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Spherical signals can be found in a wide range of fields, including astronomy, computer

graphics, medical imaging and geoscience. An efficient and accurate representation

of spherical signals is therefore essential for many applications. For this reason, we

derive a novel wavelet basis called 3D SOHO. It is the first Haar wavelet basis on the

three-dimensional spherical solid that is both orthogonal and symmetric. These the-

oretical properties allow for a fast wavelet transform, optimal approximation, perfect

reconstruction and other practical benefits. Experimental results demonstrate the

representation performance of 3D SOHO on a variety of volumetric spherical signals,

such as those obtained from medical CT, brain MRI and atmospheric model. The

approximation performance of 3D SOHO is also empirically compared, against that

of Solid Harmonic, 3D Haar wavelet transform and 3D discrete cosine transform.
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Chapter 1

Introduction

Wavelets have been successfully used in many areas of science, mathematics and

engineering. Examples include astronomy [7, 25, 27, 62, 79, 80], bioinformatics [6, 10,

40, 44, 63], computer graphics [5, 15, 43, 50, 72, 81] and geoscience [35, 56, 77, 87].

The list of applications continues to grow, as researchers develop new wavelets with

different capabilities and attributes. In this thesis, we introduce a novel wavelet

for representing signals over the unit ball. Potential applications can be found in

seismology [2, 11, 29, 58], medical imaging [64, 65, 97, 99], astrophysics [42, 53,

54, 92, 91] and other fields where signals are naturally parameterized in spherical

coordinates.

The remainder of this chapter is devoted to a brief introduction to wavelets. We

begin by explaining the basic idea behind signal representations. Following that,

we identify the characteristics of wavelets that are valuable for our purposes. The

chapter concludes with an overview of related work on the representation of volumetric

spherical signals.

8



Chapter 1. Introduction 9

1.1 Signal Representation

Put simply, a signal is a mathematical function. In the physical world, any quan-

tity that depends on time or space can be considered as a signal. For instance, a

seismometer measures a signal by relating ground displacement over time. An x-ray

image is another concrete example, where radiation intensity is mapped to spatial

positions.

A signal can be represented in a variety of ways, often in the form of a graph, a formula

or an algorithm. In the following chapters, we will propose a set of basis functions

to represent functions on the three-dimensional ball. This method of representation

is analogous to the way that a vector can be written as a linear combination of basis

vectors.

Any function in the space spanned by the basis functions can be represented as a

unique sequence of basis function coefficients. The process of transforming a signal to

a basis representation is called projection, while the reverse process of synthesizing a

signal from the basis function coefficients is called reconstruction. Intuitively, a basis

function coefficient determines the amount of contribution made by a basis function

to the basis representation. Equivalently, a basis function coefficient measures the

similarity between a basis function and the signal. The properties and limitations of

a basis are hence determined by its span and the characteristics of its basis functions.

In the following section we will identify basis properties that are desirable for our

purposes.
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1.2 Wavelets

The historical development of wavelets has been well-documented in the literature

[19, 38, 41, 55], and many comprehensive introductions have been written on the

subject [16, 20, 31, 86, 93]. Nevertheless, a universally accepted definition for wavelet

has never been established, perhaps due to its diversity and continual evolution.

Rather than to offer a precise definition, we will describe wavelets in terms of the

main features that they have in common. In Wim Sweldens’ seminal work on the

lifting scheme, he characterizes wavelets as [84]:

“. . . building blocks that can quickly decorrelate data.”.

Sweldens’ description incorporates three main features of wavelets. First, wavelets are

analogous to building blocks. They form a basis in which signals can be represented as

a linear combination of wavelet basis functions. The basis functions of wavelets also

have very similar structure and therefore resemble blocks. In fact, the basis functions

of a first generation wavelet are dilates and translates of a mother wavelet function.

Next, the word “quickly” refers to the existence of fast algorithms for signal analysis

and synthesis. These algorithms can transform a signal between its original repre-

sentation and its wavelet representation in time that depends linearly on the size of

the signal. This speed efficiency is accomplished by regarding the wavelets as filter

banks. Then the basis function coefficients can be obtained using filters, rather than

expensive inner products between the dual basis functions and the signal.

Finally, wavelets can decorrelate data so that the wavelet representation is more “com-

pact” than the original representation. Most of the wavelet basis function coefficients
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are small in magnitude because most of the energy is concentrated in a few coeffi-

cients. Unlike random noise, natural signals are correlated in space and frequency.

For instance, two adjacent pixels in an image are typically similar relative to those

that are spaced far apart. Similarly, frequencies often occur in bands. Natural signals

tend to exhibit a correlation structure that is localized in space, and decay toward

both ends of the frequency spectrum. We can exploit this structure to obtain compact

representations, where a large percentage of the wavelet coefficients are close to zero

in magnitude. The idea of wavelets is to design basis functions that capture local

differences in a signal. Then a large wavelet coefficient indicates a large degree of

dissimilarity between the signal and the wavelet basis function. Compact represen-

tations are desirable because we can obtain accurate approximations by ignoring the

small coefficients. In effect, prominent features are maintained in the approximation

while insignificant details are discarded.

1.3 Related Work

Over the years, different bases and frames have been developed to represent, approx-

imate, analyze and process signals parameterized in spherical coordinates. However,

the vast majority of those techniques are designed for signals on the sphere S2. In

contrast, there are relatively few bases for signals on the three-dimensional ball B3.

Most of the representations for square-integrable functions in L2(B3) can be classified

into three families, based on ridgelets, spherical harmonics and splines, respectively.

In the following, we will provide an overview of each family, and then introduce the

direct predecessor of our technique.
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1.3.1 Ridgelets

Ridge functions appear naturally in various areas including tomography, statistics

and neural networks. They are multivariate functions f : R2 → R of the form

f(x, y) = r(ax+ by), where (a, b) ∈ R2 is called the direction [37, 39]. Geometrically,

the level sets of ridge function f are lines t = ax+by, and thus the graph of f exhibits

ridges [24]. The function g(t) is the profile of f in the plane orthogonal to lines t. A

ridgelet is a ridge function whose profile is a wavelet.

In essence, a ridgelet is a regular two-dimensional wavelet that is constant along

a preferred direction [3]. Ridgelets exhibit high directional sensitivity due to their

anisotropic nature. Therefore, ridgelet transform provides efficient representations for

signals that are smooth away from line singularities. In contrast, wavelet bases are

only efficient in representing signals that are smooth away from point singularities.

As an illustration, consider the representation of an edge in an image. A ridgelet can

simply align its preferred direction with the principal direction of the edge, whereas

many wavelets may be needed to “pave” along the edge. For this reason, ridgelet

analysis has been employed to deal with higher-dimensional discontinuities, such as

those found in astrophysics [79, 80, 78] and medical imaging [21, 76, 75].

Candès [8] developed the first ridgelet transform for functions f ∈ L2(D), where D

is a compact set in Rd. The ridgelet transform corresponds to wavelet analysis in

the Radon domain [9]. It allows for stable representations and approximations of f ,

as a superposition of ridgelets that form a frame for L2(D), which can be regarded

as an overcomplete basis. Donoho extended the idea of ridgelets to obtain the first

orthonormal ridgelet basis for L2(R2) [23]. The pioneering work of Candès eventually

lead to the development of a tight frame for L2(Bd) based on ridgelets [70].
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Every signal has a unique representation in an orthogonal basis, given by a unique

sequence of basis function coefficients. In contrast, the ridgelet frame developed by

Petrushev [70] is overcomplete, and thus a signal may have redundant representations.

Overcompleteness has some advantageous in signal processing applications, such as

robustness to noise [88]. However, fast ridgelet transform requires O(n log n) time

complexity, as opposed to O(n) needed for fast wavelet transform [26]. The resulting

representations are also typically less compact compared to those in an orthogonal

basis.

1.3.2 Spherical Harmonics

Spherical harmonics are the angular portion of an orthogonal set of solutions to

Laplace’s equation on the sphere [74]. They can be regarded as spherical analogs of the

Fourier basis. Several complete orthonormal systems in L2(B3) have been formulated

based on spherical harmonics. These systems employ spherical harmonics in angular

dimension, in combination with orthogonal polynomials in radial dimension.

Spherical harmonic bases for L2(B3) have been used to model seismic wave velocity

in the Earth’s mantle [51, 83]. The lateral parameterization is provided by spherical

harmonics, while the radial component is modeled by Chebyshev polynomials or cubic

B-splines. Orthogonal bases formed by spherical harmonics and Jacobi polynomials

have also been used to derive reproducing kernels [90] and wavelets on the three-

dimensional ball [59]. Such wavelets have been applied in the recovery of the Earth’s

harmonic density distribution from gravitational data [57, 58].

The spherical harmonic basis functions have global support, which prevents their lo-

calization in space. Consequently, spherical harmonics are not suitable for the repre-
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sentation of high frequency signals. An order n approximation in spherical harmonics

require n2 coefficients, and a fast transform for spherical harmonics has computational

complexity of O(n log n) [61]. The results often exhibit ringing artifacts [32, 66, 94].

1.3.3 Splines

Spline bases have been used extensively in geoscience to represent and analyze sig-

nals on B3. They have been employed to solve the inverse gravimetry problem of

determining the Earth’s density distribution from gravitational data obtained by

satellites. The inverse gravimetry problem is exponentially ill-posed, and harmonic

spline-wavelets provide a regularization method for yielding stable approximations of

harmonic density functions on B3 [29, 58, 60]. Multiresolution representations are

generated by reducing the hat-width of spline wavelet basis functions rather than by

scaling functions.

In addition to the inverse gravimetry problem, splines have also been used to model

seismic waves on B3. The travel-time of earthquake waves are measured at various

seismic stations around the globe, and seismic tomography analyzes the travel-times

to determine the velocity field inside the Earth. The velocity field helps to infer the

interior structure of the Earth, since wave propagation speed depends on temperature,

density, mineral structure and composition [33]. Two different spline techniques are

used to approximate the velocity field inside the Earth. The first approach uses

harmonic spherical splines, based on a reproducing kernel Hilbert space mentioned

in the previous section [1]. The second approach uses spherical B-splines for lateral

parameterization, and cubic B-splines for radial parameterization [4, 34].
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Spline basis functions with local support can avoid some of the performance issues

with spherical harmonics. There are spline basis transforms with linear computational

complexity, and the resulting representations are more compact than those of spherical

harmonics [36]. However, the smooth nature of spline basis functions makes it less

efficient at representing high-frequency signals.

1.3.4 Wavelets

Our objective is to develop a basis for efficiently representing all-frequency signals on

B3. In particular, we want fast transform algorithms and compact representations.

Techniques based on ridgelets, spherical harmonics or splines are unsuitable due to

the drawbacks discussed in the previous sections. Instead, we will extend an existing

discrete wavelet basis called SOHO (cf. [48]) which is known to be a suitable basis for

representing all-frequency signals defined over the sphere S2 [47]. SOHO has many

desirable theoretical properties, such as orthonormality and symmetry, which will

be discussed in Chapter 3. Moreover, there are linear-time transform algorithms for

SOHO, and an approximation strategy that is optimal in the ℓ2 norm. In a later

chapter, we will demonstrate a method to generalize SOHO into a basis for L2(B3)

while maintaining its useful properties.

1.4 Organization

The remainder of the thesis is organized as follows. Chapter 2 provides the mathe-

matical background, such as definitions and theorems that are used throughout the

thesis. In Chapter 3, we present the SOHO wavelet basis for L2(S2). These concepts
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are generalized in Chapter 4, to yield a new wavelet basis for L2(B3). The perfor-

mance of 3D SOHO has been experimentally evaluated, and the methodology, results

and interpretations are presented in Chapter 5. Finally, we discuss possibilities for

future work in Chapter 6, and conclude the thesis in Chapter 7.



Chapter 2

Background

In this chapter we will establish the terminology and the notation for the remainder

of the thesis. The reader can quickly browse through this chapter on the first reading,

and refer back to this chapter when necessary.

2.1 Geometric Figures

2.1.1 Spherical Shells

A spherical shell is the volume between two concentric spheres of differing radii. Let

shell S be the volume enclosed by concentric spheres S1 and S2, with radii r1 and r2

respectively, such that r1 < r2. Then the thickness t of S is defined as t = r2 − r1,

and the radius r of S is r = r1 + t
2
. The sphere S1 is called the minimal bounding

sphere of S, while S2 is the maximal bounding sphere of S.

Let shell S be the volume enclosed by concentric spheres S1 and S2, with radii r1 and

r2 respectively, such that r1 < r2. Let S3 be the sphere that divides shell S into two

17
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shells with equal volumes. Then the radius r3 of sphere S3 is

r3 =
3


r3
1 + r3

2

2
. (2.1)

Equation 2.1 can be derived as follows. Let Sa and Sb be the shells obtained by

dividing S into two shells with equal volumes. Without loss of generality, suppose the

minimal and maximal bounding spheres of Sa has a radius of r1 and r3 respectively.

Then the minimal and maximal bounding spheres of Sb has a radius of r3 and r2

respectively, and we have

4

3
π(r3

3 − r3
1) =

4

3
π(r3

2 − r3
3)

⇒ r3 =
3


r3
1 + r3

2

2
.

2.1.2 Spherical Triangles

A great circle is the intersection of a sphere with a plane that passes through the

center of the sphere. Consequently, an arc of a great circle is called a great arc. A

spherical triangle is formed on the surface of a sphere, by three great arcs intersecting

pairwise at three vertices (Figure 2.1). The angle at a vertex is measured as the angle

between the planes containing the incident great arcs.

Theorem 2.1. The area α of a spherical triangle ABC on a sphere of radius r is

α = r2(∠A+ ∠B + ∠C − π) = r2E, (2.2)

where E is called the spherical excess of spherical triangle ABC.

Proof. See [28].
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Figure 2.1: A spherical triangle formed by the great arcs a, b and c.

It is a well-known fact that the internal angles of a planar triangle always sum up to π

radians. The same is not true for non-Euclidean geometries. Intuitively, the spherical

excess represents the angular difference between a spherical triangle and a planar

triangle with the same vertices. Notice that the spherical excess E is independent of

the radius r in Equation 2.2, since the internal angles of ABC are determined by the

planes of its great arcs. For example, consider the internal angle ∠A between arcs b

and c in Figure 2.1. It is equal to the angle between the planes that contain arcs b

and c. Therefore, ∠A is independent of the radius of the sphere.

2.1.3 Spherical Frusta

A spherical frustum is the region between two spherical triangles on a shell. More

precisely, suppose F is a spherical frustum formed by spherical triangles A1B1C1 and

A2B2C2 on the minimal and maximal bounding spheres of shell S respectively. Let
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{A1, A2, O}, {B1, B2, O}, {C1, C2, O} be sets of collinear points, where O is the center

of S. Then A1B1C1 and A2B2C2 have the same spherical excess, and are located in

the same hemisphere of S. Furthermore, F is the volume enclosed by edges (A1, A2),

(B1, B2), (C1, C2), and spherical triangles A1B1C1 and A2B2C2.

Theorem 2.2. Let F be a spherical frustum formed by spherical triangles A1B1C1

and A2B2C2, on the minimal and maximal bounding spheres S1 and S2 of shell S

respectively. Then the volume α of F is

α =
1

3
(r3

2 − r3
1)E, (2.3)

where r1 is the radius of S1, r2 is the radius of S2 and E is the spherical excess of

A1B1C1 and A2B2C2.

Proof. The volume α of F can be found by integrating Equation 2.2 from r1 to r2

since the spherical excess E is independent of the radius:

α =

 r2

r1

r2Edr

=
1

3
(r3

2 − r3
1)E.

2.1.4 Spherical Tetrahedra

A spherical tetrahedron is a pyramid with a spherical triangle base. Moreover, suppose

S is a spherical tetrahedron defined by spherical triangle ABC on the surface of a

ball centered at O. Then S is the volume enclosed by edges (A,O), (B,O), (C,O)

and spherical triangle ABC. We will often use the term spherical tetrahedron when

referring to a set of disjoint spherical frusta whose union form a spherical tetrahedron.
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2.2 Abstract Algebra

2.2.1 Hilbert Spaces

Definition 2.1. A Banach space X is a complete normed vector space. In other

words, a Banach space is a vector space over the field F of real or complex numbers,

with a norm ∥·∥ such that every Cauchy sequence (with respect to the metric d(x, y) =

∥x− y∥) in X has a limit in X.

Definition 2.2. Let X be a Banach space over the field F of real or complex numbers.

Then the dual space X̃ of X is the Banach space of continuous linear maps X → F.

Dual entities will be denoted with a tilde accent in the remainder of the thesis.

Definition 2.3. A Hilbert space H over field F is a Banach space with an inner

product ⟨·, ·⟩ : H ×H → F. The inner product induces the norm ∥ · ∥ = ⟨·, ·⟩1/2.

2.2.2 Lebesgue Spaces

Definition 2.4. Let Σ be a σ-algebra over the set X. Then a measure µ : Σ →

[−∞,∞] is a function that satisfies the following properties:

1. µ(e) ≥ 0 for all e ∈ Σ;

2. µ(∅) = 0;
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3. If {ei}i∈I is a countable collection of pairwise disjoint sets in Σ, then

µ


i∈I

ei


=

i∈I

µ (ei) .

The triple (X,Σ, µ) is called a measure space.

Definition 2.5. [49] The Lebesgue space Lp defined over the measure space (X,Σ, µ)

is the Banach space of equivalence classes of measurable functions f : X → R on

(X,Σ, µ) for which the Lp-norm

∥f∥p =


X

| f |p dµ

1/p

<∞,

where 1 ≤ p <∞.

Definition 2.6. [71] The Lebesgue sequence space ℓp is the space of all infinite se-

quences {fi}∞i=1 such that the ℓp-norm

∥f∥p =


∞
i=1

| fi |p
1/p

<∞,

where 1 ≤ p <∞.

In this thesis we will mainly focus on the space L2 of functions with finite energy.

Therefore, the notation ∥ · ∥ refers to the L2-norm unless stated otherwise.
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2.2.3 Bases

Definition 2.7. The Kronecker delta δij is defined as

δi,i′ =

 1 if i = i′

0 otherwise.

Definition 2.8. The elements of a sequence {fi}m
i=1 in a Hilbert space are

orthogonal if and only if

⟨fi, fi′⟩ = δi,i′ , ∀i, i′.

Definition 2.9. Two sequences {fi}m
i=1 and {f̃i}m

i=1 in a Hilbert space are

biorthogonal if

⟨fi, f̃i′⟩ = δi,i′ , ∀i, i′.

Definition 2.10. The sequence {ei}m
i=1 is a basis for a Hilbert space H if for each

f ∈ H, there exist unique scalar coefficients {ci}m
i=1 such that

f =
m

i=1

ci ei.

Definition 2.11. [14] A basis {ei}m
i=1 for a Hilbert space H is an unconditional basis

for H if every permutation σ of {eσ(i)}m
i=1 is a basis of H.

Definition 2.12. A basis {ei}m
i=1 for a Hilbert space H is an orthogonal basis for H

if {ei}m
i=1 is an unconditional basis of H and ⟨ei, ei′⟩ = ci,i′ δi,i′ for all i and i′, where

ci,i′ ∈ R are constants.
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Definition 2.13. An orthogonal basis {ei}m
i=1 for a Hilbert space H is an orthonormal

basis for H if ⟨ei, ei′⟩ = δi,i′ for all i and i′.

Every orthogonal basis can be normalized to obtain an orthonormal basis. In the

following, we will use the terms orthogonal and orthonormal interchangeably unless

stated otherwise.

2.2.4 Riesz Bases

Definition 2.14. [98] A sequence of functions {fi}m
i=1 is a Riesz basis for a Hilbert

space H if and only if it is an unconditional basis for H and

0 < inf
i
∥fi∥ ≤ sup

i
∥fi∥ <∞. (2.4)

Equation 2.4 expresses the fact that a Riesz basis is the image of an orthonormal

basis under a bounded invertible operator [98]. It follows from Definitions 2.13 and

2.14 that every orthonormal basis is a Riesz basis.

Theorem 2.3. If {fi}m
i=1 is a Riesz basis for a Hilbert space H, then there exists a

unique sequence {f̃i}m
i=1 such that

f =
m

i=1

⟨f, f̃i⟩fi =
m

i=1

ci fi (2.5)

for all f ∈ H. The sequence {f̃i}m
i=1 is the dual Riesz basis of {fi}m

i=1, and Equation

2.5 converges unconditionally for all f ∈ H.
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Corollary 2.4. The sequences {fi}m
i=1 and {f̃i}m

i=1 are biorthogonal.

Corollary 2.5. The dual of {f̃i}m
i=1 is {fi}m

i=1.

Corollary 2.6. The dual of an orthonormal basis {fi}m
i=1 is itself.

A proof can be found in the book by Christensen [14]. The sequences {fi}m
i=1 and

{f̃i}m
i=1 are called the primary basis and dual basis of H respectively. Given a Riesz

basis and its dual, we can obtain the basis function coefficients {ci}m
i=1 for any function

f ∈ H by utilizing Theorem 2.3.

2.3 Second Generation Wavelets

2.3.1 Trees and Forests

Definition 2.15. [30] A forest is denoted by a quintuple (F , g, p, C,<), where F is

a countable set of nodes, g : F → Z is a generation function, p : F → {F , ∅} is a

parent function, C : F → p(F) is a children function, and < is a partial ordering on

F , such that all of the following properties hold for all nodes △,▽ ∈ F :

1. C(△) = {▽ ∈ F | p(▽) = △};

2. 0 ≤ #C(△) <∞ for each △ ∈ F ;

3. If C(△) = ∅ then △ is a leaf node;

4. If ▽ ∈ C(△), then g(▽) = 1 + g(△);
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5. The ordering < linearly orders C(△) for each △ ∈ F ;

6. pn(△) =

 △ if n = 0;

p(pn−1(△)) if n ∈ N∗;

7. If g(△) < g(▽) and pn(△) = pm(▽) for some n,m ∈ N0, then △ < ▽;

8. #p(△) ∈ {0, 1} for all △ ∈ F ;

9. If p(△) = ∅ then △ is a root node.

The given partial ordering extends to a linear ordering of the whole forest when each

Fj of F is ordered linearly, where

Fj = {△ ∈ F | g(△) = j}.

With the linear ordering we can index the elements of F with indices j ∈ J and

k ∈ K(j), where J can be identified with the generation function, and K(j) is defined

by the linear ordering of Fj. A subset T ⊆ F is a tree if for any △,▽ ∈ T there are

n,m ∈ N0 such that pn(△) = pm(▽). We will use trees and forests as hierarchical

index sets.

2.3.2 Multiresolution Analysis

Definition 2.16. [73] A multiresolution analysis M = {Vj ⊂ L2 | j ∈ J ⊂ Z} is a

sequence of closed subspaces Vj ⊂ L2 on different scales j ∈ J , such that

1. Vj ⊂ Vj+1;

2.


j∈J Vj is dense in L2;

3. For each j ∈ J , a Riesz basis of Vj is given by scaling functions {ϕj,k | k ∈ K(j)}.
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The set K(j) is a general index set defined over the scaling functions on level j. Unlike

for first generation wavelets, the scaling functions of a multiresolution analysis do not

have to be translates and dilates of a mother wavelet function. Although in practice,

the scaling functions of a multiresolution analysis usually have similar or identical

structure.

Every multiresolution analysis M has a dual multiresolution analysis M̃ = {Ṽj ⊂

L2 | j ∈ J ⊂ Z}, where M̃ is a sequence of dual spaces Ṽj spanned by dual scaling

functions ϕ̃j,k. The dual scaling basis functions are biorthogonal to the primary

scaling basis functions on the same level,

⟨ϕj,k, ϕ̃j,k′⟩ = δk,k′ , for k, k′ ∈ K(j). (2.6)

It follows from Theorem 2.3 that a function f ∈ Vj′ , for some fixed j′ ∈ J , can be

expressed as:

f =


k∈K(j′)

⟨f, ϕ̃j′,k⟩ ϕj′,k =


k∈K(j′)

λj′,k ϕj′,k,

where the λj′,k are scaling basis function coefficients.

2.3.3 Partition

Definition 2.17. [85] Let Σ be a σ-algebra over X ⊆ Rn. A set of measurable subsets

S = {Sj,k ∈ Σ | j ∈ J , k ∈ K(j)} is a partition of X if and only if:

1. ∀j ∈ J : clos


k∈K(j) Sj,k = X and the union is disjoint;

2. K(j) ⊂ K(j + 1);

3. Sj+1,k ⊂ Sj,k;
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4. For a fixed k′ ∈ K(j′),


j>j′ Sj,k′ is a set containing one point xk′ ∈ X;

5. Sj,k =


l∈C(Sj,k) Sj+1,l.

A partition is a set of nodes Sj,k that forms a forest.

2.3.4 Scaling Basis Functions

It follows from the definition of a multiresolution analysis that the scaling basis func-

tions satisfy a refinement relationship. More specifically, every scaling function ϕj,k

can be written as a linear combination of the scaling functions ϕj+1,l at the next finer

level:

ϕj,k =


l∈K(j+1)

hj,k,l ϕj+1,l. (2.7)

The hj,k,l are known as the scaling basis function filter coefficients. Similarly, the dual

scaling functions ϕ̃j,k satisfy a refinement relationship with the dual scaling function

filter coefficients h̃j,k,l.

In the following, it is assumed that the primary and dual scaling basis function filter

coefficients are finite and uniformly bounded. It then follows that the index sets

L(j, k) = {l ∈ K(j + 1) | hj,k,l ̸= 0} and K(j, l) = {k ∈ K(j) | hj,k,l ̸= 0} are finite for

all j ∈ J and k ∈ K(j). Analogous index sets L̃(j, k) and K̃(j, l) exist for the dual

scaling functions. Unless stated otherwise, l is assumed to run over L(j, k) or L̃(j, k).

Likewise, k is assumed to run over K(j, l) or K̃(j, l).

Scaling basis functions can be constructed by using the cascade algorithm on a filter

sequence hj,k,l and a partition S [85]. First, define a Kronecker sequence {λj′,k =

δk,k′ | k ∈ K(j′)} for some fixed and arbitrary j′ ∈ J and k′ ∈ K(j′). Then generate



Chapter 2. Background 29

sequences {λj,k | k ∈ K(j)} for j > j′ by recursively applying the equation:

λj+1,l =


k∈K(j,l)

hj,k,l λj,k.

Next, define the following function:

f
(j)
j′,k′ =


k∈K(j)

λj,k χSj,k
for j ≥ j′,

where χSj,k
is the characteristic function of Sj,k ∈ S. For j > j′, the function f

(j)
j′,k′

satisfies:

f
(j)
j′,k′ =


l

hj′,k′,l f
(j)
j′+1,l. (2.8)

If limj→∞ f
(j)
j′,k′ converges to a function in L2, then it is the scaling function ϕj′,k′ .

Furthermore, if the cascade algorithm converges for all j′ ∈ J and k′ ∈ K(j′), then

the resulting set of scaling functions satisfy the refinement relationship in Equation

2.7. This can be verified by letting j approach infinity in Equation 2.8. The cascade

algorithm can also be used to construct the dual scaling functions from a dual filter

h̃j,k,l and the same partition S.

2.3.5 Wavelet Basis Functions

The wavelet basis functions ψj,k encode the differences between levels j and j + 1. In

other words, the set of wavelet basis functions {ψj,m | j ∈ J ,m ∈ M(j)} spans the

difference space Wj with Vj ⊕Wj = Vj+1. The general index set M(j) ⊂ K(j + 1) is

defined over the wavelet basis functions at level j. Since Wj is a subspace of Vj+1, it

follows that every wavelet basis function ψj,m can be written as a linear combination

of the scaling functions at the next finer level:

ψj,m =


l∈K(j+1)

gj,m,l ϕj+1,l, (2.9)
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where gj,m,l are the wavelet basis function filter coefficients. Similarly, the dual wavelet

basis functions ψ̃j,m can be expressed in terms of the dual scaling functions ϕ̃j+1,l and

dual wavelet basis function filter coefficients g̃j,m,l. In addition, the dual wavelet basis

functions span the difference space W̃j such that Ṽj ⊕ W̃j = Ṽj+1. The primary and

dual wavelet basis functions are biorthogonal:

⟨ψj,m, ψ̃j′,m′⟩ = δj,j′δm,m′ for m ∈M(j),m′ ∈M(j′).

In the following, it is assumed that the primary and dual wavelet basis function filter

coefficients are finite and uniformly bounded. Hence the index sets L(j,m) = {l ∈

M(j + 1) | gj,m,l ̸= 0} and M(j, l) = {m ∈ M(j) | gj,m,l ̸= 0} are finite for all j ∈ J

and k ∈ M(j). Analogous index sets L̃(j,m) and M̃(j, l) exist for the dual wavelet

basis functions. Unless stated otherwise, l is assumed to run over L(j,m) or L̃(j,m).

Likewise, m is assumed to run over M(j, l) or M̃(j, l).

2.3.6 Wavelet Bases

Definition 2.18. [47] A wavelet basis Ψ is a sequence

Ψ = {ϕ0,0, ψj,m | j ∈ J ,m ∈M(j)},

where the basis functions provide perfect reconstruction.

The primary basis functions of Ψ are denoted ψ̂j,m ∈ {ϕ0,0, ψj,m} with ψ̂−1,0 ≡ ϕ0,0,

while the dual basis functions are denoted ψ̆j,m ∈ {ϕ̃0,0, ψ̃j,m} with ψ̆−1,0 ≡ ϕ̃0,0.

A function f ∈ L2 can be represented in a wavelet basis as

f =

n∈N

⟨f, ψ̆n⟩ ψ̂n =

n∈N

γn ψ̂n,
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where γn are the wavelet basis function coefficients, and N is a general index set

defined over all basis functions of Ψ. Note that Ψ forms a forest and N is a linear

ordering on the nodes.

If the primary and dual basis functions coincide, such that ψ̂j,m = ψ̆j,m for all j and

k, then Ψ is an orthogonal wavelet basis [73]. Therefore, orthogonal wavelet bases

are a subset of biorthogonal wavelet bases. It follows from Definition 2.18 that all

orthogonal wavelet bases provide perfect reconstruction.

Theorem 2.7. A wavelet basis Ψ = {ϕ0,0, ψj,m | j ∈ J ,m ∈ M(j)} is orthogonal if

and only if the following conditions hold for all j ∈ J and m ∈M(j):

1. ⟨ϕj,k, ϕj,k′⟩ =


l hj,k,lhj,k′,l = δk,k′ ;

2. ⟨ψj,m, ψj′,m′⟩ =


l gj,m,lgj′,m′,l = δj,j′δm,m′ ;

3. ⟨ϕj,k, ψj′,m⟩ =


l hj,k,lgj,m,l = 0.

Proof. See [48].

2.3.7 Perfect Reconstruction

Theorem 2.8. A wavelet basis Ψ with primary filter coefficients gj,m,l, hj,k,l and dual

filter coefficients g̃j,m,l, h̃j,k,l provides perfect reconstruction if Ψ is orthogonal and
k hj,k,l h̃j,k,l +


m gj,m,l g̃j,m,l = 1 for all j ∈ J , k ∈ K(j) and m ∈M(j).

Proof. See [85].
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2.3.8 Fast Wavelet Transform

The fast wavelet transform is a pair of algorithms for transforming between a signal

and its representation in a wavelet basis. The forward transform, or analysis, projects

a signal S into a wavelet basis Ψ by the recursive application of:

λj,k =


l

h̃j,k,l λj+1,l and γj,m =


l

g̃j,m,l λj+1,l, (2.10)

where S = {λn,k | k ∈ K(n)} is a set of scaling basis function coefficients at the

finest level n [85]. Given S, the forward transform returns {λn′,k | k ∈ K(n′)} and

{γj,m | n′ ≤ j < n,m ∈M(j)}.

Correspondingly, the inverse transform, or synthesis, reconstructs S by the recursive

application of:

λj+1,l =


k

hj,k,l λj,k +

m

gj,m,l γj,m. (2.11)

The fast wavelet transform is a linear time algorithm if the primary and dual filters

are finite. That is one of the main reasons why the index sets J , K and M are

required to be uniformly bounded.

2.3.9 Normalization Factors

The following theorem illustrates the need for signal normalization when performing

the fast wavelet transform. In particular, the input signal must be normalized in

order to obtain the scaling function coefficients at the finest level. Subsequently, the

original signal can be recovered by performing the inverse of normalization on the

resulting coefficients.
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Theorem 2.9. Let S =


k∈K(n) sn,k χn,k be a discrete signal defined over the domains

of a partition at level n, and let Ψ be a Haar-like wavelet basis defined over the same

partition with the associated scaling functions ϕj,k = ηj,k χj,k, with j ∈ J and

k ∈ K(j), where ηj,k is a normalization factor. Then the scaling function coefficients

of S in Ψ at level n are λn,k =
sn,k

ηn,k
.

Proof. [47] By the definition of multiresolution analysis, the sequence {ϕn,k}k∈K(n) is

a basis of the space over which S is defined. It follows that S can be written as:

S =


k∈K(j)

ηn,k

ηn,k

sn,k χn,k

=


k∈K(j)

sn,k

ηn,k

ϕn,k

⇒ λn,k =
sn,k

ηn,k

.

2.3.10 Signal Approximation

Orthogonal bases allow for log-linear time compression that is optimal in the ℓ2 norm.

Thus, orthogonal wavelet bases are potentially well-suited for applications that re-

quire efficient signal storage or transmission. The following theorem provides an

approximation strategy called the k-largest approximation.

Theorem 2.10. Let S =


i∈N ci fi be a signal in an orthogonal basis Φ for a Hilbert

Space X. Let Π = N \N̄ , where N̄ ⊂ N is an index set of size #N̄ = k over Φ. Then

a k-term approximation S̄ =


i∈N̄ ci fi of S is optimal in the ℓ2 norm if {ci | i ∈ N̄}

is the set of k largest coefficients in {ci | i ∈ N}.
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Proof. The ℓ2 approximation error of S̄ with respect to S is

∥S − S̄∥2 =


X

|S − S̄|2dx
1/2


∥S − S̄∥2

2
=


X


i∈Π

ci fi

2

dx

=


X


i1∈Π

γi1 fi1


i2∈Π

γi2 fi2


dx

=


X


i1∈Π


i2∈Π

γi1 γi2 fi1fi2


dx

=

i∈Π

c2i ⟨fi, fi⟩

=

i∈Π

c2i . (2.12)

The approximation S̄ is optimal when ∥S − S̄∥2 is minimal. Since Π = N \ N̄ , it

follows from Equation 2.12 that ∥S − S̄∥2 is minimal when {ci | i ∈ N̄} is the set of

k largest coefficients in {ci | i ∈ N}.

Corollary 2.11. The approximation S̄ can be obtained from S in O(n log n), where

n is the number of coefficients in Γ = {ci | i ∈ N}.

Proof. The set Γ̄ = {ci | i ∈ N̄} can be obtained by sorting Γ in descending order to

find the kth largest coefficient c̄i ∈ Γ̄. Then replace any coefficients in Γ whose value

is less than c̄i with zero to yield Γ̄. The worst-case running time for merge sort is

O(n log n), and the time complexity of the other steps is at most O(n).
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2D SOHO Wavelets

A novel partitioning scheme enables Lessig [47] to develop the 2D SOHO wavelet

basis. It is the first spherical Haar wavelet basis for L2 ≡ L2(S2, dω) that is both

orthogonal and symmetric. The standard area measure dω on S2 is defined as dω ≡

dω(θ, φ) = sin θdθdφ, where θ ∈ [0, π] and φ ∈ [0, 2π] are the spherical coordinates of

a point on the unit sphere. Only the two-dimensional construction of SOHO will be

discussed in this chapter. We will hence omit 2D whenever no confusion could arise.

3.1 Partition

The SOHO wavelet basis is defined over a partition P = {Tj,k | j ∈ J , k ∈ K(j)},

where Tj,k are spherical triangles called domains. The domains T0,k at the coarsest

level are obtained by projecting a platonic solid with triangular faces, such as a

tetrahedron, octahedron or icosahedron, onto the unit sphere. The domains T k
1,l at

the next finer level are formed by subdividing each T0,k into four child domains.

Generally, the domains T k
j+1,l at level j + 1 are formed by subdividing the domains

35
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Figure 3.1: Subdivision of a spherical triangle.

Tj,k at level j into four child domains. The resulting partition forms a forest, with

each domain at the coarsest level being the root node of a tree.

Figure 3.1 illustrates the subdivision of domain Tj,k. The child domains T k
j+1,l are

formed by inserting one new vertex on each great arc of Tj,k. In addition, the new

vertices are positioned such that the three outer child domains T k
j+1,1, T

k
j+1,2 and

T k
j+1,3 have equal areas. The area isometry restriction is necessary in order to obtain

a wavelet basis that is both orthogonal and symmetric.

Definition 3.1. The characteristic function τj,k ≡ τj,k(ω) of a domain Tj,k is

τj,k(ω) =

 1 if ω ∈ Tj,k

0 otherwise.
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Definition 3.2. The surface area αj,k of a domain Tj,k is

αj,k(ω) =


S2

τj,k(ω) dω =


Tj,k

dω.

In general, the equal area constraint cannot be satisfied by simply bisecting each great

arc. Instead, we will let one vertex be the geodesic bisector of an arc, and position the

remaining two vertices such that αk
j+1,1 = αk

j+1,2 = αk
j+1,3. Without loss of generality,

let vk
j+1,1 be the geodesic bisector of arc a (Figure 3.1). Then the positions of vk

j+1,2

and vk
j+1,3 can be determined by solving the system of equations for β1 and β1 [47]:

cot


1

2
E


= cot(C) +

cot(1
2
β1) cot(1

2
γ)

sin(C)

cot


1

2
E


= cot(B) +

cot(1
2
β2) cot(1

2
γ)

sin(B)
(3.1)

cot


1

2
E


= cot(A) +

cot(1
2
b− 1

2
β1) cot(1

2
c− 1

2
β2)

sin(A)
.

The resulting formulae have been omitted due to their length. It can be shown that

exactly one solution exists if the angles A, B and C of the parent domain are labeled

consistently (cf. [47]).

Definition 3.3. A spherical Haar wavelet basis is symmetric if the basis function

coefficients associated with a domain Tj,k are invariant to the labeling of the child

domains T k
j+1,1, T

k
j+1,2 and T k

j+1,3, for an arbitrary but fixed j ∈ J and k ∈ K(j).

There are six possible ways to reference the three outer child domains with labels

T k
j+1,1, T

k
j+1,2 and T k

j+1,3. However, a symmetric wavelet basis is invariant under

different labels [67]. If a wavelet basis function coefficient γ is associated with a
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particular domain Tj,k, then γ will remain constant even if the child domains of Tj,k

are labeled differently. In contrast, the wavelet transform would yield different results

under different labels if the wavelet basis is not symmetric. Therefore, symmetry is

a desirable property in most applications. Another definition of symmetry in terms

of linear phase filters exists in the literature (cf. [16]). That notion should not be

confused with Definition 3.3 because they are unrelated.

3.2 Scaling Basis Functions

The SOHO scaling basis functions ϕj,k are constant over their support Tj,k so that

ϕj,k = ηj,k τj,k,

where ηj,k is a normalization factor chosen to satisfy Equation 2.6 [47]. It follows from

the SOHO partition scheme that domains Tj,k and Tj,k′ at level j ∈ J are disjoint if

k ̸= k′, and so ⟨ϕj,k, ϕj,k′⟩ = 0. Thus Equation 2.6 can be satisfied by ensuring that

⟨ϕj,k, ϕj,k⟩ = 1. By the definition of the inner product on S2 we have:

1 =


S2

ϕj,k ϕj,k dω

=


Tj,k

(ηj,kτj,k) (ηj,kτj,k) dω

= η2
j,k


Tj,k

dω

= η2
j,k αj,k

⇒ ηj,k =
1

√
αj,k

.

Therefore, the SOHO scaling basis function ϕj,k defined over a domain Tj,k is

ϕj,k =
1

√
αj,k

τj,k. (3.2)
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The scaling filter coefficients associated with ϕj,k must satisfy the refinement rela-

tionship in Equation 2.7:

ϕj,k =


l∈L(j,k)

hj,k,l ϕj+1,l

⇒ τj,k√
αj,k

=


l∈L(j,k)

hj,k,l

τ k
j+1,l
αk

j+1,l

.

It follows from the partition that the union of the τ k
j+1,l is τj,k. Therefore, the scaling

filter coefficient hj,k,l associated with ϕj,k is

hj,k,l =


αk

j+1,l

√
αj,k

. (3.3)

3.3 Wavelet Basis Functions

The SOHO wavelet basis functions ψi
j,k associated with a domain Tj,k are

ψi
j,k = ρj,k


l∈K(j+1)

gi
j,k,l ϕj+1,l for i ∈ {0, 1, 2}, (3.4)

where

ρj,k =
1√

9a2 − 6a+ 1
,

and the wavelet filter coefficients gi
j,k,l are defined as

αk
j+1,1
αk

j+1,0

= g0
j,k,0 = g1

j,k,0 = g2
j,k,0;

−2a+ 1 = g0
j,k,1 = g1

j,k,2 = g2
j,k,3; (3.5)

a = g0
j,k,3 = g0

j,k,2 = g1
j,k,1 = g1

j,k,3 = g2
j,k,1 = g2

j,k,2,
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and

a =
αk

j+1,0 ±


(αk
j+1,0)

2 + 3αk
j+1,0α

k
j+1,1

3αk
j+1,0

. (3.6)

In the following, we will briefly describe the construction of the wavelet basis func-

tions. The reader should refer to a thesis by Lessig for a complete derivation (cf.

[47]).

The SOHO wavelet basis functions are derived from the wavelet refinement relation-

ship of Equation 2.9. Namely, the wavelet basis functions ψj,k can be written as a

linear combination of the scaling basis functions ϕj+1,l and the wavelet filter coeffi-

cients gi
j,k,l. The scaling basis functions can be obtained using Equation 3.2, so the

remaining task is to determine the wavelet filter coefficients.

In particular, we want to obtain filter coefficients for a wavelet basis that is both

orthogonal and symmetric. Orthogonality can be achieved by deriving filters that

satisfy the conditions in Theorem 2.7. Likewise, symmetry can be attained by im-

posing the equal area constraint on the three outer child domains T k
j+1,1, T

k
j+1,2 and

T k
j+1,3. Lessig devised a linear system based on these restrictions, and the solution to

the system corresponds to the wavelet filter coefficients gi
j,k,l given in Equation 3.5.

Note that there are two solutions for Equation 3.6, and therefore two sets of wavelet

basis functions can be obtained.



Chapter 4

3D SOHO Wavelets

In the previous chapter, we introduced a wavelet basis over S2 that is both orthogonal

and symmetric. In the following we will generalize the 2D SOHO wavelet basis to

obtain a three-dimensional wavelet basis. In particular, the 3D SOHO wavelet basis

spans the space L2 ≡ L2(B3, dω) of functions with finite energy over the ball. The

standard volume measure dω on B3 is defined as dω ≡ dω(r, θ, φ) = sin θdrdθdφ,

where r ∈ [0, 1], θ ∈ [0, π] and φ ∈ [0, 2π] are the spherical coordinates of a point on

the unit ball. The following sections will focus on the three-dimensional construction

of SOHO. Therefore, we will only use the word 3D when the context is ambiguous.

4.1 Partition

The SOHO wavelet basis is defined over a partition P = {Fj,k | j ∈ J , k ∈ K(j)},

where Fj,k are spherical frusta called domains. A partition P is generated by recursive

subdivision on the unit ball B3 = {x ∈ R3 | ∥x∥ ≤ 1} centered at point O. The

domains F0,k at the coarsest level are obtained by a two-step process. First, we

generate spherical triangles on the surface S of B3 by projecting a platonic solid with

41
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(a) Radial subdivision. (b) Spherical subdivision.

Figure 4.1: Subdivision of spherical frustum Fj,k.

triangular faces onto S. Next, we insert edges (O,A), (O,B) and (O,C) for each

spherical triangle ABC on S. The end result is a set of disjoint spherical tetrahedra

F0,k, whose union is the unit ball B3. Geometrically, B3 can be regarded as a shell

whose minimal bounding sphere has a radius of zero. Nevertheless, the volume of

shell B3 and the volume of domains F0,k (Equation 2.3) remain well-defined.

The domains F k
1,l at the next finer level are formed by subdividing each domain F0,k

into eight child domains. In general, the domains F k
j+1,l on level j + 1 are formed

by subdividing the domains Fj,k on level j into eight child domains. The resulting

partition forms a forest of full octrees, with each domain on the coarsest level being

the root node of a tree.

Figure 4.1 illustrates the subdivision of domain Fj,k. The eight child domains F k
j+1,l

are formed by dividing Fj,k radially into two spherical frusta of equal volumes (Figure

4.1a). In addition, Fj,k is spherically divided into four spherical frusta, such that
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the outer three frusta have equal volumes (Figure 4.1b). Consequently, there are two

child domains F k
j+1,0 and F k

j+1,4 at the center with equal volumes, along with six outer

child domains F k
j+1,1, F

k
j+1,2, F

k
j+1,3, F

k
j+1,5, F

k
j+1,6 and F k

j+1,7 with equal volumes.

Definition 4.1. The characteristic function τj,k ≡ τj,k(ω) of a domain Fj,k is

τj,k(ω) =

 1 if ω ∈ Fj,k

0 otherwise.

Definition 4.2. The volume αj,k of a domain Fj,k is

αj,k(ω) =


B3

τj,k(ω) dω =


Fj,k

dω.

The partition scheme requires that the six outer child domains have equal volumes.

Equation 2.1 provides a way to satisfy the equal volume constraint in the radial

direction. In general, the equal volume constraint cannot be satisfied in the spherical

direction by simply bisecting each great arc in Fj,k. However, the shell thickness is

uniform and thus the quantity r3
2 − r3

1 in Equation 2.3 is constant for all domains in

the same shell. Also, the spherical excess E of F k
j+1,l only depends on the spherical

triangle bases of F k
j+1,l. Therefore, the equal volume constraint can be satisfied if the

bases of the three outer child domains satisfy the equal area constraint.

Definition 4.3. A Haar wavelet basis for L2(B
3) is symmetric if the basis function

coefficients associated with a domain Fj,k are invariant to the labeling of the outer

child domains F k
j+1,1, F

k
j+1,2, F

k
j+1,3, F

k
j+1,5, F

k
j+1,6, F

k
j+1,7, for a fixed but arbitrary

labeling of the center child domains F k
j+1,0, F

k
j+1,4 and a fixed but arbitrary j ∈ J

and k ∈ K(j).
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There are 6! = 720 possible ways to reference the six outer child domains with labels

F k
j+1,1, F

k
j+1,2, F

k
j+1,3, F

k
j+1,5, F

k
j+1,6 and F k

j+1,7. A symmetric wavelet basis is invariant

under any one of the 720 possible labeling schemes. In contrast, the wavelet transform

may yield different results under different labels if the wavelet basis is not symmetric.

The center child with the larger thickness will be denoted by F k
j+1,0 for the remainder

of the thesis.

4.2 Scaling Basis Functions

The SOHO scaling basis functions ϕj,k are constant over their support Fj,k so that

ϕj,k = ηj,k τj,k,

where ηj,k is a normalization factor chosen to satisfy Equation 2.6. It follows from

the SOHO partition scheme that domains Fj,k and Fj,k′ at level j ∈ J are disjoint if

k ̸= k′, and so ⟨ϕj,k, ϕj,k′⟩ = 0. Thus Equation 2.6 can be satisfied by ensuring that

⟨ϕj,k, ϕj,k⟩ = 1. By the definition of the inner product on B3 we have:

1 =


B3

ϕj,k ϕj,k dω

=


Fj,k

(ηj,kτj,k) (ηj,kτj,k) dω

= η2
j,k


Fj,k

dω

= η2
j,k αj,k

⇒ ηj,k =
1

√
αj,k

.

Therefore, the SOHO scaling basis function ϕj,k defined over a domain Fj,k is

ϕj,k =
1

√
αj,k

τj,k. (4.1)
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The scaling filter coefficients associated with ϕj,k must satisfy the refinement rela-

tionship in Equation 2.7:

ϕj,k =


l∈L(j,k)

hj,k,l ϕj+1,l

⇒ τj,k√
αj,k

=


l∈L(j,k)

hj,k,l

τ k
j+1,l
αk

j+1,l

.

It follows from the partition that the union of the τ k
j+1,l is τj,k. Therefore, the scaling

filter coefficient hj,k,l associated with ϕj,k is

hj,k,l =


αk

j+1,l

√
αj,k

. (4.2)

4.3 Wavelet Basis Functions

In this section, we will derive the 3D SOHO wavelet basis functions. The two-step

derivation approach that we employ is very similar to the 2D construction developed

by Lessig (cf. [47]). Namely, a semi-orthogonal basis is developed in a first step. Then

the semi-orthogonal basis is transformed into an orthogonal and symmetric basis in

a second step.

For a Haar-like basis, the wavelet basis functions associated with a domain Fj,k are

exclusively defined over the eight child domains F k
j+1,l. If the wavelet basis functions

have a vanishing integral, then ψj,m can be derived by considering only Fj,k and its

child domains F k
j+1,l, for some fixed but arbitrary j ∈ J and k ∈ K(j).

To see why Fj,k and F k
j+1,l are sufficient, suppose ψj,m and ψj′,m′ are wavelet basis

functions with a vanishing integral. If ψj,m and ψj′,m′ are defined over two different
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domains on the same level j = j′, then their supports are disjoint, and hence they

are trivially orthogonal. Hence without loss of generality, let j < j′ and suppose ψj,m

and ψj′,m′ are associated with domains Fj,k and Fj′,k′ respectively. If Fj′,k′ is not a

descendent of Fj,k, then ψj,m and ψj′,m′ are orthogonal, since their supports are once

again disjoint. On the other hand if Fj′,k′ is a descendent of Fj,k, then ψj,m is constant

over the support of ψj′,m′ and thus ⟨ψj,k, ψj′,k′⟩ = 0. In every case, ψj,m only depends

on Fj,k and the child domains F k
j+1,l.

Therefore, we will only consider a fixed but arbitrary Fj,k and F k
j+1,l in the following

derivation of the wavelet basis functions. For the sake of simplicity, we will use the

abbreviated notations αp ≡ αj,k and αl ≡ αk
j,l to denote the volume of Fj,k and F k

j+1,l

respectively. Analogous notations will also be used for the characteristic functions.

It follows from Corollary 2.5 that the primary and dual filter coefficients of an or-

thonormal basis coincide, such that hj,k,l = h̃j,k,l and gj,m,l = g̃j,m,l for all j ∈ J and

m ∈ M(j). Therefore, the fast wavelet transforms given by Equations 2.10 and 2.11

can be stated in terms of the filter coefficients hj,k,l and gj,m,l.

The synthesis step for Fj,k takes the following form in matrix notation



λj+1,0

λj+1,1

...

λj+1,7


=



hj,k,0 g0
j,k,0 . . . g6

j,k,0

hj,k,1 g0
j,k,1 . . . g6

j,k,1

...
...

. . .
...

hj,k,7 g0
j,k,7 . . . g6

j,k,7





λj,k

γ0
j,k

...

γ6
j,k


, (4.3)

where gi
j,k,l denotes the lth wavelet filter coefficient associated with the ith wavelet

basis function ψi
j,k defined over Fj,k, and hj,k,l is the scaling filter coefficient defined
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over F k
j,l. The 8-by-8 matrix Sj,k on the right hand side of Equation 4.3 is called a

synthesis matrix. The vector x on the right hand side contains the basis function

coefficients associated with Fj,k. The vector b on the left hand side contains the

scaling basis function coefficients associated with F k
j,l.

Similarly, the analysis step for F k
j,l can be expressed as x = Aj,kb, where Aj,k is

called an analysis matrix. Perfect reconstruction requires that Aj,k = S−1
j,k , which is

equivalent to Aj,k = ST
j,k for an orthonormal basis.

In the first step, we will derive a semi-orthogonal basis where the basis functions

associated with Fj,k is required to satisfy

0 = ⟨ψi
j,k, ϕj,k⟩ for i ∈ {0, . . . , 6}. (4.4)

For a fixed but arbitrary i, Equation 4.4 can be expanded with the refinement rela-

tionship in Equation 2.9:

0 = ⟨ψi
j,k, ϕj,k⟩

=


B3

ψi
j,k ϕj,k dω

=


B3

 
l∈K(j+1)

g̃i
j,k,l ϕj+1,l

 ϕj,k dω

=


B3


g̃i

j,k,0

τ0√
α0

+ . . .+ g̃i
j,k,7

τ7√
α7


τp√
αp

dω

=
g̃i

j,k,0√
α0
√
αp


B3

τ0 τp dω + . . .+
g̃i

j,k,7√
α7
√
αp


B3

τ7 τp dω

= g̃i
j,k,0

√
α0√
αp

+ . . .+ g̃i
j,k,7

√
α7√
αp

=
1
√
αp


√
α0, . . . ,

√
α7


g̃i

j,k,0

...

g̃i
j,k,7

 . (4.5)
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Using the result in Equation 4.5, it is easy to verify that a solution to the linear

system in Equation 4.4 is

g̃i
j,k,l =


−
√

αi+1√
α0

if l = 0

1 if l = i+ 1

0 otherwise.

(4.6)

The wavelet filter coefficients g̃i
j,k,l in Equation 4.6 form a semi-orthogonal basis. In

the second step of the derivation, we will modify the filters to obtain a wavelet basis

that is orthogonal and symmetric.

We begin by considering the synthesis matrix Sj,k in Equation 4.3. The scaling filter

coefficients hj,k,l are obtained using Equation 4.2, so the remaining task is to determine

the wavelet filter coefficients gi
j,k,l. For this purpose, we let g0

j,k,l = g̃0
j,k,l and introduce

free variables a, b, c and d. Due to the volume isometry restriction, we have α0 = α4

and α1 = α2 = α3 = α5 = α6 = α7.

Then the synthesis matrix in Equation 4.3 can be restated as

Sj,k =



√
α0√
αp

−
√

α1√
α0

−
√

α1√
α0

−
√

α1√
α0

−c −
√

α1√
α0

−
√

α1√
α0

−
√

α1√
α0

√
α1√
αp

b a a a a a a
√

α1√
αp

a b a a a a a
√

α1√
αp

a a b a a a a
√

α0√
αp

a a a d a a a
√

α1√
αp

a a a a b a a
√

α1√
αp

a a a a a b a
√

α1√
αp

a a a a a a b



.
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The wavelet filter coefficients in Sj,k can be obtained by enforcing three conditions:

0 = ⟨ψi
j,k, ϕj,k⟩ for i ∈ {0, . . . , 6} (4.7a)

0 = ⟨ψi
j,k, ψ

i′

j,k⟩ for i, i′ ∈ {0, . . . , 6} and i ̸= i′ (4.7b)

0 =


B3

ψi
j,k dω for i ∈ {0, . . . , 6}. (4.7c)

Equation 4.7a maintains semi-orthogonality, while Equations 4.7b and 4.7c enforce

orthogonality and vanishing integral of the wavelet basis functions respectively. Sym-

metry is established implicitly by the equal volume restriction of the partition.

Equations 4.7a, 4.7b and 4.7c can be expanded using the elements in matrix Sj,k.

The result is a linear system of four unique equations

0 = 5a2 + 2ab+
α1

α0

0 = 5a2 + (b+ d) a+

√
α1√
α0

c

0 = −
√
α1 +

√
α1 b+ (5

√
α1 +

√
α0) a

0 = −
√
α0 c+ 6

√
α1 a+

√
α0 d.

Solving the linear system for a, b, c and d gives the wavelet filter coefficients gi
j,k,l.

Lastly, an orthonormal basis can be obtained by normalizing the wavelet basis func-



Chapter 4. 3D SOHO Wavelets 50

tions ψi
j,k with a normalization constant ρi

j,k so that

1 = ⟨ψi
j,k, ψ

i
j,k⟩

=


B3


l

ρi
j,k g

i
j,l ϕ

k
j+1,l


l′

ρi
j,k g

i
j,l′ ϕ

k
j+1,l′ dω

=


l


ρi

j,k

2 
gi

j,l

2 
B3


ϕk

j+1,l

2
dω

=

ρi

j,k

2
l


gi

j,l

2
⇒ ρi

j,k =
1
l


gi

j,l

2 .

Therefore, the SOHO wavelet basis functions ψi
j,k associated with a domain Fj,k are

ψi
j,k = ρi

j,k


l∈K(j+1)

gi
j,k,l ϕj+1,l for i ∈ {0, . . . , 6}, (4.8)

where

ρi
j,k =

 (c2 + 6a2 + d2)
−1/2

if i = 4

(∆2 + 6a2 + b2)
−1/2

otherwise,

and

gi
j,k,l =



−
√

α1√
α0

if l = 0 and i ̸= 4

−c if l = 0 and i = 4

b if l = i+ 1 and i ̸= 4

d if l = i+ 1 and i = 4

a otherwise,

(4.9)
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and

a =

√
α1


1±

√
1 + 5∆2 + 2∆


5
√
α1 + 2

√
α0

(4.10)

b = 1−


5 +
1

∆


a

c =
a

6
√
α0α1a+

√
α0

3a− α0
√
α1


√
α0α1 + α0

√
α1a

d =
a
√

α0
3a− α0

√
α1 − 6

√
α1

3


√
α0α1 + α0

√
α1a

∆ =


α1

α0

.

Figure 4.2: The seven wavelet basis functions defined over a domain on the coarsest

level. The top row shows the basis functions associated with parameter a obtained by

addition in Equation 4.10, while the bottom row shows the basis functions associated

with subtraction. Child domains are shown as spherical triangles. Red and blue

regions indicate positive and negative wavelet filter coefficients respectively.



Chapter 5

Experiments

5.1 Introduction

Orthogonality, symmetry and other theoretical properties of SOHO were presented

in the previous chapters. Whether or not such properties translate into good per-

formance in practice will be investigated in this chapter. We conducted a variety of

experiments to evaluate 3D SOHO, in terms of its ability to represent and to approx-

imate different types of signals. The objective of this chapter is to provide general

insights that are relevant to a wide range of applications.

We begin the next section by defining performance and how it is measured (Section

5.2.1). Next, the signals (Section 5.2.2) and bases (Section 5.2.3) that were selected

for experimentation are presented, along with the rationale behind each selection.

The methodology section concludes with a detailed account of the implementation

and experimental setup (Section 5.2.4). Results are presented in Section 5.3, followed

by an analysis and interpretation of the data (Section 5.4).
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5.2 Methods

5.2.1 Error Norms

The performance of 3D SOHO is quantitatively measured in terms of the ℓ1, ℓ2 and

ℓ∞ norms. We selected the ℓ2 norm because it is the standard measure for the

space L2(B3, dω). The ℓ2 norm is also commonly used in the literature, thereby

providing a basis for comparison. However, it has been argued that the ℓ1 norm

is a better quantitative measure for the perceived image quality than the ℓ2 norm

[22]. Furthermore, the ℓ∞ norm is a useful measure for applications with a maximum

error tolerance requirement. Therefore, we also employed the ℓ1 and ℓ∞ norms in our

experiments.

Resampling Error

Source signals can assume various spatial parameterizations and sampling rates.

Therefore, it is often necessary to resample a source signal prior to analysis, so that

the resampled signal is constant over the support of each domain on the finest level.

Resampling error is the difference between a source signal and a resampled signal,

and it can be estimated using the Monte Carlo method given by Definition 5.1.

Definition 5.1. The ℓp resampling error Ep of a resampled signal S̄ with respect to

a source signal S is

Ep =


B3

| S(x)− S̄(x) |p dx

1/p

≈ V

n

n
i=1

∥S(xi)− S̄(xi)∥p, (5.1)

where V is the volume of the unit ball, and n is the number of random samples.
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The concept of resampling error is not unique to 3D SOHO partitions. For instance,

a source signal can be resampled to obtain a volume of voxels. Then the resampling

error can be computed using Equation 5.1, and by replacing V with the overall volume

of the voxels.

Approximation Error

Approximation error is the difference between a resampled signal and an approx-

imated signal. Unlike resampling error, we can determine the exact approximation

error by comparing each domain in a resampled signal with the corresponding domain

in its approximation.

Definition 5.2. The ℓp approximation error Ep of an approximation S̄ with respect

to a resampled signal S is

Ep = ∥S − S̄∥p.

5.2.2 Signals

Four different types of source signals were used in the experiments. Volumetric data

sets were selected from the field of medical imaging, geoscience and computer graphics.

The aim is to evaluate SOHO on a variety of real-world signals. In this section, we

will describe each of the source signals in detail.

CBCT

Cone Beam Computed Tomography (CBCT) is an imaging technique utilizing x-rays.

An object is placed on the turntable between the x-ray source and the detector panel.
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The turntable rotates the object about a fixed vertical axis for one full revolution,

while a series of two-dimensional x-ray images are captured [13]. These x-ray images

are called projections, and together they form a projection set.

A process known as backprojection is used to reconstruct the 3D signal given a pro-

jection set. Intuitively, backprojection is similar to ray tracing except it is done in

reverse. The signal at point p̄ is determined by casting a ray r⃗ from the x-ray source

s̄ through p̄, until r⃗ intersects with the detector panel at some pixel q̄. Then the

signal at p̄ is the summation of pixels q̄, over all projections in the projection set. In

essence, the values at q̄ represent the attenuation of the x-ray as it travels through

the object along r⃗.

Projections are made while the object rotates on a turntable. Therefore pixel q̄ is

generally different for each projection, unless p̄ is on the axis of rotation. After a

single rotation, each point p̄ in the object will map to a unique series of pixels on

the detector. Also note that p̄ is not the only point that will map to pixel q̄ in a

particular projection. In fact, every point p̄ along ray r⃗ is given the value at q̄ even if

p̄ is located in the empty space outside of the object. Consequently, artifacts appear

in the reconstruction as “smears” (Figure 5.1b).

A source signal was obtained from a medical CBCT projection set of a plastic man-

nequin head (Figure 5.1a). The projection set consists of 320 projections taken at

roughly every 1.14 degrees. Physical pixel pitch is approximately 0.2 millimeters in

both dimensions. Each projection is 512 pixels in width, 384 pixels in height and 4

bytes per pixel.
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MRI

Magnetic Resonance Imaging (MRI) is an imaging technique that uses a magnetic

field and radio frequency (RF) pulse to induce nuclear magnetic resonance (NMR)

on protons [95]. The magnetic field causes the magnetic moments of the protons to

align with the direction of the magnetic field. An RF pulse is then briefly activated,

causing the protons to alter their alignment relative to the magnetic field. When the

RF pulse is deactivated, the protons release energy as they return to their original

alignment. The resulting signal can be detected by a scanner, and used to construct

a volume.

A simulated brain MRI volume was acquired from a web interface known as BrainWeb

[17]. The MRI volume was employed as one of the source signals in our experiments

(Figure 5.2). BrainWeb provides access to a brain MRI simulator that can generate

realistic volumes based on input parameters, including noise level, slice thickness

and intensity non-uniformity level. Volumes generated by BrainWeb can serve as

ground truth for evaluating quantitative brain image analysis methods, such as tissue

classification algorithms.

The simulator begins with a digital brain phantom based on real MRI scans. The

phantom consists of ten volumetric data sets that define spatial distribution and

ratio for gray matter, white matter, muscle, skin and other types of tissues [18].

Bloch equations are then used to simulate NMR signal production and to model the

imaging process [45, 46].

The brain MRI volume that was used in our experiments consists of 217 slices that

encompasses the entire brain, starting from the top of the scalp to the base of the
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foramen magnum. The volume was generated with uniform intensity, without any

noise and without any multiple-sclerosis lesions. Each T1-weighted slice is 181 pixels

in width, 181 pixels in height and 1 byte per pixel. Physical voxel pitch is one

millimeter wide in each dimension.

SLIMCAT

SLIMCAT is a three-dimensional chemical transport model that is widely used in

atmospheric chemistry research [12]. The model is initialized with the measured

concentration of one or more chemical species in the Earth’s atmosphere. SLIMCAT

then simulates the biogeochemical cycle, such as flow and chemical production.

The SLIMCAT Reference Atmosphere served as one of the source signals in our exper-

iments (Figure 5.3). Atmospheric measurements were made over a period of twelve

months, starting from October of 1991. A volume was generated for each month,

although we only utilized the data set for the month of September.

The SLIMCAT Reference Atmosphere spans the entire globe, with a spatial resolution

of 7.5 degrees longitudinally, 5 degrees latitudinally and 18 levels vertically. The

lowest level is at ground-level, while the highest level is centered at 10 hectopascals.

The SLIMCAT Reference Atmosphere models temperature, pressure and distribution

fields for 37 chemical species. However, we only employed the temperature data in

our experiments.



Chapter 5. Experiments 58

Perlin Noise

Textures are commonly stored in the form of a bitmap, or a 2D array of pixels.

Procedural textures, on the other hand, are represented using algorithms and math-

ematical expressions. In this section we will informally describe a type of procedural

texture called Perlin noise. Refer to the works of Perlin et al. [68, 69] for a complete

definition.

Perlin noise is a function that generates pseudorandom noise. A Perlin function is a

mapping R3 → R that is generated from a rectangular lattice in R3. The lattice grid

points are evenly spaced in each dimension, and every point is assigned a random

unit gradient vector. For any point p̄ ∈ R3, there are eight grid points surrounding it

called the neighbors of p̄.

The signal at point p̄ ∈ R3 is determined by the gradient vectors of its neighbors.

More specifically, G(q̄) ·(p̄− q̄) is computed for each neighbor q̄ of p̄, where G(q̄) is the

gradient vector assigned to q̄. The signal at p̄ is interpolated from these dot products,

using an S -shaped cross-fade function to weight the interpolant in each dimension.

Perlin noise is pseudorandom because it gives the appearance of randomness, although

the function itself is deterministic. The function will always generate the same noise,

as long as the same gradient vectors are used. In addition, the spatial frequency of

Perlin noise is bandlimited and invariant under translation.

Given a Perlin function defined over R3, we can generate a signal in B3 by intersecting

a ball with R3. Essentially, the signal is “sculpted” from a virtual block of texture.

The signal frequency is inversely proportional to the amount of space between grid

points in the lattice.



Two different source signals were generated for our experiments using Perlin noise

functions. Perlin Noise A was generated using one gradient per unit length in all

three dimensions, while fifty gradients per unit length were used for Perlin Noise B

(Figure 5.4).

(a) A single sagittal projection. (b) A slice taken from the reconstruc-
tion of a solid sphere. Smearing is
clearly visible around the sphere.

Figure 5.1: CBCT Projections.

(a) Coronal slice. (b) Sagittal slice.

Figure 5.2: Brain MRI Slices.

59



Figure 5.3: SLIMCAT Reference Atmosphere.

(a) Perlin Noise A. (b) Perlin Noise B.

Figure 5.4: Perlin noise.
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5.2.3 Bases

We compared the approximation performance of 3D SOHO against that of three

other bases. The well-know Haar basis over 3D Euclidean space [82] was selected for

the purpose of comparing SOHO against another orthonormal wavelet basis. Haar

approximations were generated by applying the Haar wavelet transform on each di-

mension of a rectangular volume, followed by the k-largest approximation strategy.

Lossy data compression algorithms based on discrete cosine transform (DCT) have

been used in MP3, JPEG and other popular digital media encoding formats. Likewise,

DCT has also been applied to volumetric compression [96]. We decided to compare

SOHO against DCT due to its widespread adoption. DCT approximations were

generated by employing DCT-II on each dimension of a rectangular volume, followed

by the k-largest approximation strategy.

Rectangular cuboid is the most common geometry for representing volumetric data.

That is one of the main reasons why the Haar basis and DCT was chosen for our

experiments. However, we also wanted to compare SOHO against another spherical

solid basis. Therefore, we chose the angular portion of an orthogonal set of solutions to

Laplace’s equation known as Solid Harmonics [89]. In fact, Spherical Harmonics are

the restriction of Solid Harmonics to the surface of the unit sphere. Approximations

of different fidelities were generated by varying the number of bands in the regular

Solid Harmonic projections.

5.2.4 Experimental Setup

Experiments were conducted using MATLAB version 7.6 on a 64-bit Linux based op-

erating system. The workload was divided among nine independent computing nodes,
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with 4.2TB of shared storage. Each node has two 3.8GHz Intel Xeon processors and

4GB of main memory. Computations were performed exclusively in double precision.

This section will highlight the implementation details and design decisions that are

important for reproducibility.

Partitions

As seen in Section 4.1, a partition can be mathematically expressed in terms of a

forest. Although a tree data structure is a natural choice for implementing a partition,

we decided to use vectors for efficiency reasons. A partition with n levels can be

represented by a forest of full octrees with height n− 1. The forest topology is fixed,

and so it can be stored as a vector rather than a hierarchical tree structure. As a

result, node access can be achieved in constant time, rather than logarithmic time

required by tree traversal. Vectorized operations are also generally faster than scalar

operations in MATLAB [52].

Controlled variables were kept constant for all experiments in order to maximize

comparability. More specifically, a standard partition was constructed from an oc-

tahedron and subdivided into 6 levels. Hence the partition consisted of 32 shells

and 86 domains on the finest level. In addition, the equal volume constraint was

enforced for all domain subdivisions. By default, the parameter “a” in Equation 4.10

was computed using subtraction rather than addition. Lastly, 86 × 10 = 2, 621, 440

random samples were used for signal resampling, and to compute resampling errors.

That is equivalent to 10 random samples per domain on the finest level of a standard

partition.



Chapter 5. Experiments 63

Volumes

Rectangular volumes were needed to evaluate the approximation performance of the

Haar basis and DCT. Precautions were taken in order to avoid biases, either toward

voxel volumes or spherical volumes. For instance, voxels volumes were generated such

that the number of voxels and its overall volume was equivalent to the number of do-

mains and the overall volume of a standard SOHO partition, respectively. Hence a

standard volume comprised of 64 isotropic voxels in each dimension, and a total vol-

ume of 4π/3. Likewise, 10 random samples per voxel were used for signal resampling,

and to compute resampling errors.

Approximations

Approximations in DCT, Haar and SOHO were generated using at most 86 = 262, 144

basis function coefficients. However, Solid Harmonic approximations were limited to

50 bands due to memory limitations in MATLAB. Therefore, one set of experiments

compared DCT, Haar and SOHO with up to 86 coefficients, while another set of

experiments included Solid Harmonic and utilized up to 502 coefficients.

5.3 Results

Data were gathered from 10 different experiments on four different types of signals.

The results are summarized in the following graphs. Some experiments have been

omitted because the results are almost identical to the ones that are shown in this

section.
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Figure 5.5: Decay of SOHO wavelet basis function coefficients with increasing levels.

Figure 5.6: Decay of SOHO wavelet basis function coefficients with increasing levels,

for the two possible solutions of Equation 4.10. Other signals produce similar graphs.
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Figure 5.7: Decay of SOHO wavelet basis function coefficients with increasing levels,

for the three possible choices of platonic solids. Other signals produce similar graphs.
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Figure 5.8: Comparison of resampling performance between SOHO partitions and

voxel volumes. Other signals produce similar graphs.



Chapter 5. Experiments 67

Figure 5.9: Resampling error of SOHO partitions with different number of levels, for

the three possible choices of platonic solids. Other signals produce similar graphs.
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Figure 5.10: Comparison of approximation performance on CBCT.

(a)

(b)
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(c)
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Figure 5.11: Comparison of approximation performance on MRI.

(a)

(b)
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(c)
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Figure 5.12: Comparison of approximation performance on Perlin Noise A.

(a)

(b)
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(c)
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Figure 5.13: Comparison of approximation performance on Perlin Noise B.

(a)

(b)
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(c)
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Figure 5.14: Comparison of approximation performance on SLIMCAT.

(a)

(b)
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(c)
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Figure 5.15: Comparison of approximation performance on CBCT.

(a)

(b)
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(c)
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Figure 5.16: Comparison of approximation performance on SLIMCAT.

(a)

(b)
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(c)
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Figure 5.17: Approximation performance of Solid Harmonic on MRI.

(a)

(b)
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(c)



Figure 5.18: Approximation performance of Solid Harmonic on CBCT.

(a)

(b)
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(c)

Figure 5.19: L∞ approximation error fluctuation.
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5.4 Discussion

In this section, we will interpret the results and draw some general conclusions about

the nature of the 3D SOHO wavelet basis. We will use Ψ+ and Ψ− respectively, to

denote the basis obtained by addition and subtraction in Equation 4.10. Likewise,

the basis obtained from a tetrahedron, octahedron and icosahedron will be denoted

as ΨT , ΨO and ΨI respectively.

5.4.1 Partition Performance

A SOHO partition has two construction parameters, namely the choice of platonic

solid and the number of subdivision levels. Experiments were conducted to deter-

mine their effects on the resampling performance of SOHO. The results showed an

exponential decrease in resampling error, as the number of levels increased (Figure

5.8). Similarly, the resampling error decreased as the number of trees in the parti-

tion increased (Figure 5.9). However, the type of platonic solid was insignificant for

partitions with more than 3 levels. In summary, the resampling error was negatively

correlated with the number of domains in a partition.

In addition, we examined the mean magnitude of the SOHO wavelet basis function

coefficients. An exponential decay in mean magnitude was observed as the number

of levels increased (Figure 5.5). In most cases, Ψ− yielded slightly smaller means

than Ψ+. However, the difference was negligible for partitions with more than 3

levels (Figure 5.6). The mean magnitude was the largest for ΨT , followed by ΨO and

then by ΨI (Figure 5.7). Nevertheless, the type of platonic solid was insignificant for

partitions with more than 3 levels. In general, the mean magnitude was negatively

correlated with the number of domains in a partition.
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5.4.2 Approximation Performance

The approximation performance of DCT, Haar, SOHO and Solid Harmonic are shown

in Figure 5.10 to Figure 5.16. In general, the ℓ1, ℓ2 and ℓ∞ approximation errors

increased exponentially as the space savings increased for all four bases. Exceptions

occurred for some approximations in Solid Harmonic, where the ℓ∞ error increased

(Figure 5.19c) or fluctuated (Figure 5.19).

Comparisons between DCT, Haar and SOHO did not reveal a superior basis (Figure

5.10 to Figure 5.14). For instance, SOHO outperformed DCT and Haar for SLIMCAT

(Figure 5.14), but the results were opposite for Perlin Noise (Figure 5.12 and Figure

5.13).

The k-largest approximation strategy is optimal in the ℓ2 norm for orthonormal bases.

However, it has been argued that the ℓ1 norm is a better estimate for the perceived

image quality [22]. Consequently, the subjective performance of SOHO depends on

whether or not there is a positive correlation between the ℓ1 and ℓ2 approximation

errors. The experiments showed that the ℓ1 and ℓ2 errors behave very similarly in

general. Therefore we argue that the k-largest strategy is suitable for minimizing the

ℓ1 approximation error.

The approximation performance of Solid Harmonic was inferior to that of DCT, Haar

and SOHO in every experiment (Figure 5.15 and Figure 5.16). Not only did Solid

Harmonic consistently produced the highest approximation error, but the error did

not decrease significantly as the number of coefficients increased. Differences were

only be noticeable at finer scales (Figure 5.17 and Figure 5.18). Therefore, SOHO is

better than Solid Harmonic at representing all-frequency signals in L2(B3).



Chapter 6

Future Work

A quantitative analysis of SOHO has been presented in Chapter 5. Nevertheless,

qualitative evaluations are needed in order to determine the efficacy of SOHO in real-

world applications. For instance, there are many unanswered questions related to the

use of SOHO in medical imaging. Although we have evaluated SOHO on two medical

data sets, a much larger sample size is required to draw any meaningful conclusions.

Qualitative experiments involving real patients and medical doctors are also necessary.

Differences in signal resolution, scanning apparatus and object geometry could play

significant roles in the performance SOHO. Additional studies are needed to identify

the conditions under which SOHO can outperform DCT, and other popular image

compression techniques.

Some applications require the alignment of data sets. A well known example is

the processing and analysis of spherical data sets in medical imaging. A method

for performing rotation already exists for the two-dimensional SOHO wavelet basis.

Naturally, we would like to discover a similar method for 3D SOHO.

88



Chapter 6. Future Work 89

Solid Harmonic is a basis for the frequency domain, where powerful mathematical

tools are available for signal analysis and processing. Many of these techniques cannot

be applied in the spatial domain. Therefore, discovering new ways to perform signal

analysis in the SOHO wavelet basis would be very beneficial. Noise reduction is

an obvious avenue, since multiresolution analysis is akin to Fourier analysis in the

spatial domain. Perhaps valuable information can be distilled from the basis function

coefficients, to assist in texture classification and image segmentation.

A pseudo 3D SOHO partition consists of a set of shells, where each shell is represented

by a 2D SOHO partition. Consequently, the analysis and reconstruction of a pseudo

partition can be performed in parallel on individual shells. It would be interesting

to compare the approximation performance of pseudo 3D SOHO against that of 3D

SOHO. Although pseudo 3D SOHO is not optimal in the ℓ2 norm in general, it may

be a reasonable trade-off between speed and accuracy.



Chapter 7

Conclusion

In this thesis, we developed the three-dimensional SOHO wavelet basis for repre-

senting all-frequency signals in L2(B3). To our knowledge, 3D SOHO is the first

Haar wavelet basis on the solid sphere that is both orthogonal and symmetric. Such

properties allow for fast wavelet transforms, perfect reconstruction and an optimal

approximation strategy in the ℓ2 norm.

Experimental results demonstrate the representation performance of 3D SOHO on

various signals, including a CBCT projection set, a brain MRI data set and an atmo-

spheric model. Resampling error is dominated by the number of subdivision levels in

a partition. Other construction parameters, such as the choice of platonic solid, are

insignificant for partitions with more than three levels.

Results also indicate similar approximation performances between DCT, Haar and

SOHO, with neither one performing consistently better than the others. However,

results confirm that SOHO is superior to Solid Harmonic in representing and approx-

imating all-frequency signals on the three-dimensional ball.
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Although the k-largest approximation strategy is not optimal in the ℓ1 norm, the

experiments reveal a positive correlation between the ℓ1 and ℓ2 errors. Therefore,

k-largest is a reasonable approximation strategy in the ℓ1 norm for the 3D SOHO

wavelet basis.

The theoretical properties of 3D SOHO has been presented, and its performance has

been affirmed by experimentation. We hope that our work will be utilized by others

in the advancement of science, mathematics and engineering.
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