2 0.462 0.045 0.426 0.569 0.669 0.739

TABLE 2: Comparison of Feature Sets. (Text) Text, (FP)
Face and Person, (Sal) All Saliency, (TFP) Text, Face, and
Person, (G+TFP) Goferman et al. [3] and Text, Face, and
Person, (Full) All Features

To evaluate the extent that particular features contribute
to perceived importance, we trained the regression model
with different subsets of features. Table 3 compares the

results using text, face and person, and saliency features.
We also combined our crowdsourced features with the best-
performing saliency measure [3]. These results suggest that
text features and salience both play a large role in visual
importance. This is unsurprisingly since designers often
make important elements more salient or eye-catching.

APPENDIX B
HIERARCHICAL SEGMENTATION

Designers often use grids or rectangular regions to organize
elements. A viewer perceives this structure and relates
alignment, grouping, and symmetry to these regions. Our
system estimates the layout structure and calculates energy
terms based on it. The algorithm takes as input the lay-
out, binary masks for each element, and element classes
(graphic or text); the output is a hierarchical segmentation
of the design into non-overlapping rectangular regions.

The proposed algorithm segments a design by vertically
or horizontally splitting regions which contain both text and

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 3

a b c

Fig. 4: The algorithm segments a design into rectangular regions with three criteria. First, segmentation boundaries, or
cuts, should avoid intersecting elements. (a,b) show the intersection penalty for horizontal and vertical cuts; a cut placed
near an element center would pay a high penalty. Second, regions should contain only text or graphics. Third, cuts should
lie near the parent region’s center. (c) shows a final segmentation.

graphics. Each split is evaluated using a cost function which
measures the intersection of the split with elements, the
separation between graphic and text elements, and distance
to the region center. The algorithm recursively segments
regions until a region contains only elements of the same
class, or a user-specified maximum depth is reached. Lastly,
empty or adjacent regions with the same element classes
are merged. Figure 4 illustrates the horizontal and vertical
intersection penalties, and the final segmentations.

APPENDIX C
GRAPHIC DESIGN MODEL

The model includes many different terms. In Fig. 5 we help
justify our terms by showing examples of training the model
with various terms removed. We next discuss the various
model terms in more detail.

C.1 Alignment

Correct alignment is an important aspect of good design;
poor alignment is both distracting and confusing. The
model prefers that elements align with each other. One
energy term measures the fraction of element pairs that
align with a type a such as Left or Top:

Eaalign = −S

 1

n2

∑
i∈(all)

Na
i +

∑
j∈(all)

Iaij

 ; αa

 (3)

where n is the number of elements and Iaij indicates if
element i and j are aligned by type a. We define separate
energy terms for different alignment types. Na

i indicates

d	
	

e	
	

f	
	

a
	
	

b
	
	

c	
	

Fig. 6: Element Alignment Labeling. We show the x-axis
alignment labels for a set of center and nearly left-aligned
elements. Elements align if the differences between their
bounding box edge or center are less than a threshold. Note
that the misaligned elements on the right are still labelled as
aligned. The model will then penalize these misalignments.
Elements do not initially align if other elements lie between
them. For example, elements a and c, and d and f are not
initially aligned. These elements are then combined into an
alignment group so that IX-Center

ac = 1 and ILeft
df = 1.

if element i is internally aligned by type a. For example,
the date in Fig. 9 has an X-Center internal alignment. Each
feature is transformed by a sigmoid S(x; αa) (Fig. 8) Fig. 6
illustrates the alignment labelling.

The model penalizes misalignments with following term:

Exmisalign =
1

3n2

∑
a

∑
i∈(all)

∑
j∈(all)

IaijC(daij) (4)

where C(daij) is a robust cost function for a given distance
which heavily penalizes slight misalignments: C(d) =

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 4

Training Layout 1 Training Layout 2

No alignment terms No balance terms No emphasis terms

No white space terms No scale terms No flow terms

No boundary terms No unity terms All terms included

Fig. 5: Model Terms. Given the two training layouts, the system attempts to learn the style with different energy terms
removed.

5 arctan(d
0.015). d is the distance in pixels normalized by

the design size. Eymisalign is defined similarly for y-axis
alignments.

The model also encourages larger alignment groups:

Eagroup = −S

 1

nm

∑
g

∑
i∈(all)

Iig; αag

 (5)

where n is the number of elements, m is the number of
alignment groups and Iig indicates if element i belongs in
alignment group g. See Fig. 7 for examples.

An alternative to this approach would be to include the
alignment detection when evaluating this energy term, as in
Vollick et al. [13]. However, there are a few advantages to
separating the analysis step into a separate module. This
separation allows a simpler energy function. Alignment
detection is also used in the optimization step to reduce
misalignments.

C.2 Balance

We measure the global symmetry using a binary map of text
or graphical elements, flipped along an axis. More precisely,

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 5

Fig. 7: Alignment Groups. Rectangle colors indicate the
detected alignment groups, with the orientation and position
of the rectangles indicating the alignment type. Colored
connector lines groups the elements, with the deviation
of the rectangle from the connector line indicating the
misalignment. The top design illustrates a perfectly aligned
group (in blue) and misalignment of the bottom and center
elements (in red and green). The bottom design illustrates
that elements cannot group with inconsistent internal align-
ments (e.g., the center-aligned address), and that elements
cannot group with unaligned elements between them.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

S
(x

;α
)

α=0.1
α=2
α=10
α=100

Fig. 8: Sigmoid function S(x; α) used to shape energy
terms. The parameter α controls the smoothness of the step
function.

for vertical or x-axis symmetry :

Stextx−symm =
∑

c∈(text)

(∑
p |Icp − Icflip(p,x,G)|I

c
p∑

p I
c
p

− 1

)
(6)

Etextx−symm = S(Stextx−symm ;αtxs) (7)

Fig. 9: Symmetry Types. Global symmetry is defined over
the entire design; region symmetry is defined with respect
to the segmentation regions (show with red lines). The top
element has both symmetry types; the elements in the two
bottom regions have only region symmetry.

where Icp is a binary variable indicating if pixel p is of
class c ∈ (graphic, text), and flip(p, x,G) indicates the
symmetric counterpart of pixel p along the x-axis of image
G. We define a similar term Etexty−symm with flip(p, y,G)
indicating y-axis symmetry. We also define an asymmetry
term Etextx−asymm = S(Stextx−symm − 1;αtxa), and identical
terms for graphical elements, giving 8 global symmetry
terms total.

Designers often symmetrize elements not with the overall
page, but with regions of the page (Fig. 9). Given the hi-
erarchical segmentation of Sec. 4, we define EtextregionSymm

as above, using the symmetric counterpart of pixel p along
the x-axis in region r.

C.3 Emphasis

The model also matches the perceived importance of el-
ements to their desired importance. Using the method of
Sec. 4.1, the system first estimates the hidden variable qi,
the perceived visual importance of element i. Estimated
values are compared to fixed scalar importance values F pi
for each element using Pearson correlation:

Etextemp = −S(−corr(q,Fp); αemp) (8)

where corr(x, y) is the Pearson correlation between paired
samples x and y. q and Fp are vectors of the perceived
and desired importance values for all elements. Egraphicalemp

is defined similarly for graphical elements.
The desired importance values are provided as meta-data

during the design creation process and are not estimated
by the system. In practice, these values are usually simple
to specify. White [14] recommends designers establish an
importance hierarchy of at most 3 levels, as more can
become confusing. In our examples we usually specify
3 levels of importance: low, medium, and high, though
occasionally we used 4 levels.

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 6

C.4 White Space

The model encourages white space with the following term:

EwhiteSpace = −S
(∑

p I
e
p

wh
; αws

)
(9)

where Iep is a binary variable indicating if pixel p is not
covered by an element, and w and h are the design width
and height.

The model penalizes large regions of empty white space
using the cubed distance to an element over the entire
image:

Espread = S

(
1

wh

∑
p

min
i

(D(p,Mi)
3); αspr

)
(10)

where D(p,Mi) is the Euclidean distance of element Mi

to pixel p.
The model encourages separation between elements. The

distance between elements i and j is denoted as d̂ij , the
minimum of the mean squared distance between elements:

d̂ij = min
p∈I

√
1

2
(D(p,Mi)2 +D(p,Mj)2) (11)

To avoid computationally-expensive distance transforms
during optimization, distance maps from the element
boundary are pre-computed for an area around each element
and scaled. If the maps for two elements do not overlap,
the bounding box distance is used.

The distance energy is the mean of the nearest distance
for each element:

Edist =
1

n

∑
i∈(all)

(
1− S

(
min
j∈(all)

(d̂ij); αdist

))
(12)

EtextDist is defined similarly for text elements.
The model encourages uniform vertical spacing of text

elements:

EtextSepV ar =S(var(∪i,j∈olTextdyij); αtsm) (13)

where var(x) is the variance of a set x, ∪i,j∈olText indicates
all pairs of text elements that overlap along the x-axis,
and there are no elements between them. dyij is the vertical
bounding box distance.

Border margins Mk
i for each element are the distance

of the bounding box edge to the respective boundary. The
energy is the mean of the nearest margin distances:

Etextmargin =
1

n

∑
i∈(text)

(1− S(min
k

(Mk
i); αtm)) (14)

Egraphicmargin is similarly defined for graphical elements.

C.5 Scale

Element scale is an important practical and stylistic deci-
sion. Elements must be large enough to view, but not so
large that the design becomes cluttered and aesthetically
displeasing. For a given layout, the size of a text element
Ms
i is defined as the element height Mh

i divided by the
number of lines F li , weighted by a scaling parameter τs,
and normalized by the design height h. That is, Ms

i =
(τsM

h
i)/(F lih), For almost all examples in this paper,

τs = 1. Using a smaller value, for example τs = 0.4, will
increase the element sizes. The size for graphical elements
is the bounding box area (M i

wM
i
h)/(wh) where M i

w and
M i
h are element’s bounding box width and height, and w

and h are the design width and height. We encourage larger
text with the following term:

EtextSize = − 1

nt

∑
i∈(text)

S(Ms
i ; αts) (15)

where nt is the number of text elements; EgraphicSize is
defined similarly.

Energy terms also penalize the variance of text and
graphic sizes:

EtextV ar = S(σ(∪i∈(text)Ms
i); αtv) (16)

The model prefers elements to be above a minimum size:

EminTextSize =
∑

i∈(text)

max(τt −Ms
i , 0) (17)

EgraphicV ar and EminGraphicSize are defined similarly.
The minimum sizes for text and graphics were set to
τt = 0.0275 and τg = 0.04.

C.6 Overlap and Boundaries

Overlapping elements are common in many designs. We
define several types of overlap, including overlap of ele-
ments on text, overlap of text on graphical elements, and
overlap of graphical elements on other graphical elements.
Separate energy terms are defined for each overlap type.

OtextOverlap =

∑
pA

t
p

wh
(18)

EtextOverlap = S (OtextOverlap; αto) (19)

where Atp indicates the alpha component of any
element overlapping any text element. We define
EgraphicTextOverlap and EgraphicGraphicOverlap similarly
to indicate text overlapping graphical elements, and graph-
ical elements overlapping each other.

For graphical elements, users may also provide fixed
binary masks as meta-data, to prevent overlapping impor-
tant regions such as faces or logos. The model includes an
energy term which measures the overlap in these regions:

OimpOverlap =

∑
p F

no
p Agp

wh
; (20)

EimpOverlap = S(OimpOverlapαno) (21)

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 7

where Fnop indicates if the binary mask has been drawn on
pixel p, and Agp is the alpha component of any overlapping
element.

Lastly, the model penalizes text overlapping graphical
elements which is hard to read:

EtextContrast =
1

nt

∑
i∈(text)

S(M con
i); αtc) (22)

where M con
i is a text contrast measure defined as the

difference between an element and the design before the
element was drawn. The mean difference for each vertical
line of the difference images are sorted, and the mean of
the worst 20% used. This measure produces a high penalty
even if a small part of the text has low contrast.

The model controls how much elements may extend past
the boundaries of the design:

Bgraphic =
1

n

∑
i∈(graphic)

(
1−

∑
p∈iApIp∑
p∈iAp

)
(23)

EgraphicBoundary = S(Bgraphic; αtg) (24)

where
∑
p∈iAp denotes the sum of the alpha values for all

pixels in element i.
∑
p∈i IpAp denotes the sum of alpha

values which are within the design boundaries. A similar
energy term for text and important regions EimpBoundary
is defined.

C.7 Flow

A good design layout presents information in a clear read-
order. However, modeling the visual flow of graphic designs
is a difficult open problem. To address this issue, our model
uses simple positioning heuristics. First, more important
text elements are placed higher and to the left of less
important elements:

EflowX = S

 ∑
i∈(all)

∑
j∈(all)

Lijdij ; αflowX

 (25)

Lij =

{
max(F pj − F

p
i , 0) if Mf

i ≤M
f
j

max(F pi − F
p
j , 0) otherwise

(26)

where Mf
i is the left boundary or center of element Mi,

depending on which is closest between the two elements.
The difference in desired importance F pj −F

p
i is weighted

by the two elements’ bounding box distance dij . Similar
terms are defined for the y-axis. See Fig. 10 for an example.

The overall location of graphical and text elements
also affects the design style. The model uses a simple
positioning heuristic using the mean of the element centers:

Etextx−location = − 1

nt

∑
i∈(text)

Mx−center
i

w
(27)

We also define a reverse term by calculating the mean of
1−Mx−center

i /w, similar terms for the y-axis, as well as
terms for graphical elements, giving 8 total.

Fig. 10: The model uses simple heuristics for specifying
read-order. Top: unimportant elements are above and to the
right of more important elements. Bottom: corrected design.

We also measure the variance of the element positions
for both text and graphical elements:

Etextx−var = S
(

var
(
∪i∈text

Mx−center
i

w

)
; αx−var

)
(28)

C.8 Unity

Another important design principle is unity, when elements
appear to belong together. We model element unity by
allowing users to group elements with scalar group IDs
provided as meta-data. The model encourages group mem-
bers to have a similar size:

EgroupSizeV ar =
1

|G|
∑
g∈G

var(∪i∈gMs
i) (29)

where |G| is the number of user groups, ∪i∈g indicates all
the elements in a group g, and Ms

i is the size of element
i.

Group members are encouraged to have a similar per-
ceived importance. EgroupImpV ar is defined as above using
qi. We enforce a weak position constraint that group
members should be close:

EgroupDistMean =
1

|G|
∑
g∈G

1

ng

∑
i∈g

min
j∈g

(dij) (30)

where ng is the number of elements in group g, and dij is
the bounding box distance between elements.

C.9 Previous Layout

When improving or retargeting designs, the model uses
a previous layout of the same elements. We often wish
to preserve properties of the design including relative
locations, sizes, and importance. Given a previous design,

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 8

the model includes the following terms:

EtextprevHeight = S

 1

n

∑
i∈(text)

|Mh
i −Moh

i |; αph

(31)

EtextprevPosition = S

 1

n

∑
i∈(text)

||M c
i −M co

i ||2; αpp

(32)

EtextprevImp = S

 1

n

∑
i∈(text)

|qi − qoi |; αpi

 (33)

EtextrelHeight = S

 1

n2

∑
i,j∈(text)

|rhij − rohij |; αpr

(34)

where Mh
i and Moh

i are the current and original heights
of element i, M c

i and M co
i are the relative positions of the

element centers in the current and original design, and qi
and qoi are the current and original perceived importance
values. EtextrelHeight enforces relative differences in heights:
rhij = Mh

i −Mh
j . Similar terms are defined for graphical

elements.
The model also compares two global properties of the

designs, overlap and elements beyond the boundaries:

EprevOverlap = S(|Ocgt −Oogt|; αpo) (35)
EprevGraphicBoundary = S(|Bc −Bo|; αpg) (36)

where Ocgt and Oogt measure text overlapped on graphical
elements in the current and original designs, and Bcgraphic
and Bographic measure the fraction of graphical elements
which extend beyond the boundary. See Sec. C.6 for details
on these properties.

APPENDIX D
SIMULATED ANNEALING PROPOSALS

Our optimization uses several different proposals to deal
with the complexity of our function and dependencies
between elements:

Update Single Element Position. For updating the posi-
tion, a normally distributed offset is added to the current
position (σloc = 0.1), elements are moved along an axis to
fixed positions, or elements moved to an empty part of the
design.

Update Height. Element heights are updated by adding
a normally distributed offset to the current height (σhei =
0.2).

Align Elements. Element align with another on a single
axis, either with a single alignment type, or on all three
(i.e., by changing the height or width as well).

Swap Two Elements. The position of two elements are
swapped.

Update Element Group. If the user specifies an element
group, height and position changes are proposed for the
entire group, since these heights and positions are correlated
in the energy function.

Switch Alternate. If an element has alternates, this pro-
posal will randomly switch to one of the alternates.

Update Alignment Group. If the alignment labeling has
detected an alignment group, the entire group’s position is
shifted by a normally distributed offset (σaloc = 0.05).

Reduce Alignment Error. Given a detected alignment,
the current misalignment error is reduced. The direction
of minimum error is simply x = Cb where is C is an
2n × 2n matrix indicating if elements i and j are aligned
along the x and y axes, and b is the alignment difference.
n is the number of elements. A line-search is performed
along x to choose the state with lowest energy.

Fill Image. Some designs have very large graphics, one
proposal scales a graphical element to match the design
height or width.

Proposals types are all equally likely to be selected
except for the Fill Image proposal, which is proposed less
frequently (20%) due to it’s low acceptance rate.

APPENDIX E
NONLINEAR INVERSE OPTIMIZATION

NIO learns parameters based on one or more examples.
Given an example layout XT , we assume it is optimal
according to a parameter vector θ which we want to find.
We express this with the following objective function:

G(θ) = E(XT ; θ)−min
X

E(X; θ) (37)

This function says that we want to minimize the differ-
ence in energy between the example layout XT provided
by the designer, and the optimal layout for this θ. If we
find a global minimum at G(θ) = 0, then we have found
the θ that makes XT optimal.

Given the complexity of the model, we find it useful to
add a weighted prior on the parameters:

G(θ) = E(XT ; θ)−min
X

E(X; θ)+λ
∑
i

s(θi− θ̄i)2 (38)

where s is a binary vector and θ̄ is the initialization of
the parameter vector. For example, if the algorithm learns
from a design with slight misalignments, this prior can still
enforce that alignment errors should be penalized heavily.
See the supplementary material for θ̄ and s. We use λ =
10 for the retargeting and improvement applications, and
λ = 0 for the design styles application. To avoid negative
parameters, we re-parameterize θi = exp(βi) and optimize
for βi to ensure that θi > 0.

To evaluate G(θ), we must first compute an optimal
layout (the min term). We approximate this optimal layout
using optimization as described in the previous section. We
then minimize G using gradient descent with line search.
When G is differentiable:
dG

dθ
=

∂

∂θ
E(XT ; θ)− ∂

∂θ
E(XS(θ); θ) + 2λs(θ − θ̄)(39)

XS(θ) = min
X

E(X; θ) (40)

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 9

since ∂E
∂X

dXs

dθ = 0 if dXs

dθ exists [13]. Intuitively, following
the gradient direction has the effect of reducing the energy
of the training example XT while increasing the energy
of the counter example XS , as visualized in Figure 11.
When learning with multiple examples, we decrease the
mean energy difference over all training examples.

NIO can be seen as a form of Contrastive Diver-
gence learning [4]. Inspired by Persistent Contrastive Di-
vergence [12], we persist all previous counter examples
to improve performance and efficiency. At the start of
each iteration, the training example and previous counter
examples are checked to find the lowest energy and this
layout used to initialize the optimization. Every 5 iterations,
we perform a longer optimization to escape local minima.

function NONLINEARINVERSEOPT(XT , λ, θ̄, s)
θ̂ ← θ̄
i← 1
C← XT

while not done do
if i mod 5 = 1 then

Perform long optimization
XS ← Optimize(θ̂, [])

else
Find lowest energy layout XI to start opti-

mization
XI ← argminX∈CE(X; θ̂)

XS ← Optimize(θ̂,XI)
end if
Add new counter example XS to working set C
C← C ∪XS

∆θ ← ∂
∂θE(XT ; θ)− ∂

∂θE(XS ; θ) + 2λs(θ̂ − θ̄)
ρ← LineSearch(θ̂,∆θ,XT)
θ̂ ← θ̂ − ρ∆θ
i← i+ 1

end while
end function

APPENDIX F
PORTRAIT RATIO RESULTS

In Fig. 12 we demonstrate style learning with three portait-
ratio styles: a highly symmetric style with smaller elements
and large margins, an asymmetric style with larger ele-
ments, and a style with higher graphics with larger, left
aligned text. In Fig. 13 we show retargeting results for
landscape-to-portrait retargeting.

APPENDIX G
FEATURE LIST

We next show the full set of features in our model as well
as the initial weights used for NIO.

ID Name Init Weight
1 No Overlap Out Of Bounds 2500
2 Text Imp Pearson 50
3 Graphic Out Of Bounds 500
4 Text Height 75
5 Graphic Size 50
6-7 Graphic/Text Size Variance 50/0.2
8-9 Graphic/Text Size Constraint 125
10 Text Seperation Variance 50
11 Text Mean Contrast 750
12 Graphic & Text Mean Imp Overlap 25
13 Text Overlap Mean Worst 5
14 Graphic & Text Mean Overlap 250
15 Graphic Mean Overlap 250
16-17 Graphic X/Y Position 0.2
18-19 Graphic X/Y Position - Reverse 0.2
20-21 Text X/Y Position 0.2
22-23 Text X/Y Position - Reverse 0.2
24-25 Text X/Y Position Variance 12.5
26-27 Graphic X/Y Position Variance 12.5
28-29 Alignment Err X /Y 50
30 Alignment Bonus X - Left 37.5
31 Alignment Bonus X - Center 50
32 Alignment Bonus X - Right 12.5
33 Alignment Bonus Y - Top 50
34 Alignment Bonus Y - Center 50
35 Alignment Bonus Y - Bottom 12.5
36 Group Sizes 12.5
37-38 Region Graphic/Text X Symmetry 75
39-42 Global Graphic/Text X/Y Symmetry 50
43-46 Global Graphic/Text X/Y Symm - Reverse 0.2
47 Element Margins 75
48 Text Distances 50
49-50 Graphic/Text Border Margins 25/50
51-52 Text X/Y Flow 75/150
53-54 Graphic/Text Group Size Variance 2.5
55-56 Graphic/Text Group Imp Variance 2.5
57-58 Graphic/Text Group Dist Mean 250
59 White Space Area 0.2
60 Spread 50
61 Orig Layout Text Position Diff 125
62 Orig Layout Graphic Position Diff 75
63 Orig Layout Text Height Diff 50
64 Orig Layout Graphic Height Diff 50
65 Orig Layout Text Importance Diff 12.5
66 Orig Layout Graphic Importance Diff 12.5
67 Orig Layout Text Relative Size 12.5
68 Orig Layout Graphic Relative Size 12.5
69 Orig Layout Overlap Diff 12.5
70 Orig Layout Out Of Bounds Diff 125

TABLE 3: All features used in our model, including the
initial weights for the NIO learning.

APPENDIX H
ENERGY TERM AND SCORE CORRELATION

We can further analyze our model using the retargeting
designs from MTurk users. Each of these 880 designs has
an associated set of energy term values, as well as a rank-
ing score. By computing the Pearson correlation between
individual energy terms and the scores, we can determine
which terms are the most closely tied to the quality of the
designs. Note that these scores are not ideal, as they are
relative to other 9 designs. To partially alleviate this issue,
for each term we subtract the mean over all 10 designs in
the ranking set. To evaluate statistical significance, we use
a significance level of 0.05/70 = 0.0007; the Bonferroni
correction on the significance level is required as we are

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 10

Fig. 11: Intuition for NIO. The goal is to find a θ for which XT is at the bottom of the energy function. Initially XT is
not at the bottom. So in each step the algorithm generates a layout XS with lower energy than XT , and then adjusts θ
to push XT down and XS up. From Liu et al. [9].

comparing 70 terms.
As Table 4 shows, there are many statistically signifi-

cant, though fairly weak, correlations with different energy
terms. As expected, since this a retargeting test, the terms
measuring the difference from the original layout all have
a positive correlation. The highest correlation (r = 0.39) is
for the difference in text position from the original layout.
Some other high-level conclusions are that higher scores
are correlated with bigger text (r = 0.32), less overlap of
text on images is preferred(r = 0.2), elements should be
spread out on the page (r = 0.26) (i.e., less white space),
the model’s flow heuristic is useful (r = 0.3), and text
should be lower on the page (r = 0.25).

APPENDIX I
FURTHER SUPPLEMENTARY MATERIALS

For completeness, we also include supplementary materials
such as the web pages for our MTurk HITs, more impor-
tance prediction results, more design styles, and the full
set of retargeting and improvement results and evaluations.
Please see the project website at www.dgp.toronto.edu/
∼donovan/design/

REFERENCES

[1] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A
Discriminatively Trained, Multiscale, Deformable Part Model. In
Proc. CVPR, 2008.

[2] Jerome H. Friedman, Trevor Hastie, and Rob Tibshirani. Regulariza-
tion Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software, 33(1), 2010.

[3] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal. Context-Aware
Saliency Detection. In Proc. CVPR, pages 2376–2383, 2010.

[4] Geoffrey Hinton. Training Products of Experts by Minimizing
Contrastive Divergence. Neural Computation, 14:2002, 2000.

[5] Xiaodi Hou and Liqing Zhang. Saliency Detection: A Spectral
Residual Approach. In Proc. CVPR, pages 1–8, 2007.

[6] Laurent Itti and Christof Koch. A Saliency-Based Search Mechanism
for Overt and Covert Shifts of Visual Attention. Vision Research,
40, 2000.

[7] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba.
Learning to Predict Where Humans Look. In Proc. ICCV, 2009.

[8] R. Landa. Graphic Design Solutions. Cengage Learning, 2010.

Feature r
Orig Layout Text Position Diff 0.39
Text Height 0.32
Text Y Flow 0.3
Text Size Constraint 0.29
Orig Layout Text Height Diff 0.28
Orig Layout Text Height Diff 0.28
Spread 0.26
Orig Layout Graphic Position Diff 0.26
Text Y Position 0.25
Text Y Position - Reverse -0.25
Graphic/Text Mean Imp Overlap 0.2
Orig Layout Graphic Height Diff 0.19
Orig Layout Graphic Height Diff 0.19
Orig Layout Text Importance Diff 0.18
Orig Layout Text Importance Diff 0.18
Element Margins 0.18
Global Text Y Symmetry 0.17
Graphic X Position Variance -0.16
White Space Area -0.16
Global Text Y Symmetry - Reverse -0.16
Region Graphic X Symmetry 0.13
Text Overlap: Mean Worst 0.13
Graphic Y Position -0.13
Graphic Y Position - Reverse 0.13
Text X Position Variance 0.12
Graphic/Text Mean Overlap 0.11

TABLE 4: Energy terms which show a statistically sig-
nificant correlation with scores from MTurk users. The
correlations were computed using features for 880 designs
with the average scores given to those designs by other
MTurk users.

[9] C. Karen Liu, Aaron Hertzmann, and Zoran Popovic. Learning
Physics-Based Motion Style with Nonlinear Inverse Optimization.
ACM TOG (Proc. SIGGRAPH), 24:1071–1081, 2005.

[10] E. P. Simoncelli and W. T. Freeman. The Steerable Pyramid. In
Proc. ICIP, volume 3, 1995.

[11] R. Tibshirani. Regression Shrinkage and Selection Via the Lasso.
Royal. Statist. Soc B, 58(1):267–288, 1996.

[12] T. Tieleman. Training Restricted Boltzmann Machines using Ap-
proximations to the Likelihood Gradient. In Proc. ICML, pages
1064–1071, 2008.

[13] Ian Vollick, Daniel Vogel, Maneesh Agrawala, and Aaron Hertz-
mann. Specifying Label Layout Styles by Example. In Proc. UIST,
2007.

[14] A.W. White. The Elements of Graphic Design. Allworth Press, 2002.

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 11

a

b

c

Fig. 12: Style parameters are learned from the left two examples and used to generate layouts for other designs. (a)
highly symmetric style with smaller elements and large margins, (b) asymmetric style with larger graphics and text, (c)
higher placed graphics with larger, left aligned text.

IEEE TVCG , VOL. 20, NO. 8, AUGUST 2014 12

Input Designer MTurk Ours

1

2

3

Fig. 13: Landscape-to-Portrait Retargeting. We show retargeting results from an example layout by a professional
designer, the best crowdsourced retarget (out of 9), and our automatic retarget.

