
CSC 2521 Final Project Report

Hanieh Bastani

December, 2007



NPR Renderer: Overview

I implemented a 3D NPR renderer which supports contours, suggestive contours, and toon

shading. For this implementation, I used the trimesh2 library written by Szymon Rusinkiewicz.

The mesh models used are in PLY format from the Suggestive Contours gallery page. I also

used the rtsc software (http://www.cs.princeton.edu/gfx/proj/sugcon/index.html#software)

as a learning tool and reference during the research phase of writing this implementation,

and also adopted their method of calculating the directional derivatives (identified as DwKr

in their implementation) of vertices for suggestive contours.

I used the convention of normals pointing outward from the surface, to be consistent with

the literature.

Visibility issues are resolved by rejecting triangles that are entirely on the back face of

the mesh. If the dot product of the view vector with the vertex normals yield a negative

value, for all vertices across a triangle, the triangle lies on the back face of the mesh and is

ignored.

Contours

Determining contours requires finding the zeros of the dot product between n and v, n

being the surface normal at point p, v being the vector from the view position to the point

p. Working with polygons in my implementation, n.v is calculated exhaustively for every

vertex. As it is often the case, the zeros of n.v may occur between two vertices, which means

one vertex has a positive n.v value, while another has a negative n.v value. Thus, for every

triangle of the mesh, I perform a check for a sign change among the triangle vertices. If it

is determined that n.v at one vertex has a different sign than the other two, a simple linear

interpolation determines the point on the triangle edges at which n.v = 0. For example,

1



Figure 1: Elephant Contour with ‘Toon’ Shading

if n.v at vertex0 has a different sign than n.v at vertex1 and vertex2, a linear interpolant

finds the points p1 and P2 on the edges < vertex0,vertex1 > and < vertex0,vertex2 >,

respectively. A line with a specified thickness is then drawn between p1 and p2. Figures 1

to 4 are the resulting contour renderings, shown with different styles of shading, covered in

section .

2



Figure 2: Elephant Contour with ‘Smooth’ Shading

3



Figure 3: Horse Contour with ‘Smooth’ Shading (Front)

4



Figure 4: Horse Contour with ‘Smooth’ Shading (Top)

Suggestive Contours

Calculating Radial Curvature

Suggestive contours require the calculation of the radial curvature κr at every vertex of the

polygonal mesh, and are drawn where κr = 0 subject to the constraint that the directional

derivative in the direction of the view vector is positive. In my implementation, κr for every

vertex i is calculated as follows:

kr[i] = meshObj− > curv1[i] ∗ cos2Theta + meshObj− > curv2[i] ∗ sin2Theta (1)

where curv∗[i] indicates the principal curvatures at vertex i, provided by the trimesh2 library.

Theta is the angle between the view vector and the principal directions corresponding to

the principal curvatures, provided through the pdir* member of the mesh object in the

trimesh2 library. cos2Theta and sin2Theta, representing cos2(θ) and sin2(θ) are calculated

5



Figure 5: Suggestive Contours on Elephant with ‘Toon’ Shading

with respect to the dot and cross products between the view vector and principal directions

at the vertices. Figures 5 to 8 are the resulting suggestive contours renderings.

Determining Zero Crossings

To get the appearance of smooth contours, I check once again for triangles in which one vertex

has a radial curvature with a different sign than the other two. Upon encountering such a

triangle, I check the value of the directional derivatives Dk of the vertices of the triangle.

The directional derivatives must be positive, which would mean that the eye is viewing the

6



Figure 6: Suggestive Contours on Horse with ‘Smooth’ Shading

7



Figure 7: Suggestive Contours on Cow with ‘Toon’ Shading

8



Figure 8: Suggestive Contours on Cow with ‘Smooth’ Shading

9



Figure 9: Suggestive Contours with No Line Stylization

point from its convex side. If the Dk values are negative, the exhaustive search for a potential

suggestive contour continues. However, if they are positive, the two points at which kr = 0,

lying on the edges leading to the vertex with a singular kr sign are approximated using linear

interpolation, and are used to specify endpoints of a (suggestive) line.

Styling Elements

Figure 9 is an example of equal line density/thickness throughout the line drawings. Normally

artists avoid such harsh lines, and tend to vary line intensities and/or thickness. The Siggraph

lecture notes suggest varying line thickness as a function of the square root of the radial

10



Figure 10: Suggestive Contours with “Alpha” Line Stylization

curvature. After some experimentation, I used the following expression to specify the alpha

parameter of the line:

1.0−
√

(pKr ∗ α) (2)

where α is some large number (10000 in most of my renderings), and pKr is the interpolated

radial curvature value of the zero crossing point. Figure 10 was rendered with alpha values

based on κr, and shows aesthetic improvement in terms of line smoothness and edge softness

over the previous rendering.

11



Toon Shading

I implemented two types of shadings, a smooth and a hard toon shading. A texture image

is constructed for each type. The texture coordinates are assigned based on the dot product

between the normal n at point p, and the vector from point p to the light position, call

it l. For the hard shading, the texture image is constructed from multiple distinct colors,

with no transitional colors. Hence, within a certain range of n.l the same color is used.

As the values of n.l pass a specified threshold, the color changes abruptly. In the case of

the smooth shading, the texture map varies smoothly by interpolating the color values of

multiple specified colors. The user can specify color values, as well as the threshold parameter

controlling the regions of the distinct parameters. Figures 11 to 13 show renderings with

different shading parameters.

12



Figure 11: Cow Toon Shaded, Two Colors

13



Figure 12: Cow Toon Shaded, Three Colors, Threshold Between Regions (1)

14



Figure 13: Cow Toon Shaded, Three Colors, Threshold Between Regions (2)

15


