SecondSkin: Sketch-based Construction of Layered 3D Models

Chris De Paoli

Karan Singh

University of Toronto

B shell contour
M projection

-tangent
Il normal
Il no-type

(b)

(d)

e & «

Figure 1: 2D strokes sketched on and around 3D geometry form the input to SecondSkin (a). Layered structures are represented as solid
models with volumes bounded by surface patches and curves (b). A majority (91%) of sketch strokes are perceived by viewers as one of four
curve-types (c). We automatically classify these strokes based on the relationship between 2D strokes and underlying 3D geometry, producing
3D curves, surface patches, and volumes (d), resulting in layered 3D models suitable for conceptual design (e).

Abstract

SecondSkin is a sketch-based modeling system focused on the cre-
ation of structures comprised of layered, shape interdependent 3D
volumes. Our approach is built on three novel insights gleaned
from an analysis of representative artist sketches. First, we observe
that a closed loop of strokes typically define surface patches that
bound volumes in conjunction with underlying surfaces. Second,
a significant majority of these strokes map to a small set of curve-
types, that describe the 3D geometric relationship between the stroke
and underlying layer geometry. Third, we find that a few simple
geometric features allow us to consistently classify 2D strokes to
our proposed set of 3D curve-types. Our algorithm thus processes
strokes as they are drawn, identifies their curve-type, and interprets
them as 3D curves on and around underlying 3D geometry, using
other connected 3D curves for context. Curve loops are automati-
cally surfaced and turned into volumes bound to the underlying layer,
creating additional curves and surfaces as necessary. Stroke classifi-
cation by 15 viewers on a suite of ground truth sketches validates our
curve-types and classification algorithm. We evaluate SecondSkin
via a compelling gallery of layered 3D models that would be tedious
to produce using current sketch modelers.

CR Categories: 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, and systems

Keywords: sketch-based modeling, layers, shells

1 Introduction

Current 3D conceptual design tools, regardless of being based on
metaphors of sketching and sculpting or traditional CAD modeling,
typically focus on the creation of the skin or visible surface of 3D
objects. Physical objects, both organic and man-made, however,
are often layered assemblies: comprising parts segmented by form,
function or material, built over each other (Figure 1, 2 and 13).
While research in character skinning and animation has noted the
importance of conceptual anatomic layers for a quarter century now
[Chadwick et al. 1989], 3D conceptual design tools, to date, have
largely ignored what lies beneath the skin. SecondSkin addresses this
problem: the fluid sketch-based creation of layered 3D structures.

A defining aspect of layered modeling is the geometric dependence
of layers on underlying layers. This is clearly evidenced in a mul-
titude of books and tutorials on sketching and concept art [Davies
and Scott 2012], where maquettes of underlying layers are used as
a visual reference on and around which to draw subsequent layers
(Figure 2). Prior work in sketch-based modeling [Kara and Shimada
2007; Nealen et al. 2007; Takayama et al. 2013], typically interprets
sketched strokes as lying on template objects or the evolving 3D
geometric skin of the object. In the context of layered modeling
however, we expect that sketched strokes are largely drawn around
underlying template objects, to build new layered structures.

While projecting a 2D stroke drawn from a given view on to 3D ge-
ometry is mathematically precise and straightforward, inferring a 3D
curve from such a 2D stroke to lie around 3D geometry, is generally

Figure 2: 2D concept art for armour variations drawn over a 3D
character, (©Paul Richards.

ill-defined. Despite this, design strokes representing layered geom-
etry trigger 3D percepts that are consistently imagined by viewers
(Figure 1(c)). Recently, the formulation of a number of perceived
3D relationships between connected 2D strokes have been exploited
to lift design sketches off the page into 3D [Xu et al. 2014]. Com-
plementary to these relationships and perhaps more important for
layered modeling, are the perceived 3D relationships between a 2D
stroke and the 3D geometry of the layer over which it is drawn. We
discover through conversations with artists and analysis of layered
sketches (Figures 1(b) and 10), that a majority of design strokes (286
of 313 strokes in Figure 1(c)), &~ 91%, are perceived in relation to the
underlying layer geometry, as one of four 3D curve-types shown in-
set: shell contour, shell projection, tangent plane and normal plane.
These curve types have
individually seen use in
sketching interfaces, for
example, contours for
model deformation [Zim-
mermann et al. 2007] or shellcontour projection tangent normal
normal curves for 3D painting [Schmid et al. 2011]. Together how-
ever, they capture the bulk of design strokes drawn to depict layered
structures. Strokes that do not belong to these categories, either do
conform to them from a different viewpoint, or can be created from
context, by anchoring them to strokes of the above curve-types inter-
preted in 3D. We further find that these 2D strokes can be robustly
classified as one of the 3D curve-types, by simply observing the 2D
spatial relationships of the curve relative to the underlying geometry.
While the classification is not infallible (Figure 11), it is predictable
and easily understood by the user, allowing them to redraw strokes
differently without frustration when the inference is undesirable.

Once classified, the curve-type defines how the 2D stroke should be
interpreted in 3D. Points on a shell contour for example, typically
lie above their corresponding 3D contour point on the underlying
geometry at a height equal to their projected distance in 2D. The
general viewpoint assumption that the 2D stroke is strongly indica-
tive of its 3D shape [Nakayama and Shimojo 1992; Xu et al. 2014],
provides us with a good metric to evaluate such a 3D interpretation
of a stroke. Incorrectly classified strokes, typically result in 3D
curves of poor quality. We default these strokes to projections on
3D planes commonly employed in sketch-based modeling [Bae et al.
2008; Schmidt et al. 2009]. These insights form the foundation of
our novel 2D stroke to 3D curve inference algorithm (Section 3).

Layered modeling also transcends visible surface modeling to pro-
duce 3D solid models comprising closed volumes, bounded by sur-
faces and curves, an area thus far dominated by traditional CAD
based solid modeling techniques. We note that designers often draw
a number of curves in a closed loop that defines a shell-like sur-
face patch implicitly sandwiching a volume with the underlying
geometric layer (Figure 1(b)). We are thus able to infer and create
3D volumes along with their bounding surfaces and curves auto-
matically, from a few closed design strokes (Figure 1(d). These 3D
volumes, bounded by 4-sided spline patches are easily represented

using hexahederal elements suitable for further physical deformation
and simulation.

SecondSkin is to the best of our knowledge, the first sketch-based
system focused on the creation of layered 3D solid models. Our
technical contribution is a principled approach to the interactive
inference of layered structures sketched over existing geometry. We
spoke to artists, analyzed sketches, hypothesized and perceptually
validated curve-types that describe a majority of the strokes sufficient
to create compelling 3D models. Specifically, we formulate a set
of curve-types commonly used to depict layered structures and an
algorithm that infers 3D curves from sketched 2D strokes and their
curve-type (Section 3). Our implementation uses a novel drawing
workflow that eases the creation of curves, surfaces and volumes
(Section 4). We validate our approach with a perception study,
where our algorithmic output matches the curve-type classification
of 15 viewers over 40 strokes from 5 example sketches (Section
5). We report results and user experiences of artists working with
SecondSkin and discuss limitations and future work (Section 6).

2 Related Work

We broadly classify prior art as pertaining to sketch-based or layered
and solid modeling, all of which can be traced half a century back to
the seminal system Sketchpad [Sutherland 1964].

Layered and Solid 3D Modeling

Research in 3D solid modeling has been dominated by downstream
applications of physical simulation and manufacturing, where the
need for watertight 3D volumes is more critical than in 3D concep-
tual design [Shapiro et al. 2001]. 3D solid modelers in research and
industry, thus tend to be engineer-centric interfaces, where proce-
dural volumes, with multiple material layers [Cutler et al. 2002],
can be combined using constructive solid geometry (CSG). Real-
time simulation and the growing ease of 3D fabrication however,
motivates the need to bridge the gap between 2D concept art and
3D solid modeling, as addressed by SecondSkin. Implicit surface
sculpting techniques [Bloomenthal and Wyvill 1997], while not ide-
ally suited to the creative sketch workflow of layered 3D models
like Figure 1 and 2, are complementary in their design support of
solid amorphous forms. Research on part-based modeling is closer
in spirit to our work [Schmidt and Singh 2008; Schmidt and Singh
2010], allowing mesh parts to be layered and combined together
by interactively sliding them over each other to produce a single
composite 3D mesh. Interactive layer manipulation for deformable
objects has also been explored [Igarashi and Mitani 2010].

While the explicit use of volumetric layers in 3D conceptual design
research is rare, a layered approach to 3D character animation is well
established [Chadwick et al. 1989], where layers for bone, muscle,
skin and clothing influence the dynamic shape of each subsequent
layer. Character animation research has looked at the creation of
layered structures, both inward (fitting muscle primitives [Pratscher
et al. 2005; Vaillant et al. 2013]) and outward (designing and draping
clothing [Volino and Magnenat-Thalmann 2000]) from an input skin.

Sketch-based 3D Modeling

There is a large body of work in sketch-based modeling, surveyed by
Olsen et al. [2009]. One could categorize these modeling systems
as single-view (akin to traditional pen on paper) eg. [Schmidt et al.
2009; Andre and Saito 2011; Chen et al. 2013; Xu et al. 2014] or
multi-view (akin to digital 3D modeling with frequent view ma-
nipulation) eg. [Igarashi et al. 1999; Fan et al. 2004; Nealen et al.
2007; Bae et al. 2008; Fan et al. 2013]. Single-view use geometric
properties of the 2D sketch to infer its depth in 3D, while multi-view
techniques create the 3D curve explicitly using view manipulation
to specify 3D curve attributes from different views. Our work lies
in-between: we are able to infer 3D curves from strokes drawn

entirely in a single-view, but are less constrained to the view and
global sketch context than other single-view approaches, allowing
view manipulation as and when desired.

While several sketch-based interfaces have used template 3D geom-
etry as a canvas on which to project 2D sketch strokes, for example
[Kara and Shimada 2007; Nealen et al. 2007; Takayama et al. 2013],
few techniques barring Overcoat [Schmid et al. 2011] have explored
projecting strokes on and around underlying geometry. Focused on
3D painting, Overcoat provides some support for the creation of
3D curves normal to, or projected on, explicitly set offset surfaces
of the underlying geometry. SecondSkin, in contrast, creates a net-
work of curves, surfaces and volumes, by automatically classifying
curve-types and inferring their depth on and around 3D geometry.

The abundance of planar curves and orthogonality in 3D sketches
has been well exploited using cross-sections and principal direction
curves [Schmidt et al. 2009; Andre and Saito 2011; Xu et al. 2014].
We capture these concepts using normal and tangent plane curve-
types. contours, similarly have been extensively used in sketch-based
modeling for: stroke inflation based modeling [Igarashi et al. 1999;
Nealen et al. 2007; Olsen et al. 2011; Sykora et al. 2014], multi-view
modeling [Rivers et al. 2010] and model deformation [Zimmermann
et al. 2007]. Perhaps, the closest use of contours to our work is
in the context of sketching garments [Turquin et al. 2007; Robson
et al. 2011], where a distance field from an underlying mannequin
mesh in preset views is used to define a mesh, fit to contour and
border strokes. For loose clothing, parts of the mesh distant from
the mannequin conform to a revolved surface [Robson et al. 2011].
SecondSkin automatically classifies strokes perceived as lying on a
shell of the underlying geometry, and creates network of 3D curves,
surfaces and volumes depicting a layered 3D structure.

3 Understanding Layered Sketches

3D curve inference from 2D sketch strokes typically employs a
curve fitness metric [Schmidt et al. 2009; Xu et al. 2014], with
both discrete (for example to capture geometric regularity or curve-
type constraints) and continuous terms (for example to model curve
smoothness or minimal variation from the 2D stroke). This mix of
prioritized discrete and continuous constraints makes fitness opti-
mization for sketch understanding a challenging problem. Solutions
such as combinatorial enumeration [Schmidt et al. 2009] or iterative
least squares refinement [Xu et al. 2014] of discrete constraints, are
tailored to exploit properties specific to the sketch problem domain.
In our context of layered sketch strokes, prioritized discrete con-
straints take the form of admissible curve-types (Section 3.1), that
we are able to efficiently classify from the 2D strokes and underlying
3D geometry. While we can similarly cast 3D curve inference as
the optimization of a fitness function over a family of candidate 3D
curves, our curve-type classification algorithm (Figure 4) allows us
to find a suitably fit 3D curve directly.

3.1 Classifying 3D Curve-types

We formulated our 3D curve-type classification from discussions
with artists, and observations of finished sketches. In sketches of
layered models, such as Figures 2, and 10, a viewer’s 3D interpreta-
tion of a sketch is strongly dependent on the perceived underlying
geometry. Considering artists try to unambiguously define 3D form
while sketching [Nakayama and Shimojo 1992], we assume that a
smooth 2D stroke represents a similarly smooth 3D curve, and that
inflections and points of high curvature often partition strokes into
segments, where stroke sections can belong to a different 3D curve
type. Our set of four 3D curve-types (Figure 3), are as follows:

Shell contour: curves are the contours of shells atop underlying

HEE)y &8
58 0B8

Figure 3: Classification cases for 3D curve types.

geometry. In general, shell is a loose term for a surface lying over
another. Occluding contours and other feature curves of the under-
lying 3D geometry, that resemble the shape of a 2D stroke in the
given view, however, are a strong perceptual cue of parallelism [Xu
et al. 2014], and the perceived shell contour curve conforms in view
depth to the corresponding contour of the underlying geometry.

Shell Projection: curves similarly mark the boundary of a surface
shell, but have no special view dependent meaning. In keeping with
the minimal variation in view depth principle [Xu et al. 2014], we
assume the height of a shell projection curve above underlying ge-
ometry, varies linearly along the curve between start and end height.

Tangent Plane: curves are planar variants of shell projection curves,
in planes roughly aligned with the average surface normal of the
underlying geometry. Strokes classified as shell projection curves
can be alternately interpreted as tangent plane curves and vice versa.

Normal Plane: curves emanate from and roughly normal to the
underlying surface. If both end points of a normal plane curve are
attached to the surface, the curve lies along a plane defined by the
surface attachments and their average surface normal.

Our classification algorithm is illustrated in Figure 4:

Shape similarity between a 2D stroke, and occluding contour or
feature curve of the underlying geometry in the given view, is
a perceptually strong cue, used first to classify strokes as shell
contour curves. Occluding contours and other features like ridge
and valley curves can be automatically extracted from underlying
3D geometry [Ohtake et al. 2004], or obtained naturally from the
sketching process for previously sketched layers. We propose a
small tolerance for shape deviation with little or no global rotation.
Specifically, a stroke is tested against a segment of each occlud-
ing contour or pre-defined feature curve of the 3D geometry. The
segment is defined between the closest points on the 2D contour
to the stroke end-points, as shown inset where the green stroke
matches a feature curve segment on the cylinder shown in purple.
If the midpoint distance, between stroke and
curve segment, are less than d,,,4 (§ defaults
to w/25 in our implementation where w is the
screen width), we transform (rigid with uniform
scale) the stroke to align midpoints with the
contour segment. We then compute a pairwise
distance of (default S/2 where S is the stroke arclength) equispaced
sample points along the two curves and accept shapes as matching
only if the average point distance is not greater than §4.4 (default
of w/160). If multiple feature curve segments are considered for
matching we pick the segment with the lowest d,,;4. Strokes that
match an occluding contour or feature curve segment are classified
as shell contour curves.

~N

£) &€)

Figure 4: Classifying strokes as one of 4 curve-types

Figure 3 further, suggests a strong correlation

between the 2D stroke and its end points rel- ——
ative to the underlying geometry. Let’s say a
2D point is on or off an underlying surface if A off

it projects or does not project onto the surface

in the given view as shown inset. Strokes are

completely on or off underlying geometry if all stroke points are on
or off the underlying surface. All strokes that are not shell contour
curves by virtue of shape matching, fall into one of 3 cases based on
this property that help classify its curve type:

— stroke completely off underlying geometry: shell contour.

— both stroke end points are off underlying geometry but not the
entire stroke: shell projection/tangent plane.

— atleast one stroke end point is on underlying geometry: normal
plane, shell projection/tangent plane.

Shell contours can thus be uniquely classified, but the remaining
curve types require further processing. A normal plane curve, for in-
stance requires that at least one end point is on underlying geometry.
Normal plane curves are classified if and only if the stroke tangent ¢
for all end points that lie on an underlying surface, aligns (¢t = n)
with the view projected surface normal n at those end points. All
remaining strokes are thus shell projection or tangent plane curves
interchangeably. We distinguish shell projection and tangent plane
curves based on the principle that the 2D stroke is indicative of
its 3D shape [Xu et al. 2014]. If the stroke closely approximates
a straight line, we thus imagine it as a 3D line lying in a tangent
plane, else the stroke is a shell projection curve. We capture stroke
straightness as the average of the Menger curvature at each stroke
point, being less than a threshold p (default p = 0.025).

3.2 Inferring 3D Curves

D
Each curve-type further describes how a 3D
curve may be inferred as a stroke of that RxD,
type. A common 3D curve inference re-
sults in the stroke being projected in 3D onto R
a minimum-skew viewplane. Given a 3D
point P and direction D, the minimum-skew
viewplane is the plane best aligned with the viewplane containing
P and D as shown in grey, inset. This plane is readily computed as
D x (R x D), where R is the ray from the eye to P.

Dx(RxD)

viewplane

Legend

W

~ &

Camera view Scene top view

Figure 5: 3D curve inference terminology: a camera view where
the user has drawn a stroke s containing points s; (left); a top view
showing a curve C with points C;, as a possible inference solution
for the stroke s (right). R; is a ray from the camera through points
si. The closest intersections of R; with the base layer and with the
closest geometric layer is B; and I;, respectively.

Inferring a 3D curve requires computing a 3D point C;; for all 2D
stroke points s;, ¢ € 1,..,n. The points C}; lie on the 3D view-
ray R; from the viewpoint through the 2D image point s;. Curves
are inferred with respect to a base layer, a user chosen geometric
layer, and all layers below the base layer. Considering there can be
layers above the base layer, let the nearest intersection between R;
and geometric layers, if defined be I; and the nearest intersection
between R; and the base layer, if defined be B;. When R; does not
intersect with geometry, let S; denote the closest point on R; to the
base layer, with a distance d;. Let h; be a height function returning
the distance between the point I; and its closest point on the base
layer. Figure 5 illustrates the above terminology.

We infer the different curve types in 3D as follows:

Shell contour: curves are created with one of two inference
techniques. When shape matching, both the stroke and matching
feature curve segment are resampled to have the same number of
points. 3D points C}; are given by the closest points on rays R; to
corresponding 3D points on the feature curve segment.

In the absence of a matching contour shape, we create a
minimum-skew viewplane lying on the contour of the base layer
with P = S; and D = S,, — 51, and 3D points C; computed
by projecting stroke points s; onto this minimum-skew view-
plane. As aresult the 3D curve end points C and C), are S; and S,.

Shell projection: If the curve end points are connected
to known 3D positions, the height at each point on C}
is interpolated between the known heights of C; and C,.
Otherwise, we define a constant height Y,

value for the stroke as the maximum height
maz(di,dn, b, ..., hn), based on the dis-
tance from the end points to the base layer =
contour, or the heights with respect to the —4
base layer of projected stroke points /; on
higher geometric layers. For example, a
stroke with associated h; and d; values, is
shown inset, where the chosen constant height is given by hs = 2.5.
Each point s; is then projected on a distance offset surface of the

<

A

f—/

\

\.\

base layer with height given by the interpolated value at C;. Stroke
points that fail to project onto their corresponding offset surfaces, are
projected to a minimum-skew viewplane between adjacent points
that do project to an offset surface (the curve end points if required).

Normal Plane: curves require at least one end point on a surface.
Say this point is sg. We create a minimum-skew viewplane with
P = I, and D as the surface normal at I;. If both endpoints project
to the surface, the point and direction at the two end points are aver-
aged. 3D points C; are the projections of stroke points s; onto this
minimum-skew viewplane.

Tangent Plane: curves are projections of the stroke onto a tangent
plane whose normal is given by the average surface normals of all
stroke points that project on the base layer. The height of the plane
is determined similar to that of a shell projection curve (the average
height is computed if the shell projection height varies along the
curve). Tangent planes can pass through underlying geometry if the
3D position of both or one curve end-point(s) is already known. We
revert in this case to a minimum-skew viewplane, defined between
the two known end-points, or the one known end-point and the stroke
point with the shallowest view-depth.

Finally, all 3D curves are smoothed along the rays R;, by neighbour
averaging their view depth.

While the above curve inference handles a majority of sketched
curves, we provide some additional features for users to create
strokes that do not fit our curve types and settle ambiguous situa-
tions. Occasionally a user might wish to construct a shell projection
curve with a straight line, or conversely a tangent plane curve with
considerable curvature. As the tangent plane curve-type is a planar
variation of a shell projection, we allow the user to toggle our default
interpretations using the shift key. More precisely, if the algorithm
were to choose a shell projection curve and the shift key was pressed,
the result would be swapped with a tangent plane curve, and vice-
versa. Users can explicitly indicate curve types by mode switching
but our strength lies in presenting a pure sketching interface where
our algorithm enables a creative workflow that is not impeded by
consciously mode-switching prior to placing a stroke.

3.3 3D curve quality and default planar curves

Once the 3D curve for a sketched stroke has been inferred, we evalu-
ate its fitness quality. Various quality metrics such as smoothness,
minimal shape variation, low foreshortening [Xu et al. 2014] and
overall curvature [Schmidt et al. 2009] have been used in sketch liter-
ature. In general, fitness criteria are best adapted to the assumptions
of the 3D inference technique. True2Form [2014] for example, im-
plicitly captures smoothness by representing curve segments using
cubic beziers, and foreshortening modeled as the overall variation in
view depth of adjacent Bezier control points.

In the context of layered sketches, where the view depth of stroke
points are computed independent of its neighbouring points, we find
curve smoothness to be an important fitness criterion. Considering
curves are segmented by points of high curvature we expect resulting
curves to be reasonably smooth. Therefore, if the max variation in
the view depth of the generated curve is greater than v (default
v is 0.4) the curve is deemed not smooth. As surface normals
aligned with the view direction can result in highly foreshortened
normal plane curve projections, low foreshortening is another fitness
criterion. If Umin/Umaz (min over max view depth of the curve)
is lower than p (default 4 is 0.5), the curve is considered overly
foreshortened. In practice this happens rarely, but in the case of
these classified 3D curves of poor quality or No-Type curves shown
in the user study of Section 5, we replace the interpreted curve
by the fittest minimum skew viewplane or XY Z planar curve. In

Q\\J\ (

TN
A J A
LY \ ‘ s \
p\ L ®

Figure 6: Shell contour curve with shape matching: image pairs
show a sketched stroke (blue) on the left and the result from a
different view on the right. A shape match between the stroke and
a feature curve (teal) is attempted. No match results in a shell

projection curve, image-pair (a), and a matched sub-curve (red),
results in a shell contour curve, image-pair (b).

other words, if just one of the curve end-points is defined in 3D
we project the stroke onto the least foresthortened of three planes
aligned with the XY Z axes and passing through the 3D end-point.
If both end-points are known in 3D we project the stroke onto the
minimum-skew viewplane passing through the two 3D end-points.
These alternate planar curve interpretations can also be forced by a
user holding the space key.

4 Implementation

SecondSkin is an interactive 3D sketched-based modeling system,
that facilitates single-view sketching but also allows the user to
manipulate the camera freely. The interface is designed to be used
with a graphics tablet. We implemented our system on a PC with
an i7 Intel CPU, 8 GB of RAM, and an ATI Radeon HD 5700.
The system runs completely in real-time with a barely noticeable
pause when interactively constructing mesh surfaces and volumes.
The system uses a kd-tree for 3D distance calculations used to to
determine height values between newly sketched strokes and the
base layer. Distance offset surfaces are approximated on the GPU
using a vertex shader to inflate the mesh. We find this method
reasonable, since these surfaces are only used for stroke projection
from the current view.

4.1 Layered Curve, Surface and Volume Workflow

‘We provide typical sketch based modeling functions such as erase
gestures, stroke smoothing, and global symmetry. Users sketch
strokes, like with pen and paper (see accompanying video), to con-
struct curves, surfaces, and volumes in the scene. While we typically
expect smooth strokes, we do segment closed loops to form surfaces
and volumes, at inflections and points of high curvature. Once a
segment in the curve is detected a 2D preview of the completed
closed loop is shown to the user. At any time there is an active base
layer that forms the geometry with respect to which new strokes are
inferred in 3D and placed in the active drawing layer. All layers
below the active drawing layer form the underlying 3D geometry.
Geometric layers above the active drawing layer, if present, are pas-
sive and are simply a visual reference. Although SecondSkin has
limited layer editing and management functionality, a layer editor
similar to that found in image editing software like Adobe Photoshop
is easy to envisage and implement. Figure 7 shows a hypothetical
user interface for such a layer editor.

Our system has 3 geometric primitives: curves, surfaces, and vol-
umes. These primitives are defined using a solid modeling structure,
where surfaces are bound by a closed set of curves, and volumes
bound by a closed set of surfaces. The system uses a graph structure
to maintain connections between primitives. When closed loops
are detected in the curve graph a surface is constructed. A user can
also form a closed loop by sketching a smooth stroke connecting 3D
curves in the scene. The user can also construct a closed loop from

Layer O

0 i

Figure 7: A hypothetical user interface for layer editing functional-
ity commonly found in image editing software.

JNN W

Figure 8: Surface envelopment example where a user creates an
armband. The image panels from left to right show: the closed
loop sketch; the result from the sketching view; and, the result from
another angle showing the back of the armband.

a single view, and in this case the system assumes the surface will
enclose a volume.

4.1.1 Surface Creation From 2D Closed Loop

Users can draw surfaces and indeed volumes using a closed curve
loop from a single-viewpoint. The curve loop is entirely composed of
shell contours and shell projections or tangent plane curves. When-
ever possible, these strokes snap at their end-points to anchors (ex-
isting 3D curve end points, or edges). The strokes, if classified as
shell projections or tangent plane curves, then inherit their height
values from these anchor points. In the absence of adjacent anchors,
the curve graph structure may have to be traversed to compute ap-
propriate height values for such curves. In this case a breadth first
search is performed outward from an end point of a shell projection
curve until 3D anchor points are reached. The height value weight
of such an anchor is inversely proportional to the number of edges
traversed to reach it in the graph and the estimated height value is
simply a weighted average of these connected height values.

Once the 3D curves in the loop have been inferred, surfaces are
constructed with 3 and 4 sided Coons patches. Closed loop curves
are combined and split to form a set of 3 or 4 curves using a simple
meshing strategy (Section 4.2).

It is common in layered sketching to produce shell volumes that
wrap around underlying geometry. Shell volumes like the armband
in Figure 8 can be created by joining two half-shells drawn from
opposite points of view. We provide automated support however, for
this common structure: closed loops that contain 2 non-adjacent shell
contour curves are assumed to envelope the underlying geometry. A
back loop is created to match the sketched loop in front. As seen in

Figure 9: An example of our Coons patch configuration when more
than 4 curves are present. In this case, 5 curves are combined into
a 4-sided Coons patch. Left: the original closed loop of 5 curves.
Middle: choice of 4 vertices that produces the maximum footprint
quadrilateral (maximum of triangle areas of the two possible trian-
gulations). Right: the final Coons patch showing the chosen curve
combination.

Figure 8, the four end-points of the inferred 3D shell contour curves
define an average plane of reflection. The remaining curves in the
front loop are reflected about this plane, offset the same distance
from the back-facing geometry as its front-facing counterpart, and
smoothly connected to the front loop to define a back loop.

4.1.2 Volume Creation

The surface constructed when a user draws a closed loop in a single
view is assumed to implicitly enclose a volume with the base layer.
We construct a volume automatically by constructing new surfaces
between the base layer and newly constructed surface. This type of
volume can also be constructed with any surface by clicking on the
surface while holding the ctrl key. An enclosed volume is not always
desired, so we provide an extrusion technique for creating volumes
as well. While holding down the ctrl key, the user sketches a normal
curve starting on the surface acting as the base of the volume. The
volume is then extruded along the normal curve.

4.2 Meshing

Given a closed loop, the meshing system finds a suitable set of
curves for Coons patching. Coons patching requires 3 or 4 curves,
so we split curves in closed loops of 2 or less and we combine
curves in closed loops of 5 or more. When splitting curves, we split
the curves into regions of equal arclength until we have 4 curves.
Given 5 or more curves we must combine curves until 4 curves are
left. Combining curves is less trivial as the choice of curves affects
the final look of the mesh. We use a simple strategy that looks at
every Cf combination of 4 vertices of an n — sided curve loop. We
simply pick the configuration with the maximum footprint quadrilat-
eral (maximum of triangle areas of the two possible triangulations)
connecting the 4 points. These form the corners of a 4-sided Coons
patch. An example of a curve combination is shown in Figure 9
where 5 curves are combined into a 4-sided Coons patch. While this
works reasonably in practice, an approach based on design driven
quadrangulation [2012] would be more general and robust. In addi-
tion, the quad meshing approach of Yassen et al. [2013], specifically
designed for garment modeling, would provide better results when
meshing cloth features.

5 Perceptual Validation

We performed a study to formally test consistency between humans
and our algorithm, on classifying sketch strokes in layered structure
sketches. We aim to answer two questions:

Q1: Do humans consistently perceive 2D sketch strokes layered
over underlying geometry?

Q2: Does human perception, when consistent, match our algorith-
mic output for the above strokes?

Figure 10: User study corpus comprising 5 sketches.

Study Design: Our test data-set comprised 5 drawings, created by
us for uniformity, but carefully done to match the spirit of drawings
by the artist community (Figure 10). The drawings comprise a
mix of human and robotic forms, typical of layered 2D concept art
(Figure 2): droid, pan and orb are inspired by Microsoft Studios’
Halo, Blizzard Entertainment’s Starcraft, Valve Corporation’s Portal,
series of games respectively. We formulated our study as a set
of 40 curve-type queries (8 per sketch). The number of sketches
and questions was chosen so the typical time to complete the study
was ~ 10 mins. The four curve-types were verbally explained to
participants using illustrations (this was done on drawings that were
not used as testing data). Users were then asked to imagine each
sketch as a layered 3D model, possibly with multiple layers like orb
in Figure 10 and then classify 8 query curves as one of the four curve
types or no-type (to reduce any bias towards the set of curve types).
Queried curves were unobtrusively numbered avoiding perceptual
bias possible when using color or visual markings. The study was
performed by 15 participants on print-outs, 10 of whom had some
computer graphics background.

Study Results:

Q1: For the 40 queried curves the histogram of agreement on the
dominantly perceived curve type was [90 — 100% : 20,70 — 90% :
11,50 — 70% : 4,40 — 50% : 3]. 15 curve queries had 100%
agreement and only 3 fell outside the strong significance threshold
of p = 0.01. In other words, only 3 curves could statistically belong
to any of the 5 curve types. One such blue curve can be seen near
roman’s knee in Figure 11 that 40% of the users imagined as a
tangent plane curve but clearly has alternate interpretations. The
dominantly perceived curve types for the 40 queries were spread
over [contour: 13, projection: 9, tangent: 7, normal: 8, no-type: 3].
Normal plane curves when dominantly perceived, always had high
consistency of 87% or more. As expected, in the case of 7 curves
some perceptual ambiguity was observed between shell projections
and tangent plane curves, such as the blue curve on top of orb
in Figure 11, where viewers were split 47%-53% between a shell
projection and tangent plane.

Q2: Our algorithm agreed with the majority of participants on all
but 1 out of 40 curve queries. The anomalous curve was one of the 7

mm shell contour

&l
100%N\

EN projection W 100%
| EEN tangent ~ A~
O/ B normal (R
Nt . no-type A\ /A

\40% | -

Figure 11: Queries and results (Y%age human consistency for the
dominant response) illustrated on 2 models.

curves that could be classified as tangent plane or shell projection.
In these cases, our algorithm uses the shape of the 2D stroke to
distinguish the two types. A near straight line stroke in keeping with
the non-accidental viewpoint assumption is classified as tangent
plane and others as shell projections. Designers can readily create
the alternate interpretation in our system using the shift key. In many
cases the geometric difference in the resulting 3D curve between
these two interpretations is also subtle.

The 3 curves dominantly viewed as no-type, such as the black curve
connecting roman’s shoulder and chest armour in Figure 11, are
adjacent to strokes of known curve-type. Our algorithm by default
reconstructs these strokes as shell projections once their end-points
have been defined in 3D by adjacent curves. Exhaustive classifica-
tion of all curves on roman by one viewer in Figure 1(b) reported
only 9% strokes as having no-type, and these were conveniently
reconstructed in 3D in context of their adjacent strokes. In summary,
we believe this study provides sufficient validation that viewers
consistently perceive sketch strokes in layered 3D models, and our
algorithm is able to reliably match viewer expectation.

6 Conclusion

Evaluation: A set of 6 users tried our system, one artist and 5 non-
artists, all with some CG background. The non-artists were given the
underlying 3D model and produced the results shown in Figure 12,
within a 1.5 hour modeling session that included learning the con-
trols of the system and familiarizing themselves with the workflow.
Figure 13 is the work of the artist. The underying geometry for the
bike and orb robot was a sphere, and the spider tank began with a
blobby model of similar form. All models in Figures 12, 13 took 20-
40 mins, except the top left model in Figure 13 (13 min). Producing
results of this quality and efficiency using existing techniques would
be quite cumbersome. The users in general found the system fun and
creative to use. Creating man-made models was more difficult than
armour on characters but the addition of simple primitive modeling
would greatly improve our industrial design modeling.

We observed that the artist was comfortable sketching outer most lay-
ers early on in the modeling process, where as the non-artists always
started with the lowest layer. One of the non-artists mentioned that
he felt a need to create the lowest layer first before moving higher.
Conceptually this seems logical as underlying layers are expected to
be enclosed by higher layers. The artist noted that he would instead

Figure 13: Artist creations using SecondSkin

Alien % Sword % Soldier %
Time 16:48 12:35 19:44
Curves created 166 - 86 - 219 -
Curves in the model 129 77.7 65 75.6 160 73.1
Closed loop and volume curves 86 51.8 27 314 123 56.2 ¥
Misclassified curves 5 3.0 7 8.1 14 6.4
Forced planar curves 18 10.8 34 39.5 3 14
Swapped curves 2 1.2 2 2.8 1 0.5

Alien Sword Soldier

Figure 14: Usage statistics captured during three modeling sessions by the artist. Models are shown on the right. Where applicable,

percentages are shown with respect to the number of curves created.

y?

AN

Figure 15: Three examples of the most common classification error where strokes which appear to be planar curves lying on one of the
cardinal X, Y, Z planes are classified as shell projections. Each pair of images shows the sketching view on the left and a second view showing
the result on the right. These can be corrected with a modifier key to enforce the desired curve type.

sketch in large forms as he would in traditional sketching, producing
structures that would be found on the outer most layers. The most
problematic feature for all users was determining and controlling
the height of a normal plane curve’s end point due to typically large
foreshortening. Providing post-sketch editing control over the height
values and indeed all parameters of the solid 3D models is subject
to future work.

We present a set of usage statistics in Figure 14, captured over three
modeling sessions by the artist. For these sessions, we added a
second form of delete to explicitly indicate that a curve was mis-
classified. The number of misclassified curves averaged 5.8% over
the three models. In the sword model, 39.5% curves were forced
planar, typical for industrial design objects and far more than used in
organic forms. We can also note that the artist predominantly used
the closed loop and volume tools to create the majority of curves.

Limitations: Figure 15 shows three examples of poorly classified
and inferred 3D curves. Part occlusions in the interior of the un-
derlying geometry can result in poor 3D curve inference. Strong
foreshortening and ambiguous viewpoints can also produce undesir-
able results. We address these both by defaulting poor quality 3D
curves to appropriate planar curves. In the case of Figure 15, our
fitness tests for poor quality do not catch the resulting errors. Explor-
ing further fitness criteria is the subject of future work. Our system
also has limited support for curve, surface and volume editing as
users typically erase and redraw undesirable curves. Our choice of
Coons patches also limits continuity between neighbouring patches
to C continuity when possible.

Discussion: Shell-like layered structures are increasingly relevant
with the onset of multi-material 3D printing technology. While game
characters were our inspiration, our system is capable of modeling

both man-made and organic forms (Figure 13). We can draw almost
any curve network by using many normal curves as scaffolding on
which to anchor arbitrary 3D curves, but that is not what makes
SecondSkin compelling. We are capable of but not streamlined to
create curves with no connection to the underlying geometry, coni-
cally shaped shells, holes, and bumps. Note, that SecondSkin can be
easily augmented by various known curve regularization approaches,
and widgets, for example to scale our default cylindrical volumes
into conical shells. We eschew these to avoid confusion between
prior art and our novel contributions, and leave their integration into
SecondSkin as future work.

In summary, we have presented SecondSkin, the first system aimed
at sketch-based modeling of layered 3D structures. We believe the
worlds of conceptual design and downstream solid modeling will
merge in the future. Our work is a promising step towards that goal.

References

ANDRE, A., AND SAITO, S. 2011. Single-view sketch based
modeling. In Proceedings of the Eighth Eurographics Symposium
on Sketch-Based Interfaces and Modeling, ACM, New York, NY,
USA, SBIM 11, 133-140.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. ILoveS-
ketch: as-natural-as-possible sketching system for creating 3d
curve models. In Proceedings of the 21st annual ACM symposium
on User interface software and technology, ACM, New York, NY,
USA, UIST 08, 151-160.

BESSMELTSEV, M., WANG, C., SHEFFER, A., AND SINGH, K.
2012. Design-driven quadrangulation of closed 3d curves. ACM
Trans. Graph. 31,6 (Nov.), 178:1-178:11.

BLOOMENTHAL, J., AND WYVILL, B., Eds. 1997. Introduction
to Implicit Surfaces. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

CHADWICK, J. E., HAUMANN, D. R., AND PARENT, R. E. 1989.
Layered construction for deformable animated characters. In
SIGGRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 243-252.

CHEN, T., ZHU, Z., SHAMIR, A., HU, S.-M., AND COHEN-OR,
D. 2013. 3sweepp: Extracting editable objects from a single
photo. ACM Trans. Graph. 32, 6 (Nov.), 195:1-195:10.

CUTLER, B., DORSEY, J., MCMILLAN, L., MULLER, M., AND
JagNow, R. 2002. A procedural approach to authoring solid
models. In Proceedings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York, NY,
USA, SIGGRAPH 02, 302-311.

DAVIES, P., AND ScOTT, K. 2012. Awakening: The Art of Halo 4.
Titan Books Limited.

FAN, Z., CHI, M., KAUFMAN, A., AND OLIVEIRA, M. M. 2004.
A Sketch-Based Interface for Collaborative Design . In Sketch
Based Interfaces and Modeling, The Eurographics Association,
J. A. P. Jorge, E. Galin, and J. F. Hughes, Eds.

FaN, L., WANG, R., XU, L., DENG, J., AND L1u, L. 2013.
Modeling by drawing with shadow guidance. Computer Graphics
Forum (Proc. Pacific Graphics) 23,7, 157-166.

IGARASHI, T., AND MITANI, J. 2010. Apparent layer operations
for the manipulation of deformable objects. In ACM SIGGRAPH
2010 Papers, ACM, New York, NY, USA, SIGGRAPH ’10, 110:1-
110:7.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3d freeform design. In Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, SIGGRAPH ’99, 409—416.

KARA, L. B., AND SHIMADA, K. 2007. Sketch-based 3d-shape
creation for industrial styling design. IEEE Comput. Graph. Appl.
27,1 (Jan.), 60-71.

NAKAYAMA, K., AND SHIMOJO, S. 1992. Experiencing and
Perceiving Visual Surfaces. Science 257, 1357-1363.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh: designing freeform surfaces with 3d curves.
In ACM SIGGRAPH 2007 papers, ACM, New York, NY, USA,
SIGGRAPH ’07.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. In ACM SIG-
GRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH
’04, 609-612.

OLSEN, L., SAMAVATI, F. F., SOUSA, M. C., AND JORGE, J. A.
2009. Sketch-based modeling: A survey. Computers and Graph-
ics 33, 1,85 -103.

OLSEN, L., SAMAVATI, F., AND JORGE, J. 2011. NaturaSketch:
Modeling from images and natural sketches. IEEE Computer
Graphics and Applications 31, 6, 24-34.

PRATSCHER, M., COLEMAN, P., LASZLO, J., AND SINGH, K.
2005. Outside-in anatomy based character rigging. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, ACM, New York, NY, USA, SCA ’05,
329-338.

RIVERS, A., DURAND, F., AND IGARASHI, T. 2010. 3d modeling
with silhouettes. In ACM SIGGRAPH 2010 papers, ACM, New
York, NY, USA, SIGGRAPH ’10, 109:1-109:8.

ROBSON, C., MAHARIK, R., SHEFFER, A., AND CARR, N. 2011.
Context-aware garment modeling from sketches. Computers and
Graphics (Proc. SMI 2011), 604-613.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. W.
2011. Overcoat: An implicit canvas for 3d painting. In ACM SIG-
GRAPH 2011 Papers, ACM, New York, NY, USA, SIGGRAPH
’11, 28:1-28:10.

SCHMIDT, R., AND SINGH, K. 2008. Sketch-based procedural
surface modeling and compositing using surface trees. Comput.
Graph. Forum 27,2, 321-330.

SCHMIDT, R., AND SINGH, K. 2010. Meshmixer: An interface for
rapid mesh composition. In ACM SIGGRAPH 2010 Talks, ACM,
New York, NY, USA, SIGGRAPH ’10, 6:1-6:1.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3d scaffolds. ACM Trans. Graph. 28.

SHAPIRO, V., FARIN, G., HOSCHEK, J., AND S. KiM, M., 2001.
Solid modeling.

SUTHERLAND, I. E. 1964. Sketch pad a man-machine graphical
communication system. In Proceedings of the SHARE Design
Automation Workshop, ACM, New York, NY, USA, DAC 64,
6.329-6.346.

SYKORA, D., KavaN, L., CADIK, M., JAMRISKA, O., JACOBSON,
A., WHITED, B., SIMMONS, M., AND SORKINE-HORNUNG,
O. 2014. Ink-and-ray: Bas-relief meshes for adding global
illumination effects to hand-drawn characters. ACM Transaction
on Graphics 33.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32,4 (July), 97:1-
97:8.

TURQUIN, E., WITHER, J., BOISSIEUX, L., CANI, M.-P., AND
HUGHES, J. F. 2007. A sketch-based interface for clothing virtual
characters. IEEE Comput. Graph. Appl. 27, 1 (Jan.), 72-81.

VAILLANT, R., BARTHE, L., GUENNEBAUD, G., CANI, M.-P.,
ROHMER, D., WYVILL, B., GOURMEL, O., AND PAULIN, M.
2013. Implicit skinning: Real-time skin deformation with contact
modeling. ACM Trans. Graph. 32, 4 (July), 125:1-125:12.

VOLINO, P., AND MAGNENAT-THALMANN, N. 2000. Virtual
Clothing: Theory and Practice. No. v. 1 in Virtual Clothing:
Theory and Practice. Springer.

XU, B., CHANG, W., SHEFFER, A., BOUSSEAU, A., MCCRAE, J.,
AND SINGH, K. 2014. True2form: 3d curve networks from 2d
sketches via selective regularization. Transactions on Graphics
(Proc. SIGGRAPH 2014) 33, 4.

YASSEEN, Z., NASRI, A., BOUKARAM, W., VOLINO, P,
MAGNENAT-THALMANN, N., ET AL. 2013. Sketch-based gar-
ment design with quad meshes. Computer-Aided Design.

ZIMMERMANN, J., NEALEN, A., AND ALEXA, M. 2007. Sils-
ketch: Automated sketch-based editing of surface meshes. In
Proceedings of the 4th Eurographics Workshop on Sketch-based
Interfaces and Modeling, ACM, New York, NY, USA, SBIM 07,
23-30.

