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Fig. 1. We approximate the vibration modes of the cotangent Laplacian derived from the ground truth high-resolution mesh (top) using a coarse mesh with

250 vertices (the transparent cages on the left). A classical decimation method [Garland and Heckbert 1997] (bottom) preserves the appearance but fails in

preserving the ground truth vibration modes. Our chordal spectral coarsening detaches the differential operator from the mesh, enabling one to optimize the

operator independently to preserve the vibration modes (middle), without altering the coarse vertices. By visualizing the inner product matrices between

vibration modes on the left, we show our approach leads to a result closer to the ground truth. Here we visualize the 9-th vibration mode with its frequency.

We introduce a novel solver to significantly reduce the size of a geometric

operator while preserving its spectral properties at the lowest frequencies.

We use chordal decomposition to formulate a convex optimization problem

which allows the user to control the operator sparsity pattern. This allows

for a trade-off between the spectral accuracy of the operator and the cost of

its application. We efficiently minimize the energy with a change of variables

and achieve state-of-the-art results on spectral coarsening. Our solver further

enables novel applications including volume-to-surface approximation and

detaching the operator from the mesh, i.e., one can produce a mesh tailor-

made for visualization and optimize an operator separately for computation.
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1 INTRODUCTION

Discrete operators, such as the cotangent Laplacian, the Hessian of

mesh energies, and the stiffness matrix in physics-based simulations,

are ubiquitous in geometry processing. Many of these operators are

represented by sparse positive semi-definite (PSD) matrices. These

matrices are often constructed by looping over the elements of a

discretized domain. When defined on a high-resolution domain,

those matrices are computationally expensive to use, even if the

final result only requires low frequency information.

Recent methods show that it is possible to simplify a discrete

operator while preserving its spectral properties and matrix char-

acteristics, such as positive semi-definiteness, avoiding the pitfalls

of the naïve “decimate and reconstruct” approach. However, previ-

ous methods required the solution of a non-convex optimization

problem, the solution to which sacrificed matrix sparsity.

In this paper, we overcome these challenges by applying the

chordal decomposition. In contrast to the previous non-convex formu-

lation, our method is now convex and can freely control the output

sparsity, outperforming existing approaches for spectral coarsening

and simplification. Our approach further enables novel applications

on optimizing the operator independently to preserve some desired

properties for computation without changing the mesh vertices.
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Fig. 3. We use chordal decomposition to split a large sparse PSD constraint

on X (left) into multiple small dense PSD constraints on Z𝑖 (right), where
we use · ⪰ 0 to denote the PSD constraint. This enables us to be more

efficient in handling optimization problems that involve sparse PSD matrix

constraints.

In Fig. 1, we first decimate the model and optimize the operator

independently to preserve the spectral properties of the cotangent

Laplacian. Our approach achieves a higher quality approximation

of the vibration modes of the high-resolution mesh compared to

previous approaches.
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Fig. 2. Given a sparse matrix

(left) where blue denotes non-

zeros and gray denotes ze-

ros, we can view the spar-

sity pattern as a graph (right)

and then apply theorems of

chordal graphs.

By viewing the sparsity pattern

of a matrix as a graph (see Fig. 2),

one can utilize theories of chordal

graphs to decompose a sparse ma-

trix into a set of small dense matri-

ces. This decomposition enables

one to satisfy the sparse PSD con-

straint by projecting each small

dense matrix to PSD in parallel

(see Fig. 3). Such techniques have

long been applied in the creation

of efficient solvers for Semidefinite Programming (SDP). Here we

generalize these notions to the spectral coarsening problem which

leads to an accelerated solver that is faster, more accurate and with

better sparsity control than the previous state-of-the-art. Our main

contribution is an algorithm for projecting general sparse matrices

to PSD ones using chordal decomposition in the context of spectral

coarsening.

2 RELATED WORK

Spectral preservation is a widely studied topic in optimization and

numerical methods. Below we outline the most salient related works

from these areas, as well as recent developments in computer graph-

ics and geometry processing.

2.1 Chordal Graphs in Sparse Matrix Optimization

Chordal graphs have been playing an important role in sparse ma-

trix computation for decades [Blair and Peyton 1993; Vandenberghe

and Andersen 2015]. Fukuda et al. [2001] and Nakata et al. [2003]

introduce a generic framework to accelerate interior-point meth-

ods for solving large sparse SDPs. Their key idea is to exploit the

sparsity of the matrix and the properties of chordal graphs [Grone

et al. 1984] to decompose a large sparse matrix variable into mul-

tiple small dense ones. In the later literature, this is often called

the chordal decomposition. Since then, this framework has been

greatly improved by [Andersen et al. 2010; Burer 2003; Fujisawa

et al. 2009; Srijuntongsiri and Vavasis 2004; Sun et al. 2014]. The idea

of chordal decomposition has also been incorporated with other

optimization methods. For instance, Sun and Vandenberghe [2015]

combine chordal decomposition with projected gradient and the

Douglas–Rachford algorithms for sparse matrix nearness and com-

pletion problems. Zheng et al. [2017b, 2020] incorporate this idea to

the alternating direction method of multipliers (ADMM) for solv-

ing SDPs. These chordal-based solvers have also been deployed to

nonlinear matrix inequalities [Kim et al. 2011], the optimal power

flow [Madani et al. 2015], controller synthesis [Zheng et al. 2018]

and sum-of-squares problems [Zheng et al. 2017a, 2019].

Recently, Maron et al. [2016] formulate the point cloud registra-

tion problem into a SDP and use chordal decomposition to accelerate

the computation. However, their method only supports matrices

with a chordal sparsity pattern already, which is not applicable to

our problem because most discrete operators are not chordal. In

contrast, we utilize the ideas from [Sun and Vandenberghe 2015] to

handle any sparsity pattern of choice, and the strategies in [Zheng

et al. 2017b, 2020] to develop a chordal ADMM solver for the spec-

tral coarsening energy [Liu et al. 2019]. We exploit the fact that

many discrete operators are sparse and symmetric to perform a

change of variables to significantly reduce the computational cost.

We demonstrate that chordal decomposition is not only suitable

for large scale SDPs, but also for problems in graphics that involve

sparse PSD matrix variables.

2.2 Geometry Coarsening

Geometric coarsening has been extensively studied in computer

graphics with the aims of preserving different geometric and phys-

ical properties. One class of methods focuses on preserving the

appearance of a mesh for rendering purposes. Some prominent

early examples include mesh optimization [Cohen-Steiner et al.

2004; Hoppe et al. 1993], mesh decimation [Garland and Heckbert

1997], progressive refinement [Hoppe 1996, 1997], and approaches

based on parameterization [Cohen et al. 2003]. We refer readers to

[Cignoni et al. 1998] for an overview and comparison of appearance-

preserving simplification. Beyond preserving the appearance, these

techniques have also been extended to preserve the texture informa-

tion of a shape [Garland and Heckbert 1998; Lu et al. 2020]. Li et al.

[2015] add modal displacement as part of the decimation metric to

better preserve the acoustic transfer of a shape.

Numerical coarsening in simulation. Coarsening the geometry

may alter the material properties and lead to numerical stiffening in

simulations. Kharevych et al. [2009] propose a method to adjust the

elasticity tensor of each element on a coarse mesh to approximate

the dynamics of the original high-resolution mesh. In a similar spirit,

Chen et al. [2015] use a data-driven lookup approach to reduce the

error incurred by coarsening. To better capture vibration, Chen

et al. [2017] address the numerical stiffening by simply rescaling the

Young’s modulus of the coarse model to match the lowest frequen-

cies to its high-resolution counterpart. Chen et al. [2019b] extend

this idea to re-fit the eigenvalues iteratively at each time step. Chen

et al. [2018] propose to construct matrix-valued and discontinu-

ous basis functions by solving a large amount of local quadratic

constrained optimizations. Other recent approaches have included

the wavelet approaches. Owhadi [2017] introduces a hierarchical

construction of operator-adapted basis functions and their associ-

ated wavelets for scalar-valued PDE. The operator-adapted wavelets
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have been extended to differential forms [Budninskiy et al. 2019]

and to vector-valued equations [Chen et al. 2019a] which is then

applied to fast simulation of heterogeneous materials with locally

supported basis functions. Different from [Chen et al. 2018] and

[Chen et al. 2019a] which increase the degrees of freedom (DOF)

by using matrix-valued shape functions, our method can support

more DOF by directly controlling the sparsity pattern of the scalar-

valued matrix. Moreover, our method can also preserve the spectral

properties using the same DOF and sparsity pattern.

Spectral graph coarsening inmachine learning. Spectral-preserving
graph reduction has been an active field in machine learning. Zhao

et al. [2018] introduce a scalable spectral graph reduction method

for scalable graph partitioning and data visualization based on node

aggregation and graph sparsification. Jin et al. [2020] propose two

methods for spectral graph coarsening based on iterative merg-

ing and k-means clustering, respectively. Various other approaches

have also been recently adopted to coarsen a graph in a spectral-

preservingway, including randomized edge contraction [Loukas and

Vandergheynst 2018], local variation algorithm [Loukas 2019] and

probabilistic algorithm [Bravo-Hermsdorff and Gunderson 2019].

In contrast to these combinatorial methods which focus more on

optimizing the sparsity pattern, our algebraic approach enables one

to further optimize over a specific sparsity pattern based on a convex

formulation.

Spectral coarsening in geometry processing. Recently several ap-

proaches consider coarsening a geometry while preserving its spec-

tral properties, namely eigenvalues and eigenvectors of the opera-

tors. Öztireli et al. [2010] compute samples on a manifold surface

in order to preserve the spectrum of the Laplace operator. Nasikun

et al. [2018] use a combination of Poisson disk sampling and lo-

cal polynomial bases to efficiently solve an approximate Laplacian

eigenvalue problem of a mesh. Beyond the Laplace operator, Liu

et al. [2019] propose an algebraic approach to coarsen common geo-

metric operators while preserving spectral properties. Lescoat et al.

[2020] extend the formulation to achieve spectral-preserving mesh

simplification. Our approach is purely algebraic. Our convex formu-

lation leads us to have better spectral preservation compared to the

similar algebraic approach [Liu et al. 2019] in spectral coarsening.

Our flexibility in controlling the sparsity allows us to post-process

the results of spectral simplification [Lescoat et al. 2020] and further

improve its quality. In addition, we enable a novel application which

independently optimizes the operator for computation purposes

and the mesh vertices for preserving the appearance (see Fig. 1).

3 BACKGROUND

The description of our method depends on manipulating variables

that represent sparse matrices. Throughout the paper, we use P to

denote selection matrices, and use subscripts to differentiate between
them. In practice, given a subset 𝑠 , P𝑠 is a sparse matrix defined as

(P𝑠 )𝑗𝑘 =

{
1, 𝑘 = 𝑠 ( 𝑗),
0, otherwise.

(1)

Let x be a vector and z = x(𝑠) be a sub-vector of x. Selecting a subset
from x can be achieved by a sparse matrix multiplication z = P𝑠x.

Fig. 4. Chordal decomposition decomposes the matrix X into a set of maxi-

mal clique matrices Z𝑖 . We can extract each clique matrix via Z𝑖 = P𝑖XP⊤𝑖 .

Mapping the elements from z to a bigger vector y can be achieved

with y = P⊤𝑠 z
𝑐1
𝑐2
𝑐4

︸︷︷︸
z

=


1 0 0 0

0 1 0 0

0 0 0 1

︸             ︷︷             ︸
P𝑠


𝑐1
𝑐2
𝑐3
𝑐4

︸︷︷︸
x

,


𝑐1
𝑐2
0

𝑐4

︸︷︷︸
y

=


1 0 0

0 1 0

0 0 0

0 0 1

︸       ︷︷       ︸
P⊤𝑠


𝑐1
𝑐2
𝑐4

︸︷︷︸
z

.

Let X be an 𝑛-by-𝑛 matrix, we use 𝑠 to denote a subset of row

and column indices into X. Z = X(𝑠, 𝑠) creates a matrix Z that is of

size |𝑠 |-by-|𝑠 | and contains all values in X(𝑠, 𝑠). We can compactly

describe this operation using selection matrix P𝑠 as Z = P𝑠XP⊤𝑠[
𝑐11 𝑐13
𝑐31 𝑐33

]
︸       ︷︷       ︸

Z

=

[
1 0 0

0 0 1

]
︸       ︷︷       ︸

P𝑠


𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

︸               ︷︷               ︸
X


1 0

0 0

0 1

︸  ︷︷  ︸
P⊤𝑠

.

Similarly, we can map elements in Z back to Y via Y = P⊤𝑠 ZP𝑠
𝑐11 0 𝑐13
0 0 0

𝑐31 0 𝑐33

︸            ︷︷            ︸
Y

=


1 0

0 0

0 1

︸  ︷︷  ︸
P⊤𝑠

[
𝑐11 𝑐13
𝑐31 𝑐33

]
︸       ︷︷       ︸

Z

[
1 0 0

0 0 1

]
︸       ︷︷       ︸

P𝑠

.

3.1 Chordal Decomposition

A chordal graph is an undirected graph in which for every cycle of

length greater than three, there is an edge between nonconsecutive

vertices in the cycle. Chordal graphs have drawn attention since

the 1950s because a handful of NP-complete graph problems can be

solved in polynomial time if the graph is chordal. Chordal graphs

also received interests from the optimization community for solving

sparse SDPs, combinatorial optimization, and Cholesky factorization.

We refer readers to [Vandenberghe and Andersen 2015] for a survey

of chordal graphs in optimization. We focus on its application to

problems that involve sparse PSD matrices constraints, specifically

arising from geometry processing.

An 𝑛-by-𝑛 symmetric matrix X has chordal sparsity pattern C ∈
{0, 1}𝑛×𝑛 if the graph induced by C is a chordal graph. The key

theorem that supports our method is

Theorem 1. ([Agler et al. 1988; Kakimura 2010]) Let X be a 𝑛-by-𝑛
symmetric matrix with chordal sparsity, and let {Z1,Z2, · · · ,Z𝑝 } be
a set of its 𝑝 clique matrices. Then X is PSD if and only if it can be
expressed as

X =

𝑝∑
𝑖=1

P⊤𝑖 Z𝑖P𝑖 (2)

with all Z𝑖 being PSD.
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where a clique is a subset of vertices such that every two distinct

vertices in the clique are adjacent to each other, thus a clique matrix
is a dense matrix of the size of a clique. We use Z𝑖 to represent the

𝑖th clique matrix, P𝑖 as the selection matrix to the 𝑖th clique set.

This decomposition from X to a set of clique matrices is called the

chordal decomposition (see Fig. 4), which has been applied to many

recent SDP solvers.

Vectorization. In practice, the “sandwich” format P⊤
𝑖
Z𝑖P𝑖 is not

always easy to work with. It is often more desirable to vectorize a
matrix by concatenating the columns of the matrix into a vector (see

the inset). We can re-write the vectorized chordal decomposition as

vec(X) =
𝑝∑
𝑖=1

vec(P⊤𝑖 Z𝑖P𝑖 ) =
𝑝∑
𝑖=1

(P⊤𝑖 ⊗ P⊤𝑖 )︸       ︷︷       ︸
K𝑖

vec(Z𝑖 ), (3)

vec-1(   )

vec(     )
where we use vec(·) to denote

the vectorization, with its inverse

vec
-1
(see the inset), and ⊗ to de-

note the Kronecker product. Intu-

itively, K𝑖 acts like the transpose
of a selection matrix, putting ele-

ments in vec(Z𝑖 ) back to vec(X).

3.2 Chordal Extension

In practice, a majority of matrices we encounter in geometry process-

ing do not naturally have chordal sparsity patterns, which makes

Theorem 1 inapplicable. In response, we follow the idea in [Sun and

Vandenberghe 2015] to first perform a chordal extension to transform
the original non-chordal sparsity E to a chordal sparsity pattern

C (see the inset). We maintain E by adding equality constraints to

enforce new fill-in elements arising from the extension to be zeros

X ∈ S𝑛E ⇒
X ∈ S𝑛C,
X𝑗𝑘 = 0, ∀( 𝑗, 𝑘) ∈ C\E, (4)

where S𝑛E and S𝑛C denote 𝑛-by-𝑛

symmetric matrices with sparsity

patterns E and C, respectively. We

use C\E to denote the entries that

exist in C, but not in E. Chordal
extension adds degrees of freedom to our optimization problem.

Our zero constraints enforce that, at a particular new fill-in entry,

the sum of projected dense matrices must equal zero, not that each

dense matrix must contribute a zero value to that entry. Comput-

ing the minimum chordal extension, where the number of fill-in

edges is minimized, is NP-complete [Yannakakis 1981]. However,

finding a minimal chordal extension can be solved in polynomial

time [Heggernes 2006].

Notice that Theorem 1 also has a dual formatY𝑖 = P𝑖XP⊤𝑖 . IfX has

the chordal sparsity, this dual formulation can guaranteeX to be PSD

by ensuring all Y𝑖 being PSD, proved by the Theorem 7 in [Grone

et al. 1984]. However, this dual formulation cannot guarantee X to

be PSD if the matrix X does not have chordal sparsity (see Sec. 3.2.2

in [Sun 2015]). Thus we build our algorithm surrounding Theorem 1.

Fig. 5. We visualize the spectral preservation using the inner product matrix

(middle) between the restricted eigenvectors RΦ of the original operator L
to the coarsened domain and the eigenvectors Φ̃ of the coarsened operator

X. Due to the orthonormality, the ground truth should be a diagonal matrix

of 1 and -1 (denoted by red and blue, respectively). The closer the matrix

to a diagonal matrix, the better the preservation of eigenvectors. We use

M and M̃ to denote the mass matrices of the original and the coarsened

meshes respectively.

4 METHOD

The goal of spectral coarsening is to reduce the size of a discrete

operator, derived from a 3D shape, while preserving its spectral

properties. Liu et al. [2019] show that it is possible to have a signif-

icant reduction without affecting the low-frequency eigenvectors

and eigenvalues. They visualize the preservation of spectral proper-

ties with the inner product matrix between eigenvectors (see Fig. 5).

This inner product matrix can be perceived as a functional map [Ovs-
janikov et al. 2012], expressing how eigenfunctions on the original

domain are mapped to the simplified domain (see Sec. 5.1).

Preserving the spectral properties of an operator can be cast as

an optimization problem, minimizing the commutative energy [Liu

et al. 2019]

𝑓 (X) = ∥RM-1LΦ − M̃-1XRΦ∥2
M̃
, (5)

where L and X denote the original and the coarsened operators, M
and M̃ are the original and the coarsened mass matrices, R is the

restriction operator restricting functions from the original domain to

the coarsened domain, and Φ are the functions (e.g., eigenfunctions)
used to measure the commutativity.

Intuitively, if the coarsened operator X preserves the spectral

properties of the original operator L, then given some functions Φ
on the original domain, first applying the original operator M-1L
and then restricting the functions to the coarsened domain via R
should be the same as first restricting the functions via R and then

applying the coarsened operator M̃-1X. In the Appendix C of [Liu

et al. 2019] they show that, when Φ are eigenfunctions, minimizing

the commutative energy also preserves eigenvalues.

Relationship to [Liu et al. 2019]. Many differential operators in

geometry processing are sparse, symmetric, and positive semidefi-

nite. Thus, the method of [Liu et al. 2019] adds constraints to Eq. 5

in order to preserve the three operator properties. They satisfy the

constraints via change of variables from X to G

minimize

X
𝑓 (X) ⇒ minimize

G
𝑓 (G⊤LG). (6)

where G has a predetermined sparsity pattern. However, this trans-

forms the original convex formulation into a non-convex quartic
one (see Eq.7 in [Liu et al. 2019]) and increases the sparsity of the
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output operator to 3-rings. It also artificially limits the feasible re-

gion to a subset of PSD matrices determined by G. In contrast, we

will show how to directly optimize the commutative energy with

respect to X while maintaining the convexity and enabling one to

control over the output sparsity.

4.1 Chordal Spectral Coarsening

Spectral coarsening can be written as the following optimization

minimize

X
𝑓 (X) (7)

subject to Xv = e (8)

X ⪰ 0 (9)

X ∈ S𝑛E , (10)

where 𝑓 is the spectral coarsening energy in Eq. 5,X ⪰ 0 denotes the

PSD constraint, and S𝑛E denotes the set of 𝑛-by-𝑛 sparse symmetric

matrices with a user-defined (non-chordal) sparsity pattern E. The
equality Xv = e represents the null-space constraint of a differential
operator, in the case of Laplacian v = 1 is a constant function and

e = 0 is a zero vector because every row or column of a Laplacian

sums to zero. For the sake of simplicity, we describe the entire

process without expanding the spectral coarsening energy 𝑓 , and

the complete formulation is detailed in App. E.

Applying the chordal extension (Sec. 3.2) and the chordal decom-

position (Sec. 3.1) to Eq. 7 leads to

minimize

X,{Z𝑖 }
𝑓 (X) (11)

subject to Xv = e (12)

X ∈ S𝑛C (13)

X𝑗𝑘 = 0, ∀( 𝑗, 𝑘) ∈ C\E (14)

X =

𝑝∑
𝑖=1

P⊤𝑖 Z𝑖P𝑖 (15)

Z𝑖 ⪰ 0, 𝑘 = 1, · · · , 𝑝, (16)

where 𝑝 is the number of maximal cliques. We convert the PSD

constraint X ⪰ 0 in Eq. 9 to many small PSD constraints Z𝑖 ⪰ 0

according to Theorem 1. Here we also perform chordal extension

to switch the sparsity from non-chordal E to a chordal C with

additional equality constraints X𝑗𝑘 = 0 (see Eq. 4).

Ensuring the PSD property of the matrix requires a full (general-

ized) eigendecomposition followed by the removal of the negative

eigenvalues. When the matrix is large, a full decomposition is in-

tractable to compute. Using chordal decomposition to transform the

big PSD constraint (Eq. 9) to a set of small ones (Eq. 16) allows us to

efficiently project each Z𝑖 to PSD in parallel.

4.2 Change of Variables

Utilizing the fact that X is symmetric with a sparsity pattern E, we
propose to accelerate the solver via change of variables from X to

a compressed vector xE which consists of the non-zero elements

of the lower triangular part defined by E. This change of variables
restricts the optimization to search only within the feasible sparsity

E. This is crucial to the performance of the solver because X is

sparse thus |xE | ≪ |vec(X) | significantly reduces the degrees of

freedom. The relationship between X and xE is described by

vec(X) = P-1ExE , xE = PEvec(X), (17)

vec ( (
where PE is a selection matrix to

the sub-vector xE . P-1E is the in-

verse of PE which is another ma-

trix to re-index elements in xE
back to vec(X). Note that P-1E is

different from the P⊤E as each non-diagonal element in xE gets

mapped to two entries in vec(X), instead of one entry, and P-1E can

be assembled easily without the need of explicitly inverting the

matrix. This change of variables incorporates both the chordal sym-

metric constraint X ∈ S𝑛C and the equality constraints X𝑗𝑘 = 0 in

Eq. 11. After some derivation in App. B, we have

minimize

xE ,{z𝑖 }
𝑓 (xE ) (18)

subject to GxE = e (19)

P-1ExE =

𝑝∑
𝑖=1

K𝑖z𝑖 (20)

vec
-1 (z𝑖 ) ⪰ 0, 𝑖 = 1, · · · , 𝑝, (21)

We define z𝑖 B vec(Z𝑖 ) to be the vectorized clique matrix. GxE = e
is the vectorized version of the Xv = e in Eq. 12. P-1ExE =

∑𝑝

𝑖=1
K𝑖z𝑖

is the vectorized chordal decomposition Eq. 15. Here K𝑖 denotes the
index selection matrix for vectorized clique matrix z𝑖 .
We use another change of variables to further accelerate the

algorithm by restricting the vectorized chordal decomposition in

Eq. 20 to only the non-zeros in the chordal sparsity pattern C. That
is because the summation of {z𝑖 } in Eq. 20 only has non-zeros in the

chordal sparsity pattern C. We introduce another index selection

matrix PC to change Eq. 20 into

P-1ExE =

𝑝∑
𝑖=1

K𝑖z𝑖 ⇒ PCP-1ExE = PC
𝑝∑
𝑖=1

K𝑖z𝑖 , (22)

where PC selects the lower triangular non-zeros in C from the

original vec(X). Here PC is defined the same as the PE in Eq. 17

but with a different sparsity pattern C.

vec ( (vec ( (Zi

Qi

Zi
~

As z𝑖 is the vectorization of a

symmetric matrix Z𝑖 , another re-
duction is achieved by applying

the same trick as Eq. 17 to restrict

the degrees of freedom of Z𝑖 to its lower triangular part Z̃𝑖 via an
expansion matrix Q𝑖 (see the inset).

vec(Z𝑖 )︸  ︷︷  ︸
z𝑖

= Q𝑖 vec(Z̃𝑖 )︸  ︷︷  ︸
z̃𝑖

, (23)

We use z𝑖 , z̃𝑖 to denote the vectorized Z𝑖 and the vectorized lower

triangular part Z̃𝑖 , respectively. We define Q𝑖 as an inverse index

selection matrix that expands the vector of the lower triangular

element z̃𝑖 to z𝑖 .
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Combining the above results leads us to the reduced optimization

problem

minimize

xE ,z̃
𝑓 (xE ) (24)

subject to GxE = e (25)

PCP-1ExE = PCK̃z̃ (26)

vec
-1 (Q𝑖 z̃𝑖 ) ⪰ 0, 𝑖 = 1, · · · , 𝑝, (27)

where

K̃ =
[
K1Q1, · · · , K𝑝Q𝑝

]
, z̃ =


z̃1
.
.
.

z̃𝑝

 . (28)

This final reduced formulation is an optimization problem which

involves only linear equalities and small dense PSD constraints.

We solve this optimization using ADMM (see App. A), alternating

between solving for xE and z̃. Solving for xE when 𝑓 is the spectral

coarsening energy boils down to a single linear solve; solving for

z̃ leads to a subroutine of projecting each clique matrix to PSD by

removing the negative eigenvalues. The update on z̃ is efficient as

each z̃𝑖 is small and can be trivially parallelized. We provide details

of the ADMM derivation in App. C.

4.3 Weighted Spectral Coarsening

Solving Eq. 24 results in a coarsened operator that preserves the

spectral properties of the original one. One can freely control the

sparsity pattern of the output by changing E. In our experiments,

we choose either 1-, 2-, or 3-ring sparsities. The more rings in use,

the better the results because we have more degrees of freedom in

minimizing the spectral coarsening energy Eq. 5.

When the degrees of freedom are limited, such as using only 1-

ring, we notice that the solver would emphasize preserving relatively

higher frequencies and lead to worse performance in preserving the

lowest frequencies. In response, we weight the spectral coarsening

energy Eq. 5 via the inverse of eigenvalues, which leads to this

weighted version

𝑓𝑤 (X) = ∥RM-1LΦΛ-1 − M̃-1XRΦΛ-1∥2
M̃
, (29)

where Λ is a diagonal matrix of the eigenvalues of the original

operators L. In Sec. 5, we show that the weighted version leads to a

better spectral preservation in the low frequencies when using our

solver. This weighted formulation also naturally captures the notion

of “null-space reproduction” in Eq. 25, as we explicitly enforce the

null-space corresponding to the eigenvalue 0 as a hard constraint,

i.e., with infinite weight.

5 RESULTS

We evaluate our solver by comparing against the existing state-

of-the-art spectral coarsening [Liu et al. 2019] and simplification

[Lescoat et al. 2020], using functional maps and the quantitative

metrics ∥ · ∥𝐿 and ∥ · ∥𝐷 proposed in [Lescoat et al. 2020]. We further

demonstrate the power of our solver in controlling the sparsity

patterns, approximating volumetric behavior using only boundary

surface vertices and detaching the differential operator from the

mesh. We provide implementation details in App. F.

Fig. 6. Using the same 3-ring sparsity pattern, our convex formulation

enables the ADMM solver to converge to a better result on shape (from

80,000 vertices to 600) where the gradient descent in [Liu et al. 2019] may

struggle to converge.

5.1 Evaluation Metrics

Functional maps [Ovsjanikov et al. 2012] describe how to trans-

port functions from one shape M to another shape N . The idea

of functional map has led to breakthroughs in computing shape

correspondences [Ovsjanikov et al. 2017]. In the context of spectral

coarsening, functional maps become a tool for evaluating how the

eigenvectors of a discrete operator L ∈ R𝑛×𝑛 derived on a high-

resolution mesh are maintained by a coarsened operator X ∈ R𝑚×𝑚
.

Following the notation in Fig. 5, let Φ ∈ R𝑛×𝑘 and Φ̃ ∈ R𝑚×𝑘
be two

set of eigenvectors of L and X, respectively, the functional map C
can be computed as

C = Φ̃⊤M̃RΦ. (30)

Here M̃ is the mass matrix in the coarse domain

and R is a restriction operator, encoding the cor-

respondences information from the original mesh

to its coarsened counterpart. The restriction op-

erator is computed either during the decimation

[Lescoat et al. 2020] or simply a subset selection matrix as in [Liu

et al. 2019]. One can also perceive the matrix C as an inner product

matrix between the eigenvectors Φ̃ on the coarsened domain and

the restricted eigenvectors RΦ to the coarsened domain. Due to the

orthonormality between eigenvectors, the optimal functional map

(or inner product matrix) C should be a diagonal matrix of values 1

and -1 (see inset).

Laplacian commutativity and Orthonormality norm. The func-

tional map should be orthonormal and commute with the original

Laplace operator in the reduced basis if and only if it preserves

corresponding eigenfunctions and eigenvalues exactly, as shown in

[Lescoat et al. 2020]. Thus the spectral preservation before and after

coarsening and simplification can be quantified using two norms:

Laplacian commutativity: ∥ · ∥2𝐿 =
∥CΛ − Λ̃C∥2

∥C∥2
(31)

Orthonormality: ∥ · ∥2𝐷 = ∥C⊤C − I∥2 . (32)

In our experiments, we visualize the functional map C and report

both norms to convey a complete picture of spectral preservation.

5.2 Spectral Coarsening

Comparing to the original non-convex formulation Eq. 6 [Liu et al.

2019], in Fig. 10 we show that our convex formulation consistently

achieves lower objective values across different number of coarsened

vertices (from 200 to 1200) and leads to better qualitative results (see
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Fig. 7. Using the same 3-ring sparsity as [Liu et al. 2019], our method

achieves better quality of resulting functional maps for both the weighted

and unweighted versions, measured by the metrics proposed in [Lescoat

et al. 2020].

Fig. 7, Fig. 6 and Fig. 9). For a fair comparison, we set the sparsity

pattern of our approach to be 3 rings, the same as the method of

[Liu et al. 2019]. We can further show that through weighting the

energy with the inverse of the eigenvalues (see Eq. 29), we obtain

an even better preservation of the low-frequencies, see Fig. 7 (right

two) and Fig. 8. In general, the weighted version performs better in

maintaining the lowest frequencies, while the unweighted version

tends to preserve all the eigenmodes in a least-square sense.

With the reusable numerical factorization and separable PSD pro-

jection structures, our ADMM solver is able to solve the problem

efficiently while the method of [Liu et al. 2019] takes longer to con-

verge. In Fig. 11, we compare the runtime with [Liu et al. 2019], both

using the optimal setups (our weighted version and [Liu et al. 2019]

unweighted version). The argminX step requires a linear solve of a

KKT system and argminZ are a set of PSD projections of the small

clique matrices. For details about argminX and argminZ step, see

App. A. Leveraging the fact that the KKT systemmatrix in argminX
remains the same until 𝜌 is updated, we only perform numerical

factorization when 𝜌 is updated and reuse it until 𝜌 changes again

(usually after tens of iterations). As shown in Fig. 12, most of our

runtime is spent on numerical factorization while the time spent

on each argminX and argminZ step is relatively small. We report

our detailed runtime in Fig. 23. For detailed runtime comparison

within the weighted and unweighted versions, see Fig. 28.

We also compare the total runtime of our sparse ADMM solver

with the MOSEK solver in CVX [Grant and Boyd 2008, 2014] in

Fig. 8. For applications that desire to preserve low frequencies, our weighted

formulation can focus on preserving the first few eigenvectors and eigenval-

ues (shown in increasing order). Our weighted formulation achieves better

results comparing to [Liu et al. 2019] under the same sparsity pattern when

coarsening the shapes from 8,000 (left) and 28,000 (right) vertices to 400,

respectively. Here we show the Laplacian commutativity norm and Or-

thonormality norm based on the functional map of the first 50 eigenvectors

(inside the dashed lines).

Fig. 9. As degrees of freedom increase for volumetric Laplacian, our method

is still able to maintain the spectral properties of the tetrahedral meshes

(from 32,000 and 27,000 vertices to 400 respectively) using the same sparsity

as [Liu et al. 2019]. Here the eigenvalues are shown in increasing order.
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Fig. 10. Under the same 3-ring sparsity, our method consistently achieves

better objective values comparing to the spectral coarsening method pro-

posed by [Liu et al. 2019]. We evaluate both unweighted (top) and the

weighted (bottom) versions across different numbers of coarse vertices rang-

ing from 200 (light) to 1200 (dark). Note that the dashed lines denote that

the optimization has already converged.

Fig. 11. We compare the runtime of our algorithm (weighted) with [Liu

et al. 2019] (unweighted) using the same 3-ring sparsity pattern with respect

to the number of coarsened vertices |V𝑐 |, as our method performs better

with the weighted version and [Liu et al. 2019] shows the opposite. Here

we only consider the solve time, factoring out the precomputation for both

our method and the method of [Liu et al. 2019]. As in our formulation the

solve involved in ADMM is independent of the resolution of the original

mesh, we are able to coarsen a high-resolution mesh without a significantly

increased solve time compared to [Liu et al. 2019].

Fig. 12. We show the decomposition of the total runtime of our algorithm

using the same 3 rings sparsity pattern as in Fig. 11. From bottom to top

are the precomputation time, argminX time, argminZ time, other ADMM

time (including numerical factorization), chordal decomposition time and

eigendecomposition time, respectively. As shown in the figure, most of the

runtime of our algorithm is spent on numerical factorization. By reusing

numerical factorization until 𝜌 changes, the time spent on each argminX
and argminZ step is relatively small.

Fig. 13. We compare the total runtime of our solver and the MOSEK solver

in CVX [Grant and Boyd 2008, 2014], which only supports dense SDP con-

straints and uses interior point method to solve the dense SDP problem

using the 1-, 2- and 3-ring sparsity patterns of [Garland and Heckbert 1997].

As a dense SDP solver that is not designed to solve large sparse SDP problem,

MOSEK takes a relatively long runtime when the matrix size is large or the

rings of neighborhood increases. Here |V𝑐 | is number of the vertices in the

coarse mesh.

Fig. 14. We visualize the biharmonic distance of our method and [Garland

and Heckbert 1997] using the same 1-ring sparsity pattern. Our method can

further postprocess and improve spectral preservation of the result from

[Garland and Heckbert 1997] (from 110,000 vertices to 500).

Fig. 15. By visualizing the biharmonic distance, we show that our approach

can also postprocess the result from [Lescoat et al. 2020] (from 10,000 vertices

to 800) and achieve better spectral preservation while still maintaining the

same 1-ring sparsity pattern.

Fig. 13, which uses the interior point method to solve the problem

with dense PSD constraints. We show our solver can work on large

problems in a more efficient way thanMOSEK, while MOSEK, which

only supports dense semi-definiteness constraints, is not designed

for large sparse SDP problem and takes a relatively long time to

converge when the matrix size is large or the rings of neighbor-

hood increases. Here we use 0.8 × |V𝑐 | eigenvectors to ensure both

methods converge.

5.3 Spectral Simplification

Our approach could further improve the results from the spectral

simplification via post-processing. The method of [Lescoat et al.

2020] performs spectral simplification by greedily collapsing the

edge with the minimum cost, thus it may result in suboptimal re-

sults. In Fig. 16 and Fig. 27 we post-process the cotangent Laplacian
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Fig. 16. Using the same 1-ring sparsity pattern, our method can serve as

a post-processing tool to further improve the resulting operator from the

method of [Lescoat et al. 2020]. Given the original mesh with 26,000 ver-

tices, our post-processed operators result in better functional maps (middle)

compared to the output operators from [Lescoat et al. 2020] (left), as well

as closer eigenvalues (right) to the reference.

Fig. 17. When the coarsening is aggressive, our method can still postpro-

cess the results of [Lescoat et al. 2020] to improve the quality of spectral

preservation.

from the results of [Lescoat et al. 2020] in a global manner to further

improve the spectral preservation while keeping the sparsity pattern

and the mesh vertices fixed. We further demonstrate the improve-

ment of the spectral preservation by visualizing the biharmonic

distance of our method and [Garland and Heckbert 1997] (Fig. 14)

or [Lescoat et al. 2020] (Fig. 15) using the same 1-ring sparsity pat-

tern. Our method can also recover the spectral properties when

Fig. 18. We simplify the anisotropic Laplacian (with parameter 20) from

50,000 vertices to 1,000 vertices using the same sparsity pattern as [Garland

and Heckbert 1997] or [Liu et al. 2019]. Our method can handle anisotropic

operators where [Garland and Heckbert 1997] may fail entirely due to the

anisotropy. Our optimization scheme enables users to freely choose between

1-ring or 3-ring sparsity. In contrast, [Liu et al. 2019] has much less control

on the sparsity pattern and only allows for 3-ring sparsity pattern, which

introduces a significant amount of fill-ins.

Fig. 19. Our optimization achieves better spectral preservation of the

anisotropic Laplace operator (with parameter 60, from 5000 vertices to

400 vertices) when the rings of neighborhood increases. Increasing the non-

zeros in the sparsity pattern will allow for more degrees of freedom, which

enables our solver to converge to a better result.
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Fig. 20. Our method can encode the spectral behavior of a volumetric

mesh only using its surface mesh with some added links. We approximate

the volumetric behavior using a sparse matrix with a controllable sparsity

pattern, while the corresponding matrix has to be dense in the traditional

Boundary Element Method [James and Pai 1999]. Here the source vertex of

the biharmonic distance is visualized as a green dot, and the added links

are visualized as the gray lines (bottom two).

the coarsening is extreme for complicated shapes (see Fig. 17 and

Fig. 26). In addition to the isotropic cotangent Laplacian, in Fig. 18

we demonstrate our capability in handling anisotropic operators

without introducing any new fill-ins.

For downstream applications that accept changes in the sparsity

pattern, our method enables one to freely control the sparsity pat-

terns to achieve better results. As shown in Fig. 19, we can freely

increase the sparsity pattern from 1 ring to 3 rings in order to allow

more degrees of freedom and better results. But one should also

consider the trade-off between the number of non-zero fill-ins and

the quality of the results because more degrees of freedom implies

a denser output operator with a longer runtime (see Fig. 13).

5.4 Volume to Surface

Surface-only representation is a more efficient alternative compared

to its volumetric counterpart because three dimensional (volumet-

ric) problem is reduced to two dimensions (surface). However, in

computer animation and simulation, it is often more desirable to use

Fig. 21. Starting from the constrained Delaunay tetrahedralization, we can

increase the number of rings of neighborhood to better approximate the

volumetric Laplacian using a surface mesh with random links. Similar to

the partial functional correspondence in [Rodolí et al. 2017], the diagonal

of our functional map may be skewed because we may lose some internal

eigenvectors during this partial matching.

a volumetric representations to simulate the volumetric behavior.

We show that our approach can optimize the Laplacian of a surface-

only mesh with random distant connections generated via TetGen

[Si 2015] to approximate the spectral behavior of a volumetric mesh.

Taking the boundary surface

mesh of a volumetric tetrahedral

mesh as the input, we first add dis-

tant edges to the surface Laplacian

to determine the sparsity pattern.

We use the constrained Delaunay

tetrahedralization in TetGen [Si

2015] to add the edges between “visible” but distant vertices (see

inset), and use its pattern as the sparsity pattern of our modified sur-

face Laplacian. Then we optimize the modified operator to preserve

the spectral behavior of the volumetric Laplacian. Compared to the

traditional discretization in Boundary Element Method [James and

Pai 1999] where the boundary matrices are usually dense, in our

method the surface-only Laplacian can still remain sparse and main-

tain a similar sparsity pattern as its surface cotangent Laplacian.

In Fig. 20 and Fig. 21, we visualize the functional map and bihar-

monic distance of our optimized surface Laplacian. We show that
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Fig. 22. When one ties the differential operator with the mesh, we can

either preserves the appearance of the mesh [Garland and Heckbert 1997]

or the spectral properties of the operator [Lescoat et al. 2020], but not both.

Our approach enables one to detach the operator from the mesh (right)

to achieve both simultaneously: using an appearance-preserving mesh for

visualization and a spectral-preserving operator with user-desired sparsity

patterns (e.g., 1-ring, 2-ring, or 3-ring) for computation.

we can further capture the volumetric behavior by increasing the

rings of neighborhood.

Similar to [Rodolí et al. 2017], our volume-to-surface mapping is

also a partial functional mapping, which may lose some (internal)

eigenvectors and result in a skewed functional map when the in-

ternal volume is large (see Fig. 21). Our method can also serve as

a possible way to generate training data to find the best sparsity

pattern without the presence of a volumetric mesh.

5.5 Operator Detachment

Sharp et al. [2019] propose to represent the same geometry using

two discrete representations: one for visualization and one for com-

putation. In a similar spirit to [Sharp et al. 2019], our approach

enables one to have one mesh for visualization and one detached

operator for computation.

Previous decimation methods either preserve the appearance

but fail in preserving spectral properties or preserve the spectral

properties but fail in preserving the appearance. This is partly due

to the perspective of defining the operator directly on the discrete

mesh, and partly due to the lack of tools to optimize the operator

independently.

In order to simultaneously preserve the appearance and the spec-

tral properties, in Fig. 22 we first obtain a coarsened mesh from an

appearance-preserving decimation, then we optimize the operator

separately using the sparsity pattern defined by the connectivity of

the mesh. Intuitively, this optimization tries to retrieve the desired

properties on the original mesh by manipulating the metric “seen”

by the coarsened operator. At the end of this process, even though

the “distorted” metric may not be embeddable, one can always use

the embeddable appearance-preserving mesh to visualize the results

of the computation. In Fig. 22, this detachment allows us to preserve

both the appearance and the spectral properties, while the method

of [Garland and Heckbert 1997] fails in preserving spectral proper-

ties and the method of [Lescoat et al. 2020] fails in preserving the

appearance. In Fig. 1, we demonstrate the strength of this approach

in approximating the vibration modes of a high-resolution mesh

using a coarse mesh with a detached coarsened operator. Compared

Fig. 23. Our runtime shows that our method is more suitable for aggressive

coarsening (middle). When many eigenvectors are in use (top) or input

meshes are large (middle), computing eigendecomposition can be the bot-

tleneck.

to [Liu et al. 2019] which does not allow inputting an arbitrary

sparsity pattern (instead it builds the output sparsity pattern by

“squaring” an incidence matrix, see their Eq. 7), our method can take

any sparsity pattern as input. This means one can geometrically sim-

plify a mesh, then use that new mesh’s sparsity pattern as input to

our algorithm to optimize a compatible operator (see Fig. 1), which

enables its use in applications that require an embedded mesh and

an accurate coarse operator (e.g., simulation with contact handling).

6 LIMITATIONS & FUTURE WORK

Further exploiting the limited degrees of freedom would enable

an even better spectral preservation for 1-ring isotropic operator.

Jointly optimizing the sparsity pattern and the operator entries may

lead to even finer solutions, especially for volume-to-surface approx-

imation. Exploring different regularizers and energy formulations

would be desirable for solving the underdetermined systemwhen de-

grees of freedom are too large compared to the number of eigenvec-

tors in use. Avoid introducing additional low frequency eigenvectors

21K → 0.8K 1 ring

during the optimization would

benefit the downstream applica-

tions (see the inset). Reducing

the memory consumption of the

Kronecker product would further

increase the scalability of our

method (see App. ??). Incorporat-
ing a fast eigen-approximation or removing the use of eigen de-

composition would further accelerate the spectral coarsening (see
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Fig. 23). Further analysis of the tradeoff between the convergence

and the number of cliques could offer insight towards future applica-

tions of chordal decomposition. Extending our spectral coarsening

of surface-based geometric operators to volumetric stiffness matrix

could also provide an alternative way to deal with the numerical

stiffening in simulation. As a first order method, ADMM is slow

to obtain highly accurate solutions, but fast in getting moderately

accurate solutions. Similar to other splitting methods, ADMM is

sensitive to the conditioning of the problem data. Thus adding a

preconditioner could make our solver more robust to the scaling

problem and increase its performance. Finally, it would be also in-

teresting to extend our method to many other applications beyond

geometry processing and shape matching, such as physics-based

simulation, topology optimization, algebraic multigrid and spectral

graph reduction.
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A ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

Alternating direction method of multipliers (ADMM) solves opti-

mization problems in the following format

min

x,z
𝑓 (x) + 𝑔(z) (33)

s.t. Ax + Bz = c. (34)

The (scaled) ADMM solves the problem by iteratively applying the

following steps

x𝑡+1 B argmin

x

(
𝑓 (x) + 𝜌

2

∥Ax + Bz𝑡 − c + u𝑡 ∥2
2

)
z𝑡+1 B argmin

z

(
𝑔(z) + 𝜌

2

∥Ax𝑡+1 + Bz − c + u𝑡 ∥2
2

)
(35)

ũ𝑡+1 B u𝑡 + Ax𝑡+1 + Bz𝑡+1 − c

𝜌𝑡+1, u𝑡+1 B update(𝜌𝑡 ),
where 𝜌 is the penalty parameter and u is the scaled dual variable.
In the last step, a common strategy is to update the penalty 𝜌 as

𝜌𝑡+1 =


𝜏 incr𝜌𝑡 if ∥r𝑡 ∥2 > 𝜇∥s𝑡 ∥2
𝜌𝑡/𝜏decr if ∥s𝑡 ∥2 > 𝜇∥r𝑡 ∥2
𝜌𝑡 otherwise,

(36)

where 𝜏 incr > 1, 𝜏decr > 1, 𝜇 > 1 are parameters, r and s are the
primal residual and the dual residual, respectively. We can compute

them as

r𝑡+1 = Ax𝑡+1 + Bz𝑡+1 − c, s𝑘+1 = 𝜌A⊤B(z𝑡+1 − z𝑡 ) . (37)

After updating 𝜌 we must also scale the dual variable u as

u𝑡+1 = ũ𝑡+1 × 𝜌𝑡

𝜌𝑡+1
. (38)

A common stopping criteria is when both ∥r𝑡 ∥2 < 𝜖pri and ∥s𝑡 ∥2 <

𝜖dual are below the thresholds 𝜖pri, 𝜖dual. We only review basic con-

cepts of ADMM here for self-containedness. We wholeheartedly

refer the reader to a great survey [Boyd et al. 2011] for more infor-

mation on ADMM.

B CHANGE OF VARIABLES

We describe the details on how to apply change of variables and

vectorization for the constraints presented in Eq. 11.

Given the matrices PE and P-1E in Eq. 17, which allow us to go back

and forth between vec(X) and xE , we can vectorize the equality

constraint in Eq. 11 as

vec(Xv) = vec(e) ⇒ (v⊤ ⊗ I) vec(X) = e (39)

⇒ (v⊤ ⊗ I)P-1E︸        ︷︷        ︸
G

xE = e (40)

⇒ GxE = e, (41)

where I is the identity matrix. For the chordal decomposition Eq. 15,

we can directly apply the vectorization strategy discussed in Sec. 3.1

as

vec(X) =
𝑝∑
𝑖=1

vec(P⊤𝑖 Z𝑖P𝑖 ) ⇒ vec(X) =
𝑝∑
𝑖=1

K𝑖 vec(Z𝑖 )︸  ︷︷  ︸
z𝑖

(42)

⇒ P-1ExE =

𝑝∑
𝑖=1

K𝑖z𝑖 , (43)

where we define z𝑖 B vec(Z𝑖 ). Therefore we can easily rewrite the

PSD constraint on Z𝑖 as

Z𝑖 = vec
-1 (z𝑖 ) ∈ S𝑛𝑖+ . (44)
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Combining all these results gives us the formulae in Eq. 18.

C DERIVATION OF ADMM STEPS

Here we describe how to derive the ADMM steps (see Eq. 35) to

solve the optimization in Eq. 24. Our derivation follows a similar

strategy described in Sec. 4.2 [Zheng et al. 2020].

We start by introducing an auxiliary variable y such that

min

xE ,y,z̃
𝑓 (xE ) (45)

s.t. GxE = e (46)

PCP-1ExE = PCK̃y (47)

vec
-1 (Q𝑖 z̃𝑖 ) ⪰ 0, 𝑖 = 1, · · · , 𝑝 (48)

y = z̃, (49)

Then we introduce the indicator function 𝛿W as

𝛿W (𝑥) =
{
0, 𝑥 ∈ W
∞, otherwise

. (50)

This allows us to rewrite Eq. 45 as

min

xE ,y,z
𝑓 (xE ) + 𝛿e (GxE ) + 𝛿0 (PCP-1ExE − PCK̃y)︸                                                   ︷︷                                                   ︸

function of X = {xE , y}

+
𝑝∑
𝑖=1

𝛿+
(
vec

-1 (Q𝑖 z̃𝑖 )
)

︸                   ︷︷                   ︸
function of Z = {z̃}

s.t. y − z̃ = 0, (51)

where we use 𝛿+ to denote the indicator function for the PSD con-

straint. This format of the optimization enables us directly apply

the ADMM step Eq. 35. In particular the update of X = {xE , y} is
as follows

argmin

xE ,y
𝑓 (xE ) +

𝜌

2

∥y − z̃𝑡 + u𝑡 ∥2
2

s.t. GxE = e (52)

PCP-1ExE − PCK̃y = 0,

where the solution depends on the energy function 𝑓 in use. In the

case of spectral coarsening energy, this boils down to a single linear

solve of the KKT system (see App. E). The update ofZ = {z̃} is

argmin

z̃

𝑝∑
𝑖=1

∥y𝑡+1𝑖 − z̃𝑖 + u𝑡𝑖 ∥
2

2
(53)

s.t. Q𝑖 z̃𝑖 ⪰ 0 𝑖 = 1, · · · , 𝑝. (54)

This can be solved by projecting a set of small dense matrices

vec
-1
(
Q𝑖 (y𝑡+1𝑖

+ u𝑡
𝑖
)
)
to PSD, which requires us to solve the eigen-

decomposition and remove the negative eigenvalues. Note that this

process can be solved efficiently because each matrix to be projected

is small and this process can be trivially parallelized.

D argminX FOR SPECTRAL COARSENING

Applying ADMM to solve the spectral coarsening problem requires

us to derive the update on X (see Eq. 52). We start by vectorizing

the spectral coarsening energy Eq. 5 as

𝑓 (X) = 1

2

∥RM-1LΦ − M̃-1XRΦ∥2
M̃

(55)

=
1

2

∥ M̃1/2RM-1LΦ︸         ︷︷         ︸
W

− M̃−1/2︸︷︷︸
V

X RΦ︸︷︷︸
U

∥2𝐹 (56)

=
1

2

∥W − VXU∥2𝐹 (57)

=
1

2

∥vec(W) − vec(VXU)∥2
2

(58)

=
1

2

∥vec(W) − (U⊤ ⊗ V) vec(X)∥2
2
. (59)

We then apply change of variables in Eq. 17 to modify the energy

as follows

𝑓 (xE ) =
1

2

∥ vec(W)︸   ︷︷   ︸
w

− (U⊤ ⊗ V)P-1E︸         ︷︷         ︸
E

xE ∥22 =
1

2

∥w − ExE ∥22 . (60)

Updating X = {xE , y} in the ADMM (Eq. 52) amounts to obtain-

ing the minimizer of the following problem

min

xE ,y

1

2

∥w − ExE ∥22 +
𝜌

2

∥y − z̃𝑡 + u𝑡 ∥2
2

(61)

s.t. GxE = e, (62)

PCP-1E︸︷︷︸
C

xE − PCK̃︸︷︷︸
D

y = 0. (63)

We first derive the Lagrangian with multipliers 𝜇1, 𝜇2 as

L(xE , y, 𝜇1, 𝜇2) =
1

2

∥w − ExE ∥22 +
𝜌

2

∥y − z̃𝑡 + u𝑡 ∥2
2

(64)

+ 𝜇⊤
1
(CxE − Dy) + 𝜇⊤

2
(GxE ) . (65)

Setting the derivatives to zeros gives us

𝜕L
𝜕xE

= 0 ⇒ E⊤ExE + C⊤𝜇1 + G⊤𝜇2 = E⊤w (66)

𝜕L
𝜕y

= 0 ⇒ y = z̃ − u + 1

𝜌
D⊤𝜇1, (67)

𝜕L
𝜕𝜇1

= 0 ⇒ CxE − Dy = 0, (68)

𝜕L
𝜕𝜇2

= 0 ⇒ GxE = 0. (69)

We can substitute the expression of y from 𝜕L/𝜕y = 0 to 𝜕L/𝜕𝜇1 = 0

and then obtain a set of equations

E⊤ExE + C⊤𝜇1 + G⊤𝜇2 = E⊤w (70)

CxE − 1

𝜌
DD⊤𝜇1 = D(z̃ − u) (71)

GxE = 0. (72)
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This enables us to obtain the optimal x★E , 𝜇
★
1
via solving a linear

system 
E⊤E C⊤ G⊤

C −1/𝜌 DD⊤ 0
G 0 0



xE
𝜇1
𝜇2

 =


E⊤w
D(z̃ − u)

0

 . (73)

Then we can recover the optimal y★ as

y = z̃ − u + 1

𝜌
D⊤𝜇★

1
. (74)

E argminX FOR SPECTRAL COARSENING

When the number of eigenvectors that are chosen to preserve is

large, the size ofU⊤⊗V in Eq. 60 can be large. However, we can avoid

explicitly construct U⊤ ⊗ V by leveraging the fact that only E⊤E
and E⊤w are used in the linear solve Eq. 73. By using the properties

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) and (B ⊗ A)vec(X) = vec(AXB),
we can instead compute E⊤E and E⊤w as

E⊤E = ((U⊤ ⊗ V)P-1E )
⊤ (U⊤ ⊗ V)P-1E (75)

= (P-1E )
⊤ (U⊤ ⊗ V)⊤ (U⊤ ⊗ V)P-1E (76)

= (P-1E )
⊤ (U ⊗ V⊤) (U⊤ ⊗ V)P-1E (77)

= (P-1E )
⊤ ((UU⊤) ⊗ (V⊤V))P-1E , (78)

E⊤w = ((U⊤ ⊗ V)P-1E )
⊤
vec(W) (79)

= (P-1E )
⊤ (U ⊗ V⊤)vec(W) (80)

= (P-1E )
⊤
vec(V⊤WU⊤), (81)

where the size of (UU⊤) ⊗ (V⊤V) and V⊤WU⊤
are independent of

the number of eigenvectors we choose to preserve.

F IMPLEMENTATION

Our solver is implemented in MATLAB using gptoolbox [Jacobson

et al. 2018]. We adapt the MATLAB code from [Sun and Vanden-

berghe 2015] to compute the chordal decompoistion. Runtimes for

all the examples were reported on a MacBook Pro with an Intel i5

2.3GHz processor, 16GB of RAM and an Intel Iris Plus Graphics 655

GPU. Experiments for volume to surface were tested on a Linux

workstation with an Dual 14 Core 2.2Ghz processor, 383GB of RAM

and 2 Titan RTX 24GB GPU. We did not use multi-threading, though

the projection to PSD cones can be easily parallelized using MAT-

LABMEX file. Since the KKT systemmatrix in argminX remains the

same until 𝜌 is updated, we only perform numerical factorization

when 𝜌 is updated and reuse it until 𝜌 changes again (usually after

tens of iterations).

For consistency, we choose to evaluate all the results on the first

100 eigenvectors across the experiments unless specified otherwise.

We preserve the first 100 eigenvectors for surface Laplacian in spec-

tral coarsening and simplification, and use an increased number

of eigenvectors for volumetric Laplacian or when the system goes

underdetermined. We also normalize all the eigenvectors to have

unit length and scale the mesh to ensure each vertex has unit area.

For a fair comparison, we compare the runtime of our MATLAB

implementation with the MATLAB implementation of [Liu et al.

2019]. When comparing against [Lescoat et al. 2020], we use their

Fig. 24. We plot the change of the average number of cliques and the average

maximal and minimal clique size with respect to clique parameters which

we control in the chordal decomposition algorithm when coarsening various

meshes to 800 vertices.

Fig. 25. We show the change of the total ADMM runtime, the ADMM

runtime per iteration and the number of iterations with respect to clique

parameters when coarsening a number of meshes to 800 vertices. Here

the lines denote the average and the color regions denote the standard

deviation.

decimation algorithm without edge flips and enable approximation

of the minimizer on collapse edges.

In our implementation, the projecting of each cliquematrix to PSD

is relatively cheap because the size of clique matrix usually varies

from tens to a few hundreds and can be controlled by the parameters

during the clique merging stage of chordal decomposition. The

size of the clique matrix after the chordal decomposition would

be approximately around the clique merging parameters. In our

experiments, we set the parameters for clique merging to be 200 so

that the size of the clique matrix is in a few hundreds considering

the tradeoff between eigendecomposition speed and convergence

rate. As shown in Fig. 24 and Fig. 25, there is a non-monotonic

relationship between the clique parameter and the ADMM runtime,

and we experimentally determine that a parameter of 200 works

best for all our examples. Optimal parameter determination is left

for future work. We recommend setting the clique parameters to

be larger than 100 when only preserving the first 100 eigenvectors

to ensure our method converges. We also notice that increasing the

number of eigenvectors preserved would lead to better convergence

and avoid underdeterminism in the system. Let 𝑘 be the number

of the eigenvectors we choose to preserve and𝑚 be the number of
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Fig. 26. Our algorithm can further improve the spectral properties of [Le-

scoat et al. 2020] as a post-processing step.

Fig. 27. Due to the freedom of choosing the output sparsity pattern, our

method can serve as a post-processing tool to further improvze the resulting

operator from the method of [Lescoat et al. 2020]. The results indicate

that our post-processed operators result in better functional maps (middle)

compared to the output operators from [Lescoat et al. 2020] (left), so as the

eigenvalues (right).

vertices in the coarsened domain. When the DOF defined by the

sparsity pattern is large (i.e., volumetric Laplacian, 3-ring surface

Laplacian) , we recommend setting the number of the preserved

eigenvectors to be 𝑘 > 0.5 ∗𝑚, and using the weighted energy to

preserve the low-frequency modes. Experimentally, we observe that

when the DOF is too large, the systemmay become underdetermined

for volumetric mesh and 2- or 3-ring if𝑚 > 2 × 𝑘 .

Fig. 28. We compare the runtime of our optimization algorithm of both

the weighted and unweighted version with [Liu et al. 2019] using the same

3-ring sparsity pattern. Here we only consider the solve time, factoring out

the precomputation for both our method and the method of [Liu et al. 2019].

G ADDITIONAL RESULTS

In addition to the results in Sec. 5, we report more results on the spec-

tral simplification in Fig. 26 and Fig. 27 and an extended evaluation

on runtime in Fig. 28 to complement the main text.
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