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ABSTRACT
We investigate the performance of DEI, an approach [2]
that computes off-mesh approximations of PDE solutions,
and can also be used as a technique for scattered data in-
terpolation and surface representation. For the general case
of unstructured meshes, we found it necessary to modify
the original DEI. The resulting method, ADEI, adjusts the
parameter of the interpolant, obtaining better performance.
Finally, we measure ADEI’s performance using different
sets of scattered data and test functions and compare ADEI
against two methods from the collection of ACM algo-
rithms: Algorithms 752 [10] and 790 [11]. The results
show that ADEI is better than, if not comparable to, the best
of the compared scattered data interpolation techniques.
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1. Introduction.

Raw numerical data usually originates from a continu-
ous domain, but only a finite number of uniform or non-
uniform samples is available. When this data is collected
in an irregular fashion, it is said to be scattered, irregular,
or random. Scattered data can be found in a number of
problems in fields such as earth sciences, meteorology, en-
gineering, and medicine.

For many scientific visualization systems it is desir-
able to have the input data defined over a regular grid.
These systems can use interpolation schemes to generate
uniform grid data in cases when scattered data needs to be
displayed.

2. Scattered data Interpolation

The scattered data interpolation problem can be defined as:
Given a set of � irregularly distributed points

�������	�
�������������������������� � (1)

over ��� , and scalar values � � associated with each point
satisfying � � � � ��� � �� � �

for some underlying function� �	���� �
, look for an interpolating function �"!#� �	�$�� �

such that for
���%�&�'���'�(� �

� �	� � �� � �)� � � (2)

We assume that all the points
� �

(also referred to as nodes
or mesh points) are distinct, and that all the points are not
collinear. This formulation can be generalized to higher
dimensions but, for the remainder of this paper, we will
concentrate on the two-dimensional case.

3. Previous Work

The subject of scattered data interpolation is extensive.
This section presents an overview of some techniques that
are widely used in current methods. Emphasis will be on
the techniques and principles behind the two ACM algo-
rithms used later for comparisons.

The Shepard’s Method is one of the earliest tech-
niques used to generate interpolants for scattered data. It
defines an interpolating function that is the weighted aver-
age of the value at the mesh points. This method is global
because the evaluation of the interpolant requires the eval-
uation of a function on all given mesh points. Global tech-
niques are expensive for large number of mesh points, but
it is possible to apply them to overlapping subsets, and
blend the solutions into a single interpolant for the whole
set. There are variants to the technique, such as the Modi-
fied Shepard’s Method, which modifies the weighting func-
tion to take into account only the points lying in a disc
with radius * , centered at the point at which the inter-
polant is evaluated. The modification improves the method
both in addressing shape preservation and in making it lo-
cal to a neighborhood of points [5] [7]. ACM algorithm
790 (CSHEP2D) [11], used later in Section 6, is a variation
of the modified Shepard’s method.

Another important method of interpolation is known
as Hardy’s Multiquadrics [6]. In this global method, we
consider an interpolating function that is a combination of
basis functions. A popular choice of these are the radial
basis functions. Franke, in [4], reports the superior perfor-
mance of multiquadrics compared with other methods.

Another way to construct an interpolant is to consider
it to be a piecewise union of patches (usually low degree
multivariate polynomials) joined with certain continuity.
Examples of this approach are those based on Spline and
Bezier patches [1][3], which are extensively used in the
area of geometric design and give a user freedom to model
and change the shape of an object. ACM Algorithm 752
[13], used later in Section 6, is based on this approach with
cubic triangular patches joined with +-, continuity.



4. The Differential Equation Interpolant

For most Partial Differential Equations (PDEs) it is com-
mon to apply a numerical method that produces an approx-
imate solution at certain discrete points

� �
in the domain

of interest, which are distributed over a non-uniform trian-
gular mesh that is adapted to the local behavior of the so-
lution. In [2], Enright develops an approach, called Differ-
ential Equation Interpolant (DEI), that efficiently approx-
imates the values of the solution of a PDE at off-mesh
points. The approach is such that the precision at the re-
sulting off-mesh points has the same order of accuracy as
that obtained by the underlying numerical method for the
discrete mesh points. The resulting interpolation scheme
assumes that the underlying solution . satisfies, for exam-
ple, a known two-dimensional, second order PDE of the
form / . �102�	����3� . � .34 � .
5 � (3)

where
/

is a differential operator defined by/ . �76 , �	���� � .3484:9 6 � �	�$�� � .35(5�9 6<;����$�� � .
485 (4)

where
6 , , 6 � and

6<;
can be any arbitrary nonlinear func-

tion. The approach also assumes that an accurate approx-
imation to the gradient of . at the points

�=�>�?�	�
������@�
is determined by the numerical method. Such quasi-linear
PDEs arise in many application areas in science and en-
gineering (see [2] for a more detailed discussion of these
problems) The interpolant is defined as a piecewise surface,
where each triangle element A in the domain plane has an
associated bivariate polynomial
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The variables N and
P

correspond to a mapping of
�

and


into a unit square where the domain triangle is contained.
The mapping is defined by N �RQ 4�S
48T�UV)W ,

P �XQ 5YS
5ZT[UV=\ , where
the vertex

��J]�^���_J`��aJ8�
denotes the origin of the unit

square N �cb
,
P �cb

, and d , � d � are appropriate scaling
factors that depend on the size of the patch A .

To characterize B C�D E we need to find the coefficients

M � K ; for cubic patches ( e �gf
), we need to find 16 coeffi-

cients. We do this by specifying 16 linear equations asso-
ciated with the coefficients M � K . We determine the first nine
equations by imposing the following linear constraints at
each of the three points
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where N h � Q 4Yk8S
4 T UV)W ,
P h � Q 5lk8S
5 T UV=\ . We construct the re-

maining seven linear equations by choosing seven ’colloca-
tion points’ inside the triangle, and by imposing a condition
that the interpolant ’almost’ satisfy Equation (3) at the cho-
sen points. Using (5) we see that for a fixed value of

�
and

,
/ B ; D E ���$�� � is a linear combination of the coefficients

M � K . Then, for a collocation point
��m���nmF�

we impose a linear
constraint of the form/ B ; D E ��m���nm<�G�102��m���nm
� m� �'o��4 �(o��5 � (7)

where
m� �(o� 4 and

o� 5 are approximations to the actual val-

ues of � �Fp8q Q 4 D 5(Up 4 and
p8q Q 4 D 5(Up 5 respectively. To determine

the coefficients M � K , we use the system of linear equations
formed by nine linear interpolation constraints, (6), and lin-
ear constraints corresponding to seven collocation points,
(7). This system can be expressed as

r M �7s
(8)

where M �ut M � Kav , and
r

is a matrix that depends on the
mesh points, the collocation points, and the definition of

/
.

The vector
s

depends on the mesh data and the approxima-
tions

m� �'o� 4 and
o� 5 associated with the collocation points.

To ensure that there is a solution the collocation points must
be chosen such that

r
is nonsingular.

5. Enter: ADEI

Although DEI has an accuracy comparable to the numerical
method that provided the data, it does not necessarily gen-
erate a continuous piecewise interpolant. For a choice of
collocation points, this can be observed in the form of os-
cillations in the approximation near the boundaries of the
triangles A , due to the fact that on the boundaries, the func-
tion B C�D E may well be a high degree polynomial. For the
purposes of visualization, we would like to obtain smooth
surfaces, so it is desirable to attenuate the discontinuities
between patches as much as possible. To achieve this, we
develop a test that rejects choices of collocation points that
produce noticeable discontinuities among patches. Ana-
lyzing several examples, we observe that patches with non-
negligible discontinuities have associated coefficients, M � K ,
with a magnitude larger than expected. This behavior is re-
flected in the norm of the vector M associated with the patch
(8). The magnitude of the norm is directly related to the
value of �LwYxYy � M � :

�LwYxYy � M �G�
H

� D K(zF{ J D ;�|
� M � K � �O} �8~ (9)

We observed that the noticeable discontinuities cor-
respond to patches with large values of �LwYx8y � M � . To at-
tenuate the discontinuities, we developed an algorithm that
detects the offending patches and decreases their associ-
ated �LwYxYy � M � by choosing alternate collocation points, and
therefore a different vector M . This algorithm is described



in Algorithm 1.
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Figure 1. DEI and ADEI for a 6x6 regular mesh; a- the
interpolant obtained with the first choice of collocation
points, where discontinuities can be seen; b- the corre-
sponding interpolant after the application of Algorithm 1.

The choice of the values � and ���:���:*��`��� af-
fects the performance of the algorithm, both in how long
it takes to find a suitable set of collocation points, and
how much the discontinuities are attenuated. Although
the best choices for these values will depend on the func-
tion, � , and the location of the scattered data, we observed
that overall good results were obtained for � �������

and�������:*��&��� ����b�b
. We call the interpolant defined

with this set of alternate collocation points the Alternate
Differential Equation Interpolant (ADEI). The result of ap-
plying the algorithm to the data in Figure 1-a can be seen
in Figure 1-b.

6. The Test: Functions and Data.

We compare ADEI against two ACM algorithms for the in-
terpolation of scattered data, algorithms 752 (acm752) and
790 (acm790). The tests were performed on three func-

Algorithm 1 Algorithm to find a set of coefficients M � K that
will attenuate the oscillations in the boundaries of the tri-
angles A .

for every � do
Compute an initial set �����(�Z� �Y�

end for�Z� �n�n� �'� ���@� � �
loop

Compute the norm vector: � �8 	�'¡L�¢�_£'�'¤¥ ¦�l¡
Compute threshold: �¨§`��� � §©�¢ª¬«l¤�(®a�_¯¨°[±G ¦� �l¡
Compute set of offending triangles: ²X�u�'�´³�� �8 	�'¡¥µ�@§`�8� � § �
if ²¢�·¶ or ¸ �Z� �n�n� �'� then

FINISH
end if�Z� ���Z� �(� ��¹`®�º � �
for each ��»² do�½¼�¤� � �·¾¿ ®a�(�@¼	®�º¦À � �n�n� �(� �´¹`®&º � �

repeat�½¼�¤� � ���½¼�¤� ��Á�Â
Choose alternate set of collocation points for �
Compute Ã �)���OÄ�Z� �O�
if � £'��¤Å �Ã�l¡�Æ��_�� 	�'¡ then

Update coefficient with better values: �)��Ã��Z� ���Z� �(� ���@� � �¿ ®a�(�@¼	®�º¦À � �n�n� �(� ���@� � �
end if

until
¿ ®��(�@¼	®�º¦À � ���Z� �(� or �@¼	¤Ç� � �´È�É�Ê²GËÍÌaÎ:À

end for
end loop

tions: � , from [2], � � from the test suite used by Renka
in [12], and � ; , which serves to evaluate the performance
of the methods on functions without significant features.
To make the comparison as fair as possible, we provide
acm752 the gradients at the mesh points in the same way
that they were provided to ADEI. Because the routines in
acm790 do not allow a direct input of the gradients, they
were not used with this algorithm.

The test functions are:

� , �	���� �)� M w N ����b�F� 9 N � � �[��bÏ�	�¬Ð� ���
(10)

� � �	���� �)� A Q S�Ñ�Ò�Ó
W T@Ô�Õ \\ U 9 b �×Öa� A Q SÍÑ�Ò�Ó

W T½Ø�Õ \\ U
9 b �×Öa� A Q SÍÑ�Ò�Ó

W T@Ô�Õ \\ U A Q S�Ñ�Ò�Ó
W T�Ø�Õ \\ U

(11)

� ; ���$�� ��� N � � �½ÙOÚ2 �LÛ N � � �	Ú2�
� (12)

For ADEI, we must introduce a differential operator,
/

, for
each test function. We used

/ . � . 484 9-. 5(5 , and the corre-
sponding functions

0&�
such that

/ � ���Ü0������$��
� . � . 4 � . 5 � .
The data is divided into three node sets: adaptive ran-

dom samples, truly random samples, and regular samples.
The adaptively random class (Node Set I) has for every test
function two data sets of 100 points, referred to as Data Sets
I and II. The truly random class (Node Set II) consists of



Table 1. The parameter x � can be seen as being obtained
from a least-squares fit from a constant function to the data.
The interpretation associated with its value is summarized
in this table.

Ý(Þ INTERPRETATION

0 no accuracy
0.9 fair fit

0.95 good fit
0.99 very good fit

0.999 excellent fit
0.9999 almost perfect fit (negligible error in empirical data)

three sets of 100 randomly chosen points, referred to in this
paper as Data Sets III, IV, and V. The third class (Node Set
III) is a regular grid that divides the unit square into an 8 by
8 subdivision, referred to as Data Set VI. Also, we group
the functions into two classes: Those with many features
( � , and � � ), and those without many features ( � ; ).

All random points are generated in the square [-
0.1,1.1] ß [-0.1,1.1], making most of the thin triangles of
the associated triangulation lie outside the unit square
[0,1] ß [0,1], where all the error measurements are taken.

We apply the error measure used by Renka and Brown
in [12] to compare a function . and its approximation à. . It
is defined by

A xYxOwYx � . � à. �)�âáäã z�å�æ ClE�ç`E¨è � . � B �=Ð à. � B ��� �
á1ã z�å�æ ClE[ç<E@è � . � B ��Ð . � �

� �)�é�
�)�)�

(13)

where ê w e`AO�éA P are the points from a 33 by 33 uniform
grid defined on the unit square, that lie in the convex hull
defined by a Node Set (I, II, or III).

We summarize the results given by the error measures
computing the values x � ���`Ð ��ë 03� A x8xOwYx � , which is called
the coefficient of determination. Its interpretation [12] is
summarized in Table 1.

7. Results

We compute1 for a given a set of values of x � the expected
fit for a particular interpolation method. Table 2 shows how
we can categorize by numbers the magnitude x � . For a
given set of values x � , it is possible to count how many of
them belong to each fitness level ( interval), and to obtain
the relative frequency xaì �	�[� for a particular fitness level

�
.

We define the expected fit as

� � B A M
P AYe&� � P � H

��I2J D í xaì
�	�[�¨�

(14)

For the functions with many features ( � , and � � ), ADEI
has better accuracy than acm752 (even with the supplied

1Detailed tables for values of Ý Þ can be found in [8]

Table 2. Fitness levels intervals. A value x � belongs to one
of these five categories.

INTERVAL FITNESS LEVEL FIT

0-0.9 0 No
0.9-0.95 1 Fair

0.95-0.99 2 Good
0.99-0.999 3 Very Good

0.999-0.9999 4 Excellent
0.9999-1 5 Almost Perfect

gradients) and acm790 for Node Sets I, II, IV, and V. For
Node Sets III and VI, ADEI is comparable to acm752. Fig-
ure 2-a shows the expected fit of the methods for the func-
tions with many features. For function � ; , all the methods
exhibit an excellent to almost perfect fit. Again, the two
methods with higher accuracy in this case are ADEI and
acm752. Figure 2-b shows the expected fit of the methods
for � ; .

ADEI has the better accuracy when interpolating � , ,
where it always generates an excellent fit for adaptive, truly
random, and uniform meshes. On the other hand, for � � the
best method is acm752, with ADEI being comparable for
the random sets only. For � ; all the methods exhibit ex-
cellent to almost perfect fitting characteristics, again, when
ADEI is not the best, it is comparable to acm752. Figure
3 shows the expected fit over Data Sets I-III, for functions� , , � � , and � ; .

It is clear that acm790 didn’t perform comparably to
the other two methods because no gradient data was sup-
plied to it. We also observed that acm752 improved its per-
formance using true gradient information instead of gradi-
ent estimation techniques.

The cost of evaluating the interpolant in acm790 is
different than in ADEI and acm752, although all methods
share an initial stage where they must find the cell (or tri-
angle2) that contains the point to be evaluated. The final
evaluation on ADEI and on acm752 requires the evaluation
of a cubic polynomial. However, the final evaluation in
acm790 involves several evaluations of cubic polynomials,
one for each mesh point in a disc centered in the evalua-
tion point, making the evaluation not as fast as the methods
based on triangulations. The optimization algorithm de-
scribed in Algorithm 1 makes the estimation of the overall
cost of ADEI difficult, because we cannot tell in advance
how many times alternate collocation points have to be cho-
sen, or how many patches will present non-negligible dis-
continuities.

8. Conclusion

For the given data sets and functions, ADEI performed an
excellent to near perfect fit with better, if not compara-

2The expected cost of locating a point in a triangulation is îÍï�ð�ñ�òaï�óFô�ô ,
whereas for the cell method on acm790 is îÍï�õ�ô with a îÍï�óFô worst case
[9].
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Figure 2. a- Expected fit over functions � , � � � on node sets
I-VI; b- Expected fit over function � ; on node sets I-VI.
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Figure 3. a- Expected fit over Data Sets I-III, on function� , ; b- Expected fit over Data Sets I-III, on function � � ; c-
Expected fit over Data Sets I-III, on function � ; .

ble, accuracy results than the algorithms it was compared
against, in particular acm752.

Our work only begins an investigation into the sensi-
tivity of the choice of collocation points of the interpolant
generated by ADEI. Although there are known cases where
the choice will generate a bad solution, we still cannot see a
clear way to generate good collocation points. Future work
in this area will address this issue, as well as the question of
how ADEI and the optimization scale to higher dimensions.
Other future research venues include the study of this tech-

nique as an effective scheme for the surface representation
of large sets of scattered data.
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