
IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 1

AniPaint: Interactive Painterly Animation from
Video

Peter O’Donovan, Aaron Hertzmann, Member, IEEE

Abstract—This paper presents an interactive system for creating painterly animation from video sequences. Previous approaches to
painterly animation typically emphasize either purely automatic stroke synthesis or purely manual stroke keyframing. Our system supports
a spectrum of interaction between these two approaches which allows the user more direct control over stroke synthesis. We introduce an
approach for controlling the results of painterly animation: keyframed Control Strokes can affect automatic stroke’s placement, orientation,
movement, and color. Furthermore, we introduce a new automatic synthesis algorithm that traces strokes though a video sequence in a
greedy manner, but, instead of a vector field, uses an objective function to guide placement. This allows the method to capture fine details,
respect region boundaries, and achieve greater temporal coherence than previous methods. All editing is performed with a WYSIWYG
interface where the user can directly refine the animation. We demonstrate a variety of examples using both automatic and user-guided
results, with a variety of styles and source videos.

Index Terms—Non-photorealistic rendering, painterly animation, interactive video processing

F

1 INTRODUCTION

P AINTERLY rendering has the potential to enable new
forms of animation, by combining the aesthetics of

painting with the flexibility of computer tools. However,
progress has been slow over the past decade. An animation
system must balance the conflicting goals of capturing
appearance and fine detail, following object motion and
optical flow, avoiding unwanted flickering, reproducing a
desired artistic style, all while allowing an animator total
control over the result in an efficient manner. Many of
these goals are challenging on their own; together, they
make the problem formidable. Furthermore, the few extant
examples of painterly animations using traditional media
provide little guidance, because of the extreme difficulty of
traditional paint-on-glass animation; arguably, these exam-
ples exhibit much less temporal coherence than we expect
from computer-generated animation. New animation tools
for painterly animation offer not only greater speed or
fewer artifacts than traditional methods; these tools offer
the promise of exciting, previously unrealizable styles of
animation.

Previous work in painterly animation has typically fol-
lowed one of two distinct approaches. Purely automatic
approaches generate brush strokes as a batch process for an
entire video. These methods can produce inspiring results
while requiring little effort or skill from a user. Unfor-
tunately, they provide very little artistic control, limited
ranges of styles, and often undesirable artifacts such as
stroke flickering, poor edge definition, or undesirable stroke
movement. In contrast, rotoscoping allows users to animate
every stroke. This provides total artistic control, but is

• P. O’Donovan and A. Hertzmann are with the Department of Computer
Science, University of Toronto, Toronto, ON, M5S 2E4.
E-mail: {odonovan,hertzman}@dgp.toronto.edu

generally limited to styles with sparsely-placed strokes,
since keyframing requires significant effort. Designing in-
terfaces for directing the style of an automatic painterly
rendering algorithm is an important open problem. The
user must be allowed high level control to guide the
algorithm, while also being able to influence the results
at a fine scale. Furthermore, interaction must also be fast
enough for iteration, e.g., overnight computation times are
unacceptable.

We introduce a system that supports a spectrum of tech-
niques for creating stroke-based painterly animation, in-
cluding rotoscoping, purely automatic and guided stroke
synthesis, and direct stroke manipulation.1 The user may
first perform semi-automatic rotoscoping of an input video
sequence, in order to determine video segmentation. A
stroke synthesis algorithm is then applied to each image re-
gion with user-specified settings. The user may place Con-
trol Strokes for more fine-tuned control over the placement,
orientation, movement, and color of automatic strokes. It
is also possible to make detailed refinements by directly
painting individual strokes over the video with keyframes.
All editing is performed with a WYSIWYG interface,
where all strokes are shown, and the user can iteratively
redraw new layers or add strokes to refine and correct
the result. Novice users can use the system in a purely-
automatic batch mode, using preset parameter settings.

An important contribution of this paper is a new automatic
synthesis algorithm. There are numerous challenges in

1. Accompanying videos for this paper are located at
http://www.dgp.toronto.edu/∼donovan/anipaint/. The Dolphin and
Lily videos were purchased from Artbeats.com. We thank Chris Landreth,
Copperheart and the NFB for the clip from Ryan, and Liang Lin for the
Lady video. We also thank the following individuals for their Creative
Commons licensed source videos: Wen Zhang for the Pool Player video,
Rick Cooper for the Horses video, Eugenia Loli-Queru for the Jellyfish
video, and Mike McCabe for the Sunset video. Links to the original
videos will be posted on the project page.

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 2

automatically generating appealing and effective painterly
animation. First, existing methods rarely respect object
boundaries and important fine-scale details that are cru-
cial for depicting a scene clearly. While it is possible to
guarantee that details are captured by using many tiny
strokes, this results in an overly-faithful duplication of the
source. Second, most methods exhibit undesirable flickering
artifacts from rapid stroke changes uncorrelated to the
underlying video. We present a new approach to automatic
synthesis that can capture fine details, abstract regions, and
removes most flickering artifacts. While our method still
exhibits some flickering artifacts at object boundaries, these
issues are greatly reduced compared to previous methods.
Rather than tracing strokes through a vector field, the key
idea of our algorithm is to guide placement with a carefully-
designed objective function. This objective function allows
high-fidelity rendering, precise user control, and efficient
computation.

We demonstrate numerous examples of painterly animated
videos. Often, good results are achieved through purely
automatic processing alone, though the user may always
refine the result. We also show examples in which a
user has modified and refined the results in various ways,
producing many different painterly styles. We include sev-
eral challenging examples of videos with complex motion,
occlusions, and transparency, in which capturing fine details
are critical to producing good results.

2 PREVIOUS WORK

Our system builds on many previous stroke-based synthe-
sis algorithms. Painterly processing of images was intro-
duced by Haeberli [1], who proposed both interactive and
optimization-based approaches. Meier [2] used 3D geome-
try to control stroke placement and coherence. Litwinow-
icz [3] introduced the use of optical flow estimation to
automatically process video sequences, using many small
brush strokes. Edge preservation was encouraged by trun-
cating strokes at image edges. Hertzmann [4] generalized
this approach to long, curved strokes with varying levels
of detail. Hertzmann and Perlin [5] applied this method
to video processing, but the resulting video exhibits many
visual artifacts. Hays and Essa [6] introduced a number
of refinements to reduce flickering artifacts and increase
visual appeal. Their system creates fuzzy object boundaries
and uses only small straight brush strokes. All of these
approaches use efficient, algorithmic placement strategies
and can produce promising results. However, because they
do not use any explicit objective functions, such methods
have difficulty balancing multiple goals, such as matching
input colors with large strokes while respecting object
edges. This approach results in visual artifacts and also
provide no fine-scale control to the user. Our method
traces strokes in a similar greedy way but, inspired by
optimization methods, uses an objective function, rather
than a vector field, to guide stroke placement as well as
stroke shape.

A few previous approaches use optimization for painterly
rendering. Hertzmann [7] introduced an optimization-based
approach that captured better fine-scale detail, while al-
lowing the user to paint control weights onto the image.
Collomosse and Hall [8] iteratively relax strokes using a ge-
netic algorithm for processing single images. These meth-
ods express painting as a global optimization, considering
all strokes simultaneously and minimizing the difference
between the painting and current frame. However, these
methods are too slow for interaction, especially on video
sequences, e.g., Hertzmann’s algorithm takes four days
to process thirty frames of video at 640x360 resolution.
This method also lacks temporal energy terms, resulting
in significant flickering. At present, optimizing paintings
at interactive rates seems far beyond reach. Unlike these
previous methods, we define an energy function for each
single new stroke given the current painting so far, rather
than globally over the entire painting. While perhaps less
elegant, this allows us to define an algorithm that is
much faster, simpler to implement, and more flexible than
previous methods. Our objective function introduces many
new terms, including user-specified orientation, deforma-
tion, and placement constraints, which greatly enhance the
quality and variety of results.

Many existing animation packages allow users to interac-
tively create painterly animation, but with relatively little
automation. Most notably, Rotoshop [9] allows users to
keyframe stroke movements with standard spline interpo-
lation across time. Our approach is in the spirit of the
rotoscoping systems of Agarwala et al. [10] and Liu et
al. [11], which combine automatic video processing with
interactive editing. While these systems are primarily aimed
at tracking and optical flow, Agarwala et al. also showed
how painted strokes could be attached to tracking curves.
We also draw inspiration from the work of Kalnins et
al. [12] and Disney’s DeepCanvas [13] which allow users to
draw strokes on 3D models. Many previous methods have
shown how image or video segmentation can be useful for
NPR [14], [15], [16], [17], [18], [19], [20], [21].

Recent work by Lin et al. [22] and Kagaya et al. [23] de-
scribe painterly animation systems that share several ideas
with our approach. Both use semi-automatic video seg-
mentation, and assign different stroke synthesis parameters
to each region. Orientation fields may also be keyframed
and combined with image gradients. Both systems per-
form synthesis as batch computation, without providing an
interface for an artist to refine the result, other than by
adjusting parameters and re-running. Once created, interme-
diate strokes cannot be modified. In contrast, we describe a
unified system for synthesis and editing strokes. There are
a number of stylistic differences between our methods as
well. Kagaya et al. produce a very smooth result, due to
their use of blending, but still exhibit flickering, especially
at object boundaries. Lin et al. produce very clean results
with little or no flickering, but their method produces only
a single style, and generalizing this method to other styles
may be difficult since they use a large database of paintings

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 3

to learn stroke variation for different regions.

3 WORKFLOW

There are three main steps to our approach: tracking,
automatic painting, and interactive editing. These steps are
designed to allow a user to iterate them in any order:
an artist will generally begin with tracking and automatic
painterly animation steps, but may then work back and
forth between adjusting automatic processing results and
editing individual stroke across time. Each of these steps is
illustrated in Fig. 1 and the accompanying video.

3.1 Region tracking and refinement

The first step in our approach is to determine temporal
segmentation and dense per-pixel optical flow. This step is
performed using the system of Liu et al. [11]. A user marks
region boundaries in a few video frames. These regions
are tracked through time automatically and then corrected
by the user. Using these region boundaries, optical flow is
then computed (see Fig. 1). User-specified layer ordering
for regions are also used as input to our algorithm. This
ordering defines occlusions which are useful for painting
layers which cover the background and more detailed
foreground layers. Time-varying depths are interpolated as
in Liu et al. [11]. These regions will form the basis for
automatic processing; the user may come back and refine
the region segmentation later if necessary.

One possible alternative to our rotoscoping approach is
more advanced video segmentation techniques. By com-
parison, Lin et al. use Video SnapCut [24], while Kagaya
et al. use the approach of Brendel and Todorovic [25]. Both
of these approaches use user input to define a foreground
and background region which is automatically segmented
and iteratively corrected by the user. However, segmentation
is difficult when the foreground and background have
little contrast, such as the black hair and background of
Fig. 1. Also, these methods cannot correctly matte multiple
occluding layers. Defining regions boundaries with control
points allows an orientation and flow-field to be created
independently of the video, which is important for occluded
regions. Though these advanced techiques are useful, ro-
toscoping is the most general approach for interactive
segmentation, and is widely used in film production. Our
system shows that even relatively coarse segmentation from
rotoscoping permits good quality results.

3.2 Automatic painterly animation

In this step, the user selects a region to paint, and the
system produces a layer of paint strokes for the region
across time. Further layers are generated separately and
finally composited together. The user controls the results by
setting stylistic parameters for automatic processing and by
manually drawing Control Strokes, described below. This

process, described in Section 4, may be undone, repeated,
and refined as desired.

3.3 Control Strokes

Control Strokes allow a user to guide the automatic syn-
thesis process. Three different types of Control Strokes
are defined that influence automatically generated strokes.
Guide Strokes control the orientation and movement of
automatic strokes. Color Strokes control the color of auto-
matic strokes. Seed Strokes specify where automatic strokes
will be initialized, in order to regenerate the painting in a
very localized region. Once drawn, Control Strokes are used
whenever the user runs the automatic synthesis procedure.
See Fig. 2 for an example.

Automatic stroke placement is often sufficient for large
regions, but not for crucial details like faces and eyes. For
these cases, our system also allows user-drawn strokes to be
keyframed. Furthermore, a stroke may play multiple roles.
For example, the user might keyframe a blue stroke that
will appear in the final animation. This stroke could then
also be marked as a Color and/or Guide Stroke, so that the
nearby strokes will be drawn with a similar color and/or
orientation to the new stroke. Control Strokes need not be
rendered in the final animation, however.

Interactive stroke keyframing. Our system provides tools
for keyframing strokes, similar to the systems of Agar-
wala [10] and Sabiston [9]. The artist draws a stroke in a
particular frame, and the stroke may then be automatically
propagated forward and backward in time using optical
flow, or another flow field (Section 4.6) for a specified
number of frames. The stroke may then be edited in another
frame using oversketching [26], or control point pushing
or pulling. The user may also select groups of strokes
and move them together. Modifying a stroke fixes it as a
keyframe and the edits are propagated by linear blending to
the surrounding keyframes. If a control point p at time t1
is displaced by a vector d, and the previous keyframe is at
frame t0, then the control points at intermediate frame t are
displaced by d(t − t0)/(t1 − t0). If no other keyframe is
defined, the edit is applied directly to the other strokes.
Strokes could also be refined by optimization, but this
would be much slower. User strokes can be selected and
their properties (texture, color, width, etc.) changed at any
time. Strokes are associated to the layer in which they were
drawn, and can be re-assigned to other layers.

Rendering. Strokes are rendered at a user-specified res-
olution. Strokes for each region are rendered separately
and composited according to user-specified region depths.
In each region, user-drawn strokes are always drawn over
automatic strokes. Strokes can be rendered with height-map
texturing [27].

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Sample animation workflow: a) Source video, b) Rotoscoped regions, c) Layer-aware optical flow, d) Automatically
generated painting, e) User-drawn Control Strokes, f) Result after automatic synthesis using Control Strokes, g) User-
drawn detail strokes, h) Final result.

4 AUTOMATIC PAINTERLY ANIMATION

We now describe a new automatic painting algorithm for
processing video sequences. This process is designed to

produce strokes that move with a flow field, depict clear
region boundaries and fine-scale detail, and allow different
styles to be applied to different image regions. In later

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 5

(a) (b) (c) (d)

Fig. 2. Automatic and User-Drawn Strokes. (a) A stroke s is represented by control points p1:N , a starting and ending
width r = (rstart , rend), a texture, and a color c. The vector vi is the normalized direction between pi and pi+1. One of
the control points is designated the anchor point pA. (b) Automatically-generated strokes in a textureless region. (c) Stroke
drawn as a Guide and Color Stroke. (d) After running synthesis, new strokes are affected by the color and orientation of
the Control Stroke. Rendering the Control Stroke is optional.

stages, an artist may edit and refine the results, as described
in Section 3.

The input to the algorithm is a video sequence, a segmenta-
tion of the video, depths for the segments, dense flow fields,
stroke orientation fields, and a set of stylistic parameter
settings. Creation of the orientation fields, flow fields and
parameter settings are described in the following sections.
To compute temporal segmentation and dense optical flow,
we use Liu et al.’s [11] interactive system.

Our algorithm repeatedly places strokes on the canvas,
tracing in an initial frame then propagating forward and
backward in time. However, unlike previous algorithms
which follow an orientation field, each stroke has its own
objective function which is minimized when choosing con-
trol points. This is also distinct from previous optimization
methods which consider a global optimization over all
strokes. Our approach also allows many new terms in the
objective function which enhance the variety and quality
of possible styles, such as drawing fine black strokes near
edges as in Fig. 8. We describe the energy function next,
and the placement algorithm in Section 4.4. In the accom-
panying video, we show a comparison of stroke placement
without the energy formulation, using only optical flow and
redrawing the stroke at each frame.

4.1 Stroke Representation

A stroke s at a single video frame t is represented by a list
of N 2D control points p1:N (Fig. 2). We designate one
of these points as the anchor point pA. Each stroke has a
color c, and a starting and ending width r = (rstart , rend).
A stroke is rendered as a cubic B-spline, with width linearly
interpolated from the starting to ending width. An animated
stroke is represented by one stroke st for each frame
of a sequence. The same representation is used for both
automatic and user strokes.

4.2 Stroke Energy Function

We define an energy function which encapsulates the goals
of painterly rendering from a video. To avoid the difficulty

of optimizing a global energy function, we define an energy
function for a single stroke s in a single frame t, . The
energy function is defined based on the source image at
time t, as well as a corresponding stroke s′ in the previous
or next frame.

E(s) =
∑
i

wiEi(s, s
′) (1)

where each energy term has a weight wi, and may depend
on both s and s′, or just s.

Image terms. The color energy penalizes differences be-
tween the colors of a stroke and their corresponding pixels:

Ecolor (s) =
∑
j∈s

q(||c− gσ(pj)||2, τcol) (2)

where c is the stroke’s color, gσ(pj) is the color of
a Gaussian-blurred version of the image at the location
of control point j, and σ is the variance of the blur
kernel, which depends on the linear interpolated stroke
width at the current control point. The Gaussian kernel
may be optionally masked by the region segmentation and
re-normalized to reduce color bleeding between regions.
Colors are represented as 3D vectors of RGB values.
The thresholding operator q is used to prevent very large
deviations from the target color:

q(d, τ) =

{
d d < τ
∞ otherwise (3)

where τ is a threshold.

The user may specify a target orientation field which defines
a direction vector d(x) and magnitude m(x) at each image
point x. We define a term which encourages strokes to
follow this field:

Eorientation(s) =
∑
j∈s

∑
x∈line(pj ,pj+1))

m(x)(1− |d(x) · vj |)

(4)

where vj is the unit direction vector between consecutive
control points:

vj = (pj+1 − pj)/||pj+1 − pj || (5)

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 6

For each control point pj , this term sums over all pixels x
on the line between pj and pj+1. The possible choices of
direction fields are given in Section 4.5.

Preserving image edges is important to depicting region
boundaries and fine-scale details in an image. We add an
image edge term:

Eedge(s) =
∑
j∈s

eσ(pj) (6)

where eσ(p) is a real-valued edge image computed by
convolving the image with Gaussian and edge-detection
kernels and applying non-maxima supression [28]. This
result is then blurred with a Gaussian kernel of variance
σ, which depends on the current stroke width. This will
penalize strokes which overlap edges and shrink the stroke
width.

Stroke shape terms. These terms are used to constrain
stroke shapes within a single frame to be smooth and to
have similar widths:

Esmoothness(s) = exp
(
cos−1(vj · vj+1)/σsmooth

)
(7)

Euserwidth(s) = q

(
||r− ruser||
||ruser||

, σwidth

)
(8)

Egrow (s) = ||r||−1 (9)

where ruser is a user-specified vector indicating the target
stroke width at the endpoints. The smoothness term defines
how flexible or rigid the strokes are allowed to be when
traced. The user width term constrains the strokes to remain
close to a specified stroke size, otherwise strokes could
become extremely large or small. The growth term can be
used to encourage larger strokes.

Temporal coherence terms. The following terms encour-
age similarity between a stroke s in one frame, and the
stroke s′ in an adjacent frame, and do not apply when
initially tracing a stroke in its first frame. These terms
encourage strokes adjacent in time to have similar shapes:

Eshapechange(s, s′) =
∑
j∈s

exp
(
cos−1(vj · v′j)/σcoh

)
(10)

Ewidthchange(s, s′) =
||r− r′||2

||r′||2
(11)

4.3 Location Constraints

Stroke control points locations may be constrained in order
to use different styles for different parts of an image. For
example, one may wish to use a style with large strokes
to fill the interiors of regions, and then refine the region
boundaries and image edges with a style employing small
strokes. All stroke control points pi are constrained to lie
within a specified tracked image region. Control points may
further be restricted to lie:

1) within a particular distance τdist of region bound-
aries, images edges, or Guide Strokes,

2) on pixels where the source video color lies within a
luminance range (τminL, τmaxL),

3) on pixels where the source video color is within a
threshold τcol of the stroke’s color c, and/or

4) at points x where the density δ(x) of previous strokes
is below a particular threshold τdensity . The density
function δ(x) is computed by rendering all other
strokes in white with alpha-compositing.

Stroke size and time duration may also be constrained.
All strokes are constrained to have between τminLength to
τmaxLength control points. To reduce short lived strokes,
we define a hard constraint on the stroke age which forces
each stroke to last for at least τminAge frames. Variation can
be encouraged by limiting strokes to last at most τmaxAge

frames. Default parameters for the system are listed in
Appendix (see supplementary material or the project page).

4.4 Algorithm

Our greedy stroke placement algorithm for a particular
region works as follows. A set of seed points are gener-
ated within a particular region throughout the video. Seed
points are either placed randomly, or from user-drawn Seed
Strokes. Seeds are placed only in points satisfying the
constraints in Section 4.3. Strokes are then traced from the
pixels by the following procedure:

1. Select a seed point. A seed point is removed from the
list of seeds. Optionally, these seed points may be ordered
by edge magnitude (picking seeds that lie on edges first),
or current color difference error between the painting and
the video as the algorithm progresses (picking seeds that
lie on regions of greater error first).

A seed point specifies a particular location xseed and time
t in a video. The seed point can be adjusted with the stroke
width to line up with ridges in the orientation field. This is
done by determining the nearest maxima in the orientation
magnitude image m(x) using gradient ascent, and if this
distance is greater than the stroke width, moving the seed
point by gradient descent to line up with the image edge.
This point is then checked to see if it satisfies the Location
Constraints (Section 4.3). If so, the first control point pA is
placed at the seed point and designated the stroke’s Anchor
Point. If not, the stroke is not traced.

2. Trace a stroke in a single frame. The stroke’s color
c is set to the pixel color (after blurring the image by
variance σ) at anchor point pA. We then repeatedly add
new control points. Each new control point is constrained to
lie (rstart + rend)/2 pixels away from the previous control
point. The point that minimizes the complete stroke energy
(Equation1), subject to the constraints in Section 4.3 is
found by a local brute-force search over angles (every 5 ◦)
around pA .

Iteration continues until placing the next control point
would cause violation of a constraint. The process is per-

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 7

Edge Tangent Guide Stroke Region Boundary Constant Mixture: ETF+Const. Mixture: Guide+RB

Fig. 3. Examples of orientation fields provided by our system. Mixture fields provide weighted combinations of fields.

formed twice, tracing strokes both forward and backward
from the seed point.

3. Adjust stroke width and set color. Optionally, the
stroke width (rstart , rend) is optimized by a brute-force
search over widths to minimize the stroke energy. The
stroke color c is set by averaging the colors at the control
points (blurred by variance σ depending on the width).
Optionally, an HSV offset and Gaussian noise is added.
2

4. Propagate the stroke through time. The Anchor Point
pA is moved to the next video frame according to the flow
field [6], [3]. The stroke is then traced in this frame, by
repeating the above steps 2-3. The energy E(s, s′) for this
stroke s uses the stroke from the previous frame as s′.
Stroke colors may be smoothed over time using a moving
average: c̄i = αcci+(1−αc)c̄i−1. This process is repeated
to propagate the stroke forward and backward in time. By
default, αc = 0.3, though for quickly changing regions,
αc = 0.5 is useful. Once the strokes are computed, alpha-
blending is used to fade the stroke in at the beginning of its
lifetime and fade out at the end. Note that all strokes have
the same number of control points. As the stroke is being
traced, it will not exceed the length of the previous frame.
All strokes are finally truncated to the shortest length over
all frames.

4.5 Orientation Fields

There are several options that may be used for the user-
specified orientation field d(x) in Equation 4. Fig. 3 shows
an example of these orientation fields. Each orientation field
also has an associated magnitude field m(x). The options
we provide are as follows.

Image orientation. To follow image orientations, the Edge
Tangent Field (ETF) may be used. The ETF is computed by
a non-linear filtering of image gradient [29]. The magnitude
m(x) is computed by performing the analogous non-linear
filtering of image gradient magnitudes.

Guide Strokes. As described in Section 3.2, the user may
paint their own strokes into the image in order to define an
orientation field. These strokes are called Guide Strokes.

2. This offset is specified in HSV for user convenience and converted
to RGB. The RGB color space is used in all other calculations.

The stroke is converted to a cubic B-spline, and then
sampled to produce a set of positions and tangents (pi,vi)
along the stroke. This stroke then defines an orientation
field by Radial Basis Function averaging:

d(x) =

∑
i viw(x,pi)∑
i w(x,pi)

(12)

where the sum is over the five points nearest to x with basis
functions w(x,y) = exp(−

√
||x− y||/5). This procedure

is similar in spirit of [30], but allows keyframed orientations
through time. The magnitude is a function of the distance
to the nearest control point: m(x) = mini 20 · exp(−||x−
pi||/10) + 0.5

Region Boundary Field. Near region boundaries, we may
wish to draw strokes that closely follow the region bound-
aries. The Region Boundary field is computed by creating
a distance transform from the boundaries, and computing
the gradient of the distance field [31], [19]. The magnitude
is a function of the distance to the boundary as above.

Constant orientation. The user may also define a constant
field d(x) = vconst, with a constant magnitude m(x) = 1.

Mixture fields. Linear combinations of these fields may
also be used. For example, the user may wish to specify
the orientation in one part of a region manually using a
Guide Stroke while still following the image in the rest of
the region. The user may also wish the strokes to follow
image gradients near edges, but follow a fixed orientation
or the region boundary in homogenous regions, e.g. the sky
in the Sunset of Fig. 8. This is often useful as gradients are
poor in untextured regions (see Fig. 2).

In order to respect 180◦-symmetries, orientation fields are
combined as follows [32]: Let the angular representation of
field f be θf (x) = tan−1(dx(x),dy(x)). Each orientation
field f is rotated as d̄(x) = (cos(2θ(x)), sin(2θ(x))). The
mixture field is then

θmix(x) =
1

2
tan−1

∑
f

d̄(x)mf (x)wf

 (13)

where mf (x) is the magnitude of field f and wf is its
weight. The orientation is then converted back to vector
form as dmix(x) = (cos(θmix(x)), sin(θmix(x))). The
magnitude of the mixture field is the weighted sum of base
magnitudes:

∑
f wfmf (x). Note that the above algorithm

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 8

is further controlled by user weights on each of the fields.
This allows the user to disable certain fields, or increase
the relative effects of particular fields.

4.6 Flow Fields

The flow field f(x) defines the displacement between
frames for each pixel. As with orientation fields, several
options are available. The default option is to use the
optical flow field computing during the rotoscoping step.
Flow from user-keyframed Guide Strokes may be used
by blending temporal displacements of user-drawn strokes.
Specifically, we blend the displacements fi of the control
points pi between video frames. Similarly, Region Bound-
ary Flow is computed by averaging displacements of region
boundaries. A constant flow field may be used [5]. Finally,
flow fields may be combined by weighted averaging into
Mixture Flow fields:

fmix(x) =

∑
f tf (x)mf (x)wf∑

f mf (x)wf
(14)

where tf (x) is the temporal flow for pixel x of temporal
flow field f , mf (x) is the corresponding spatial orientation
magnitude at x for the flow field f , and wf is a user-
specified weight. Commonly, the weights for the orientation
and the flow fields are identical. However, it is possible
to use different weights for stylistic effects, and also to
compensate for poor optical flow calculation.

5 RESULTS AND TECHNIQUES

In this section, we describe the results of our system, and
the lessons learned in its development. Our system enables
many different approaches to painterly animation spanning
fully automatic and manual approaches. Videos may be
processed entirely automatically, using default optical flow
results and preset parameters. A user may rotoscope the
video if desired; roto-curves are most useful for correct-
ing occlusion boundaries, and to define regions that will
have different styles. The user may also keyframe Con-
trol Strokes and/or keyframe painting strokes as described
previously. Examples with various combinations of these
options are shown in the accompanying video.

While rotoscoping can be important for videos like the Pool
Player (Fig. 1) with significant occlusions, our approach
does not depend on it. Many videos require no rotoscoping,
including the Horses, Sunset, Ryan, and Jellyfish sequences
(Figs 4 and 8). In many cases, it is not desirable to use
strict rotoscoping boundaries to control stroke placement
for refinement or spatially varying styles. We find Seed
Strokes are an extremely useful way to refine individual
regions by generating new strokes in a localized area.
New paint strokes are synthesized around the Seed Stroke,
and the user may immediately save, refine, or undo the
results. This allows a fluid approach to applying different
styles, rather than first segmenting discrete regions to

apply different styles; one may always perform rotoscoping
later if necessary without affecting previous automatic or
user strokes. Creating new regions, and possibly changing
the optical flow of a region after rotoscoping, does not
affectly previously drawn strokes. However, when a region
is deleted the associated automatic and user-drawn strokes
are removed.

In most cases, we follow the animation practice of working
“on twos,” i.e., at 12 fps rather than 24 fps. As noted
by Hertzmann and Perlin [5], working “on ones” (at 24
fps) can give too strong an impression of video. However,
working on ones for fast-moving objects can reduce tem-
poral aliasing. Alternatively, we find the “double exposure”
technique of working on twos and then using blending to
create intermediate frames creates smoother motion.

5.1 Time and effort

Our system supports two classes of users, novice users and
professional animators, whose time and effort requirements
may vary significantly. For novice users or those with time
constraints, purely automatic painterly rendering of multi-
ple stroke layers with pre-specified parameter settings can
be run without rotoscoping or user input. Creating a layer
of 500 strokes over 50 frames for a large region (640x480),
can take between 0.5 and 2 minutes, depending on the
parameter settings. Although there are many parameters to
the stroke placement algorithms, we provide a collection
of preset parameter settings that enable different styles.
Optimization parameters are generally stable and require
little tweaking. Furthermore, most stroke parameters are
easy to understand: e.g., short vs. long strokes, etc. In this
mode, an animation can be created in 30-60 minutes. Script
files can also be used to animate several sequences, or to
generate several styles automatically.

For professional animators, we also provide tools which
allow finer control and refinement of the automatic syn-
thesis. It is worth noting that all high-quality animation,
whether hand-drawn and computer-generated, is extraordi-
narily labor-intensive. Rotoscoping can take several hours
depending on the number of objects and the complexity
of movement. However, for professional animators, the
goal is not to make animation faster, but to enable new
kinds of animations. To this end, our system is designed
to support iteration and experimentation. This mode’s time
requirements are open-ended, but an animation can usually
be created in 3-4 hours. We also include several tools
reducing the effort of stroke keyframing (see Section 3).

For the Impressionist example in Fig. 1, 35-45 stroke layers
(a set of strokes generated by our automatic algorithm) were
drawn for the player and background, with 10 for the hand,
cue, and balls. For the abstracted style, 8 layers were used
on the background, 12 for the player, and 3-4 for the other
regions. For the “sketchy” style, 5-8 layers were used for
the background and woman, and 5 for the balls. For the
sparse black style, only a single layer was drawn for each

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 9

(a) (b)

(c) (d)

Fig. 4. Painting refinement. a) Source video, b) Result after automatic algorithm, c) Control Strokes drawn to refine trees
and horses, d) Final result after new synthesis.

region. Ranges are used as layers may not extend to all
frames, often when Seed Strokes are used.

5.2 Comparisons to other systems

In the accompanying video, we demonstrate our system on
videos used by previous painterly animation algorithms [6],
[5], [7], [23], [22]. Previous methods tend to have signifi-
cant stroke flickering and poor handling of details/edges.
Our method yields more stable strokes and finer detail
preservation. Furthermore, previous methods each have a
few built-in styles, with little user control over the style
provided to the user beyond parameter tuning, whereas our
method supports creating very distinct styles. Fig. 5 shows
a screenshot of the comparison with the results of Lin et
al. [22] and Kagaya et al. [23]. Since the work of Lin et al.
automatically applies different styles to different regions,
we use a few Seed Strokes to manually influence the style.
Both Lin et al. and our system have good fine-detail, edge
preservation, and temporal coherence. The fundamental
distinction between the systems is that Lin et al.’s approach
is automatic, whereas our approach emphasizes user control
over the painterly process. When comparing with Kagaya
et al., we demonstrate one example with a similar level of
input, and another using the finer edits possible with our
system.

Most previous painterly animation algorithms are far too
slow for interactive applications, taking several hours to
animate a sequence. Hertzmann [5] took 3-4 hours to render

a single frame with a 3.4 GHz CPU, taking weeks to
complete a longer sequence. Hays and Essa [6] took 300
seconds a frame to paint in an impressionist style. In Lin et
al. [22], rendering takes between 150-250 seconds a frame.
In contrast, our system is significantly faster. Depending on
complexity, our system requires 0.5-2.5 seconds per layer
per frame, and thus 5-25 seconds for a 10-layer sequence.
Kagaya et al. [23] report an averaging 2.5 seconds per
frame.

All timing results except Hays’ (created on a 2004 era
desktop) are on modern desktops, with CPUs between 3.4-
3.8 GHz. However, CPU architecture, memory, code opti-
mization, among other factors can all affect performance
and were not reported. Hence, the timing results are not
perfectly comparable.

5.3 Stylistic Variations.

Here we briefly describe a few “case studies,” illustrating
different examples of producing different styles interac-
tively. Figs. 1 and 6 show several styles applied to the Pool
Player sequence: an impressionist style, some “sketchy”
styles, and coarser abstracted styles. For the Impressionist
style, Seed Strokes were used to correct areas after auto-
matic processing and rendered user strokes were drawn in
the face. The abstract style in Fig. 6 a) was created with
Guide Strokes in the face and jacket, a Color Stroke is
used to emphasize the jacket contour. Strokes were also
constrained to not be drawn in dark or occluded pixels.

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 10

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison with other systems. a-b) Lady sequence rendered by [22] and ours, c-d) Dolphin sequence rendered
by [23] and ours, e-f) Lily sequence rendered by [23] and ours

Control Strokes were used to further refine the face and
jacket with fine-details in Fig. 6 c). The “sketchy” style

in Fig. 6 b). was created by filling regions with constant
color using region boundaries and Seed Strokes. Next,

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 11

Guide/Seed Strokes were drawn as black outlines. Finally,
fine strokes were automatically drawn near those strokes.
The sparse black style of Fig. 6 d) was created with a low
density constraint, Seed Strokes to control stroke width in
the face and jacket, and a few user-drawn detail strokes in
the face.

Figs. 5 and 7, illustrate two styles for the Dolphin sequence.
In Fig. 5, a more impressionist style is created with fine
details on the dolphin, including manually drawn eyes, and
a ’Van Gogh’ style sky drawn with guide strokes. Fig. 7,
shows a different style, with partially transparent and short-
lived strokes drawn for the waves, an abstracted dolphin,
and several rain layers drawn with fixed orientation and
flow fields. This figure also illustrates how an animation
is created, with the user modifying and experimenting on
particular regions.

Fig. 4 shows a second workflow example of our system
with source, automatic processing, and interactive edit-
ing. After automatic processing, the trees were drawn as
Guide/Seed/Color Strokes with further automatic strokes
generated. Seed Strokes were used to draw finer strokes
near the horses. Rendered user strokes were drawn to refine
the foal. Fig. 8 shows more results of our system. In the
Jellyfish sequence, only automatic processing was used in
an impressionist style. In the Castle sequence, the video was
segmented and a coarse style applied to the castle and sky,
with an automatic sketchy line-drawing style applied. A
finer set of strokes was applied to the foliage. In the Sunset
video, Guide and Seed Strokes were used to exaggerate the
star shape of the sunset. For the Ryan sequence, after initial
processing, Seed Strokes were used for several features
of the face to improve fine details. Lastly, large strokes
were automatically drawn in homogenous regions while
preserving edges.

6 CONCLUSION

In this work, we define a new approach for controlling
automatic animation by combining automatic painterly ren-
dering with detailed interactive controls. Our system allows
the user to work in a range of modalities, from high-
level stylistic specifications, to interactive over individual
regions, to keyframing individual strokes. Our automatic
stroke synthesis algorithm has been designed to capture
fine detail and object boundaries—which cause significant
problems with previous methods—while also providing
abstraction and temporal coherence. As demonstrated in
the videos, our system can be used for a range of video
inputs and styles, including challenging cases with signif-
icant amounts of detail. Similar to WYSIWYG NPR [12],
our system suggests new ways in which automatic and
interactive techniques can be combined in NPR.

Our examples exhibit numerous small artifacts. Many of
these arise from the greedy nature of our optimization, such
as the limited consideration of previously-drawn strokes
during tracking. In many of our examples, strokes in static

regions slowly appear and disappear. This could be im-
proved by better optimization, or by explicit user controls to
force regions to be static over certain durations. Inaccurate
optical flow can cause surfaces to deform in unexpected
ways, though further correction with flow mixtures is
possible.

More generally, it may be possible to create more pow-
erful ways to interact with automatic NPR synthesis. For
example, one could perform direct manipulation on groups
of strokes. Another exciting possibility is to learn a style
of drawing from the user’s example strokes. With more
powerful controls, it should be possible to enable an even
wider range of new styles of animation.

ACKNOWLEDGMENTS

The authors would like to thank Simon Breslav, Igor
Mordatch, Ryan Schmidt for their user testing and helpful
feedback. This research is supported in part by NSERC,
CIFAR, CFI, and Ontario MRI.

REFERENCES

[1] P. Haeberli, “Paint By Numbers: Abstract Image Representations,”
in Proc. SIGGRAPH, 1990, pp. 207–214.

[2] B. J. Meier, “Painterly Rendering for Animation,” in Proc. SIG-
GRAPH, 1996, pp. 477–484.

[3] P. Litwinowicz, “Processing Images and Video for an Impressionist
Effect,” in Proc. SIGGRAPH, 1997, pp. 407–414.

[4] A. Hertzmann, “Painterly Rendering with Curved Brush Strokes of
Multiple Sizes,” in Proc. SIGGRAPH, 1998, pp. 453–460.

[5] A. Hertzmann and K. Perlin, “Painterly Rendering for Video and
Interaction,” in Proc. NPAR, 2000, pp. 7–12.

[6] J. Hays and I. Essa, “Image and Video Based Painterly Animation,”
in Proc. NPAR, 2004, pp. 113–120.

[7] A. Hertzmann, “Paint By Relaxation,” in Proc. CGI, 2001, pp. 47–
54.

[8] J. Collomosse and P. Hall, “Genetic Paint: A Search for Salient
Paintings,” in Proceedings of EvoMUSART (LNCS), vol. 3449, 2005,
pp. 437–447.

[9] B. Sabiston, “Waking Life: Making Of,” 2001, dVD featurette.

[10] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz,
“Keyframe-Based Tracking for Rotoscoping and Animation,” in
Proc. SIGGRAPH, 2004, pp. 584–591.

[11] C. Liu, W. Freeman, E. Adelson, and Y. Weiss, “Human-Assisted
Motion Annotation,” in Proc. CVPR, 2008.

[12] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C.
Lee, P. L. Davidson, M. Webb, J. F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing Strokes Directly on 3D Models,” in
Proc. SIGGRAPH, 2002, pp. 755–762.

[13] K. Odermatt and C. Springfield, “Creating 3d Painterly Environ-
ments for Disney’s ”Treasure Planet”,” in SIGGRAPH ’02: ACM
SIGGRAPH 2002 conference abstracts and applications. New York,
NY, USA: ACM, 2002, pp. 160–160.

[14] A. Bousseau, M. Kaplan, J. Thollot, and F. X. Sillion, “Interactive
watercolor rendering with temporal coherence and abstraction,” in
Proc. NPAR, 2006, pp. 141–149.

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 12

Fig. 6. Stylistic variations. Top left: A coarse, abstract style, Top middle: A sketchy style, Bottom left: Combining coarse
and detailed styles, Bottom middle: A sparse black style, Right: details of each image.

[15] A. Bousseau, F. Neyret, J. Thollot, and D. Salesin, “Video
Watercolorization using Bidirectional Texture Advection,” ACM
Trans. Graphics, vol. 26, no. 3, 2007.

[16] J. P. Collomosse, D. Rowntree, and P. M. Hall, “Stroke Surfaces:
Temporally Coherent Artistic Animations from Video,” IEEE TVCG,
vol. 11, no. 5, pp. 540–549, 2005.

[17] D. DeCarlo and A. Santella, “Stylization and Abstraction of Pho-
tographs,” in Proc. SIGGRAPH, 2002, pp. 769–776.

[18] B. Gooch, G. Coombe, and P. Shirley, “Artistic vision: painterly
rendering using computer vision techniques,” in Proc. NPAR, 2002,
pp. 83–ff.

[19] A. Kolliopoulos, J. M. Wang, and A. Hertzmann, “Segmentation-
Based 3D Artistic Rendering,” in Proc. EGSR, 2006, pp. 361–370.
[Online]. Available: http://www.dgp.toronto.edu/ alexk/segegsr.html

[20] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen, “Video Tooning,” in
Proc. SIGGRAPH, 2004, pp. 574–583.

[21] K. Zeng, M. Zhao, C. Xiong, and S. Zhu, “From Image Parsing to
Painterly Rendering,” ACM Trans. Graph., vol. 29, no. 1, 2009.

[22] L. Lin, K. Zeng, H. Lv, Y. Wang, Y. Xu, and S.-C. Zhu, “Painterly
Animation with Video Content Extraction,” in Proc. NPAR, 2010.

[23] M. Kagaya, W. Brendel, Q. Deng, T. Kesterson, S. Todorovic,
P. Neill, and E. Zhang, “Video Painting with Space-Time-Varying
Style Parameters,” TVCG, In Press.

[24] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video SnapCut:
Robust Video Object Cutout Using Localized Classifiers,” Proc. SIG-
GRAPH, vol. 28, no. 3, 2009.

[25] W. Brendel and S. Todorovic, “Video Object Segmentation by
Tracking Regions,” in ICCV, 2009.

[26] T. Fleisch, F. Rechel, and A. Santos, P.and Stork, “Constraint Stroke-
Based Oversketching for 3D Curves,” in Proc. SBIM, 2004.

[27] A. Hertzmann, “Fast Paint Texture,” in Proc. NPAR, 2002, pp. 91–ff.

[28] J. Canny, “A Computational Approach to Edge Detection,” IEEE
PAMI, vol. 8, no. 6, pp. 679–698, 1986.

[29] H. Kang, S. Lee, and C. K. Chui, “Coherent Line Drawing,” in Proc.
NPAR, 2007, pp. 43–50.

[30] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin,
“Orientable Textures for Image-Based Pen-and-Ink Illustration,” in
Proc. SIGGRAPH, 1997, pp. 401–406.

[31] A. Hausner, “Simulating Decorative Mosaics,” in Proc. SIGGRAPH,
2001, pp. 573–580.

[32] M. Kass and A. Witkin, “Analyzing Oriented Patterns,” CVGIP,
vol. 37, no. 3, pp. 362–385, 1987.

Peter O’Donovan received his BSc in Computer
Science from the University of Saskatchewan in
2005, and MS from the University of Toronto
in 2009. He has worked in the past for Adobe
Systems and is currently pursuing his PhD
with Aaron Hertzmann in the areas of non-
photorealistic rendering and modeling of aes-
thetic preferences.

Aaron Hertzmann is an Associate Professor of
Computer Science at University of Toronto. He
received a BA in Computer Science and Art//
Art History from Rice University in 1996, and an
MS and PhD in Computer Science from New
York University in 1998 and 2001, respectively.
In the past, he has worked at Pixar Animation
Studios, University of Washington, Microsoft Re-
search, Mitsubishi Electric Research Lab, Inter-
val Research Corporation and NEC Research
Institute. He is a fellow of the Canadian Institute

for Advanced Research, and an associate editor for ACM Transactions
on Graphics. His awards include the MIT TR100 (2004), an Ontario
Early Researcher Award (2005), a Sloan Foundation Fellowship (2006),
a Microsoft New Faculty Fellowship (2006), the CACS/AIC Outstanding
Young CS Researcher Award (2010), and the Steacie Prize for Natural
Sciences (2010).

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 13

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Stroke layering a) Source, b) Rotoscoping, c) Initial coarse painting over background, d) Water refined with wavy
strokes, e) Body painted with large strokes, f) Rain layers

IEEE TVCG , VOL. ?, NO. ?, JANUARY 20?? 14

(a) (b)

(c) (d)

Fig. 8. More results. a) Jellyfish sequence, b) Sunset sequence, c) Ryan sequence (Ryan c©2004 Copperheart
Entertainment and the National Film Board of Canada, dir. Chris Landreth) , d) Castle sequence

