
Shape from Video: Dense Shape, Texture, Motion and

Lighting from Monocular Image Streams

by

Azeem Lakdawalla

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2005 by Azeem Lakdawalla

Abstract

Shape from Video: Dense Shape, Texture, Motion and Lighting from Monocular Image

Streams

Azeem Lakdawalla

Master of Science

Graduate Department of Computer Science

University of Toronto

2005

We present a probabilistic framework for robust recovery of dense 3D shape, motion,

texture and lighting from monocular image streams. We assume that the object is rigid,

smooth, Lambertian, illuminated by one distant light source and subject to transforma-

tions that are smoothly time-varying. The problem is formulated as a large optimization

where we learn all model and pdf (probability distribution function) parameters simul-

taneously, using a quasi-Newtonian optimization technique.

ii

Contents

1 Introduction 1

2 Background 3

2.1 Shape and motion recovery assuming brightness constancy 3

2.1.1 Feature-Based methods . 4

2.1.2 Direct Methods . 7

2.2 Shape recovery from shading information 10

2.2.1 Shape-from-shading . 12

2.2.2 Photometric Stereo . 15

2.3 Hybrid methods . 16

3 A Generative Model for Shape from Video 19

3.1 What are we generating? . 19

3.2 Surface and Normal Parameterization . 20

3.2.1 Approximating Derivatives . 20

3.3 Affine Transformations and Projection 21

3.4 Intensity of projected point pi,t . 22

3.5 Probabilistic formulation for image generation 22

3.5.1 Gaussian distributions . 23

3.5.2 Robust imaging model . 24

3.5.3 Priors . 27

iii

3.6 Summary . 29

4 The Problem Statement for Shape from Video 31

4.1 Maximum A Posteriori (MAP) Estimation 31

5 Optimization 33

5.1 Overview . 33

5.1.1 I and ∆I . 34

5.1.2 Constraints . 35

5.2 Optimization schedule . 36

5.2.1 Initialization . 36

5.3 Pre-conditioning . 39

5.4 Other attempted optimization methods 39

5.4.1 Stochastic gradient descent method 40

5.4.2 Solution by coordinate ascent . 42

6 Results 44

6.1 Computer generated sequence . 46

6.2 “Lady” figurine . 51

6.2.1 Comparison with other work . 54

6.3 Hatake Kakashi figurine . 57

6.4 Uzumaki Naruto figurine . 61

6.5 Occluded Uzumaki Naruto figurine . 66

6.5.1 With mixture components . 67

6.5.2 Without mixture components . 71

7 Discussion and Future Directions 75

7.1 Improvements . 75

7.2 Extensions . 76

iv

7.3 Validation . 76

Bibliography 77

v

Chapter 1

Introduction

The visual systems in humans and animals have the uncanny ability to extract detailed

scene information based on “images” captured by the eyes. In numerous cases, the way

light is reflected off a moving object that has been imaged in 2D provides sufficient

queues to enable our brains to deduce shape and motion in 3D. This is done effortlessly

by our visual system yet the problem is far from trivial for machines. An image, after

all, is simply an matrix of intensity values. How can such data be examined in order to

extract relevant shape and motion information? This question has motivated computer

vision researchers to develop techniques and algorithms to recover an object’s shape and

motion from either stereo or monocular image streams. It has become one of the “classic”

problems in computer vision (section 2). As well as being an interesting problem in its

own right, there are numerous applications for shape and motion reconstruction from

video: 3D special effects animation, robotic navigation and interaction, medical imaging,

architecture and urban design, etc...

This work presents a method to reconstruct dense 3D rigid geometry, motion, tex-

ture and lighting from monocular image streams captured by a freely-moving camera.

The imaged objects are assumed to be projected using scaled orthographic projection,

illuminated by one distant, static, light source. We require initial, sparse, point tracks

1

Chapter 1. Introduction 2

of the object in order to bootstrap the system. In our implementation, this is done via

user interaction. To improve convergence and the quality of results, the user is strongly

encouraged to manually segment the objects in question from the background by creating

a boolean mask. We assume no a-priori shape model (section 3.2), only that the object

is smooth and moves smoothly across frames (section 3.5.3).

Our method combines feature-based and photometric techniques to obtain dense

shape recoveries. While work has been done in this area with impressive results [43, 22],

they are not robust to outliers. Since captured video sequences come from a freely-moving

camera, robustness to outliers is important since the images may contain occlusions,

shadows or reflections. Our system is robust to such outliers (sections 3.5.2 and 6.5).

We formulate the problem in a probabilistic framework (section 3.6), and use non-

linear quasi-Newtonian optimization (section 5.1) to obtain all model and distribution-

function parameters. This procedure is very computationally demanding, and requires

several days of continuous optimization in order to produce visually-acceptable results.

We show results of our technique on various textured figurines (section 6), and provide

a comparison with other work in the same domain (section 6.2).

Chapter 2

Background

3D object and motion reconstruction from images is one of the most active areas in

computer vision. Among the wide body of research in this area, we present here the

major techniques that are directly related to this thesis.

We identify three major themes in this domain. The first concerns the recovery

of shape and motion from image streams by exploiting the assumption of brightness

constancy across frames. The second theme concerns shape recovery based on changes

in intensity of the imaged object’s surface points. Finally, the third theme concerns

“hybrids” that combines the first two themes into a framework that takes advantage of

both techniques.

2.1 Shape and motion recovery assuming brightness

constancy

The assumption of brightness constancy states that an imaged object’s surface points will

not significantly change intensity across frames. The feature-based and direct methods

we describe here both use this assumption to “track” points across frames in order to

determine the shape and motion of the underlying imaged object.

3

Chapter 2. Background 4

2.1.1 Feature-Based methods

Feature-Based methods can be thought of as a two step process. First, feature tracks are

determined across the image stream. Then, these tracks are fed into a structure-from-

motion (SFM) algorithm that examines the tracks and computes the shape and motion

of the object. We begin by discussing features, then methods used to obtain point tracks,

and finally move on to SFM algorithms.

2.1.1.1 Features

Features are pixel “windows” that have a certain degree of “uniqueness” in that we want

to be able to identify the same feature in different images. This is done by examining

pixel windows in the image for their content, and comparing them with other windows in

other images. Lowe [23], for instance, has developed a Scale Invariant Feature Transform

(SIFT) to extract salient features from an image by examining difference of Gaussians

in scale-space. SIFT points are descriptors that can be used to locate similar features in

other images. SIFT has been used successfully in object recognition, using sparse images

taken from different viewpoints [23], by comparing SIFT features present in each image

with a database of “trained” images.

2.1.1.2 Feature Tracking

Although SIFT can find features in each image separately, determining their correspon-

dences across frames is very tricky. Often similar keypoints will not map directly to

their temporal counterparts. Since the images are extracted from a video stream, a tem-

poral model is more appropriate. Lucas and Kanade [24] have shown how to register

pixel neighborhoods using an alignment algorithm (2.7) based on brightness constancy

between adjacent frames.

Consider the image point (xi, yi) at frame t. From one frame to the next, this point

Chapter 2. Background 5

will move some distance (uti , vti), or:

It+1(xi, yi) = It(xi − uti , yi − vti) (2.1)

We assume that uti and vti are very small, since we are considering movement from

one frame to the next. We can therefore linearize as follows:

It+1(xi, yi) = It(xi − uti , yi − vti) (2.2)

It+1(xi, yi) ≈ It(xi, yi)−
[

dIt

dxi

dIt

dyi

]uti

vti

 (2.3)

Rearranging the terms, we obtain a line constraint in uv space:

dIt

dxi

uti +
dIt

dyi

vti +
dIt(xi, yi)

dt
= 0 (2.4)

where dIt(xi,yi)
dt

= It+1(xi, yi) − It(xi, yi). This is an underconstrained problem since we

have one equation with two unknowns. We can therefore consider a window of pixels,

w, that moves under (uti , vti). Determining the displacement (uti , vti) is equivalent to

minimizing:

E(uti , vti) =
∑

w

(
dIt

dxiw

uti +
dIt

dyiw

vti +
dIt(xi, yi)

dt

)2

(2.5)

Taking the derivative of (2.5) with respect to uti and vti and setting the two equations

to zero gives the following system of equations:

[a b
c d] =

[P
w(∂I

∂x)
2 P

w
∂I
∂x

∂I
∂y

P
w

∂I
∂x

∂I
∂y

P
w(∂I

∂y)
2

]
(2.6)

[utivti] · [a b
c d] = [

P
w

∂I
∂x

∂I
∂t

P
w

∂I
∂y

∂I
∂t] (2.7)

Recovering the displacement [utivti] requires the matrix [a b
c d] to be non-singular. This

occurs when pixel windows w contain high spatial frequency content, or when both eigen-

values are similar in magnitude [30]. The entire sequence can be tracked by propagating

registered pixel neighborhoods from one frame to the next. It provides an easy way to

obtain point tracks and has been used extensively for over 20 years [1].

Chapter 2. Background 6

The Lucas-Kanade tracking method does suffer from sensibility to noise, however.

Since the algorithm attempts to find displacements by matching pixel windows, noise

can cause the tracks to get “lost” and latch on to other areas of the image that do

not correspond to the original feature. The method can also suffers from the aperture

problem, or situations where image derivatives are much stronger in one direction than

the other (one eigenvalue is much larger than the other). This will cause the tracked

windows to “slide” along such edges, since the many windows along it will match the

original feature.

2.1.1.3 Structure-from-Motion

Tomasi et al.’s factorization method [34] can be used to obtain rigid shape and motion

from orthographic 2D point tracks. They show that stacking the mean-subtracted tracks

into a registered measurement matrix W yields a matrix with at most rank 3. This

can be exploited by factoring the matrix using singular-value decomposition, but keeping

only the largest 3 singular-values and their corresponding eigenvectors.

W2F×P =

[
XF×P

YF×P

]
(2.8)

= U2F×P DP×P VT
P×P (2.9)

W̃2F×P = Ũ2F×3 D̃3×3 ṼT
3×P (2.10)

This new matrix can be factored into two matrices representing rotation R and shape

S.

W̃2F×P =
(
ŨD̃

1
2

)(
D̃

1
2 ṼT

)
(2.11)

= R̃S̃ (2.12)

= (RQ)
(
Q−1S

)
(2.13)

where Q are metric constraints.

The recovered shapes are generally very sparse, since most imaged objects do not

contain an abundance of trackable features. Furthermore, if the tracks are unreliable or

Chapter 2. Background 7

noisy, this process will result in poor reconstructions. In general, the factorization method

is used to provide a rough estimate of an object’s shape and motion for initialization to

other reconstruction algorithms, as they provide good “initial guesses” [43].

Szeliski and Kang [33] pose the SFM problem as a least squares optimization. This has

many benefits, notably the ability to generalize the approach to perspective projection

and support partial or uncertain 2D tracking. This provides for a more robust method

for shape and motion recovery, since factorization can break down in the presence of

noise and cannot implicitly handle occluded point tracks.

Pollefeys et al. [27] describe a complete system for recovering dense structure and

camera motion from uncalibrated video. Sparse features are first used to determine the

epipolar geometry and camera parameters using the robust RANSAC algorithm [10] to

determine inliers. The camera projection matrices are then automatically calibrated,

and all images are rectified by warping them so that their epipolar lines coincide. Stereo

techniques are then used to compute pixel correspondences to obtain dense reconstruc-

tion. The system is very impressive, not only for the resulting reconstructions (figure

2.1) but also because there are no constraining assumptions on the camera (such as the

requirement for orthographic projection) and occlusions are supported. Furthermore the

system is completely automatic.

2.1.2 Direct Methods

Feature-based methods rely on the tracking of points to derive shape and motion. They

try to minimize an error metric based on tracked points, whereas direct methods [17]

minimize an error metric based directly on raw image data.

Most of the shape recovery algorithms we describe in this section still use features to

recover shapes, however the recovery of features is implicitly embedded into the whole

mechanism. The two-step process of feature-based methods has been fused into one direct

process.

Chapter 2. Background 8

Figure 2.1: Dense surface reconstruction. Original frame (left), textured reconstruction

(middle) and close-up textured reconstruction (right). Taken from Pollefeys et al. [27]

Irani [16] exploited subspace constraints to develop a multi-point, multi-frame optical

flow algorithm. Instead of tracking points individually from frame to frame (using

2.7), the whole sequence, with all points, is considered at once. We can write a multi-

point, multi-frame version of (2.7) by assembling all displacements [up,tvp,t] into a large

T × 2P matrix which gives:

[U|V]T×2P

[
A|B
C|D

]
2P×2P

= [G|H]T×2P (2.14)

Irani shows that the rank of [U|V] will be equal or less than 9. We can therefore

exploit these constraints on the correspondences in order to reduce noise and resolve

ambiguity in regions exhibiting the aperture problem. The observation here is if [U|V]

has rank ≤ r, then [G|H] has rank ≤ r. We can therefore project [G|H] to the lower rank

[Ḡ|H̄] and use it to calculate [Ū0|V̄0]. Iterating through these steps will yield refined

versions of [Ū|V̄]. The key insight is that the constraints are being applied to raw image

data and not the estimated, noisy point tracks. The method is therefore directly using

the original, raw data.

Torresani et al. [36] and Brand [7] use such rank constraints to correct less reliable

data (ie. textureless regions, occlusion, noise) and recover non-rigid geometry and motion

by using a factorization method similar to (2.12). Since these methods directly couple

Chapter 2. Background 9

Figure 2.2: Improved tracking using rank constraints. In red are features that have been

recovered using rank constraints that would otherwise suffer from the aperture problem.

Taken from [36]

Figure 2.3: Robust tracking, shape and motion recovery using a probabilistic model.

Points in green are valid features, and points in red are outliers. Taken from Torresani

and Hertzmann [35].

tracking with shape recovery, they benefit from both improved tracking (figure 2.2) and

improved shape recovery.

Torresani and Hertzmann [35] cast the same problem as an maximum likelihood

estimation problem. This is done by specifying a generative model for non-rigid shape and

motion based on features, where the features in turn are Lucas-Kanade pixel windows.

This is all specified together in one model. Their system then automatically solves for

all unknown parameters of the model and the probability distribution function. It is also

robust, as it handles outliers (figure 2.3). This is the attractive aspect of probabilistic

methods. They can be constructed using a generative framework (see chapter 3), making

it relatively simple to include complicated notions such as occlusions.

Blanz et al. [38] use a-priori models to fit morphable face models to images and video.

Chapter 2. Background 10

Figure 2.4: Tracked and recovered shape (bottom) of an input sequence (top). Taken

from Blanz et al. [38]

This method is not based on features at all, and instead directly minimizes the distance

between image data and a projected morphable head model by summing over all pixels.

They can use their model to track and solve for geometry at the same time (figure 2.4).

The results are impressive, however the system requires a substantial amount of training

data (scanned and aligned head models) to deliver convincing reconstructions. This limits

the system since it cannot reconstruct arbitrary geometry. It does, however, demonstrate

the effectiveness of constraining the space of possible solutions to yield convincing shape

recoveries.

2.2 Shape recovery from shading information

In this section we describe two methods, shape-from-shading and photometric stereo,

that attempt to determine a height field’s normals from one or more images by using the

object’s reflectance function and information about lighting.

Shape information can be extracted from one or more images by observing the shading

variations across the imaged object’s surface. The shading is assumed to be described by

Lambert’s Law (2.15) [11], which relates the intensity at a point with the angle between

the surface’s unit normal, n̄, and the light direction, l̄ (figure 2.5).

I = max(n̄ · l̄, 0) (2.15)

The reflectance function of an imaged surface point for a Lambertian height field

Chapter 2. Background 11

l

n

0
 0.
5
 1
 1.
5
 2
 2.
5
 3
 3.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

Angle (radians)

m
a
x
(n

l,
 0

)

Figure 2.5: Lambertian lighting

Figure 2.6: A height field z = f(x, y)

z = f(x, y) is:

R(x, y) = α n̄(x, y) · l̄ (2.16)

where α is albedo, n̄ and l̄ are normalized vectors of the surface normal and directional

light respectively.

Consider surface points si = [xi, yi, z (xi, yi)] on this height field, where i is an index

over locations on the height field’s grid. Two orthogonal surface tangent vectors of z at

si are:

pi =
∂z(xi, yi)

∂xi

(2.17)

qi =
∂z(xi, yi)

∂yi

(2.18)

∂si

∂xi

= [1, 0, pi] (2.19)

∂si

∂yi

= [0, 1, qi] (2.20)

Chapter 2. Background 12

A normal vector at si can be expressed as the cross product of both tangent vectors:

n(xi, yi) =
∂si

∂xi

× ∂si

∂yi

= [−pi,−qi, 1] (2.21)

The unit normal is:

n̄(xi, yi) =
n(xi, yi)

‖n(xi, yi)‖
=

[−pi,−qi, 1]√
p2

i + q2
i + 1

(2.22)

From (2.21), each normal can be expressed in terms of the surface’s tangent vectors.

If we have determined a surface’s normals, the heights can be calculated expressing the

normal’s vector components pi and qi with finite difference approximations (section 3.2.1),

yielding two linear constraints:

pi = z(xi + 1, yi)− z(xi, yi) (2.23)

qi = z(xi, yi + 1)− z(xi, yi) (2.24)

By assembling all constraints for all normals we can construct a large linear system

and solve for height values z(xi, yi), up to a translational ambiguity in z [2].

2.2.1 Shape-from-shading

Given one image, I(x, y), of an object with constant and known albedo, α, illuminated

by a known directional light source, shape-from-shading (SFS) [8] uses the reflectance

function to determine an imaged object’s normals. This is the same as minimizing (2.25).

ESFS =
∑
x,y

(I(x, y)−R(x, y))2 (2.25)

Determining the normals, however, is an underconstrained problem since each pixel

corresponds to one equation with two unknowns (p and q). Constraints, or penalty terms,

are needed to find a unique solution.

The most common constraint used in SFS are the integrability constraint [12] and

the smoothness constraint [15, 14]. The integrability constraint (2.26) is used to enforce

Chapter 2. Background 13

viewing directionlight direction

viewing directionlight direction

Figure 2.7: Concave-Convex ambiguity. Both imaged surfaces will look the same from

the viewing direction.

a valid surface, since not all configurations of normals yield possible surfaces.

EI =
∑
x,y

(
∂p

∂y
− ∂q

∂x

)2

(2.26)

This constraint ensures that if we integrate along any path on the surface from

(xstart, ystart) to (xend, xend), we always obtain the same value.

If, however, we express the reflectance function directly with finite differences for

the components of n̄ [37] (instead of solving for normals and then integrating), we can

eliminate the need for the integrability constraint altogether.

The smoothness constraint ensures that normals across the surface should change

gradually (2.27). Most SFS algorithms make use of this “regularization” constraint.

ES =
∑
x,y

(
∂p

∂x

)2

+

(
∂q

∂y

)2

(2.27)

Applying these constraints and obtaining a smooth integrable normal field does not

ensure that we obtain the correct 3D surface, however. There is still an ambiguity [4]

with respect to the concave-convex nature of the shaded region (figure 2.7). Since the

intensity is based on the dot product, or angle, between the normal and the light vector,

there are two sets of normals that will give the same image appearance.

In general, SFS algorithms do not yield convincing results [44]. Figure 2.8 shows

results using the algorithm described in Lee and Kuo [21]. This experiment was conducted

Chapter 2. Background 14

Figure 2.8: Example of Lee and Kuo’s [21] SFS algorithm. Taken from Zhang et al. [44]

Figure 2.9: User-guided SFS. Taken from Zheng et al. [42]

by Zhang et al. [44] in a comparison of methods. They determined that this algorithm

was among the best.

The problem with SFS is due to its inherent ill-posedness, and attempts to add

constraints are usually very “hit and miss” since the parameters of these terms come

down to guesswork. Also, the omnipresent concave-convex ambiguity usually results in

surfaces that are incorrect. Finally, SFS is a difficult technique to use with “real world”

scenes as it is very difficult to deduce the light source’s direction.

Nonetheless, Zheng et al. [42] have shown that SFS can work if the user guides the

process and resolves ambiguities. By allowing the user to place constraints on the image,

SFS can deliver very detailed and impressive results (figure 2.9).

Chapter 2. Background 15

2.2.2 Photometric Stereo

Photometric stereo [41] can be thought of as an extension to shape-from-shading. By

holding the viewing direction constant and varying the direction of a known light source

between successive images, this technique recovers a surface’s normals via the reflectance

function. If sufficient images are provided, it can recover the albedo of the imaged object

as well. Usually photometric stereo is done with the intention of recovering both albedo

and normals.

From (2.16), for several images N at a particular point (x, y), we have:

i1×N = αn̄T
1×3L3×N (2.28)

From (2.28), if we want to determine the normal vector only, we need a minimum of

two images. If we provide a minimum of three images, we can also recover the albedo of

the object at that location.

Belhumeur et al. [4] have shown that with three images of an object imaged under

unknown lighting conditions, the surface can be reconstructed up to a Generalized Bas-

Relief (GBR) transformation. The GBR is a linear transformation, f̄(x, y) = λf(x, y) +

µx + νy, which essentially amounts to scaling the original function and then adding a

plane to it. This observation stems from the fact that there are many combinations of

light source directions and normals that will yield the same shaded imaged object (figure

2.10).

It has been observed that the approximately 98% of the reflected light field from a

Lambertian object can be represented by the first two modes of its spherical harmonic

representation [3, 29]. This means that the set of images produced by a Lambertian

object, regardless of how complex the illumination is, can be approximated by a 9 di-

mensional linear subspace. Basri and Jacobs [2] have developed a photometric stereo

technique for unknown general lighting conditions based on these findings. They use

a factorization technique similar to Tomasi and Kanade’s [34] to obtain normals and

Chapter 2. Background 16

Figure 2.10: The Bas-Relief Ambiguity. Taken from Belhumeur et al. [4]

albedo. This technique is very advantageous as it permits lighting conditions found in

“real world” images (figure 2.11).

2.3 Hybrid methods

There has been research that does not strictly fall into each of the above categories. Work

has also been done to combine tracking and structure-from-motion with photometric

Figure 2.11: Photometric stereo with general, unknown lighting. Taken from Basri and

Jacobs [4]

Chapter 2. Background 17

Figure 2.12: The reconstructed “Lady” figurine from Zhang et al. [43]

stereo, thereby creating “hybrid” methods.

Tracking under varying illumination is described by Jin et al. [18]. They successfully

deal with intensity variation by introducing a scaling variable λ(p, t) =
It(xpt)

I0(xp0)
so that

It(xpt) = λ(p, t)I0(xp,0). The λ(p, t) are solved for together with the flow. Negahdaripour

[25] extends 2.1 even further by not only adding a scaling variable but also an offset

variable:

It+1(xi + uti , yi + vti) = M(xi, yi, ti)It(xi, yi) + C(xi, yi, ti) (2.29)

where M(xi, yi, ti) and C(xi, yi, ti) are the multiplier (scaling) and offset variables respec-

tively. The two variables are solved for with the flow, giving a total of 4 unknowns per

constraint.

Jin et al’s [18] method was used by Zhang et al. [43] to successfully track rank-

constrained features on a moving Lambertian object. From these features, structure-

from-motion is used to recover an initial sparse shape. Then the shape is refined (using

geometric constraints) and normals and lighting are determined (using photometric con-

straints). This combination of techniques is very effective, since the textureless regions

that cannot be tracked can be recovered by the photometric technique (figure 2.12).

Unfortunately, their method is not robust to outliers and occlusions.

Lim et al. [22] have developed an even simpler method based on Zhang et al. [43].

They create an intensity matrix based on the recovered SFM parameters. This matrix is

factorized into normals and lighting (2.28). A surface is then integrated and the whole

Chapter 2. Background 18

Figure 2.13: The reconstructed “Lady” figurine from Lim et al . [22]

process is reiterated until convergence. They operate directly on high resolution images

instead of implementing the typical coarse-to-fine procedures used for such problems.

Figure 2.13 shows their results on the same “Lady” sequence.

Chapter 3

A Generative Model for Shape from

Video

This chapter introduces a generative model, a probabilistic model which explicitly states

how to generate image sequences.

We begin by stating what exactly needs to be generated, and what assumptions we

are making to attain this goal. We then move on to describing the geometrical, reflective

and temporal properties involved in creating the image sequence.

3.1 What are we generating?

Our model will create an image sequence of a smooth, textured, rigid, Lambertian object

undergoing rotation and translation. The object is imaged using scaled-orthographic

projection, illuminated by one static directional light source. There is temporal coherence

between adjacent frames in the sequence, meaning that the object does not undergo

drastically different transformations from one frame to the next.

Figure 3.1 shows example frames of the types of images we would like our generative

model to create.

19

Chapter 3. A Generative Model for Shape from Video 20

Figure 3.1: 4 frames from a generated image sequence

3.2 Surface and Normal Parameterization

The geometric primitive used in our system is a height field z = f(x, y). The normals,

as described in section 2.2, are:

n̄i = n̄(xi, yi) =
n(xi, yi)

‖n(xi, yi)‖
=

[
−∂z(xi,yi)

∂xi
,−∂z(xi,yi)

∂yi
, 1
]

√
(∂z(xi,yi)

∂xi
)2 + (∂z(xi,yi)

∂yi
)2 + 1

(3.1)

3.2.1 Approximating Derivatives

In the discrete setting, ∂z(xi,yi)
∂xi

and ∂z(xi,yi)
∂yi

can be computed in two ways, by using either

finite or central difference approximation [26].

Consider a function f . Expanding the functions f(x + h) and f(x − h) using the

Taylor series gives:

f(x + h) = f(x) + h
∂f

∂x
+ O(h) (3.2)

f(x− h) = f(x)− h
∂f

∂x
+ O(h) (3.3)

By using either of the above expansions, we can derive two expressions for ∂f
∂x

:

∂f

∂x
=

f(x + h)− f(x)

h
+ O(h) (3.4)

∂f

∂x
=

f(x)− f(x− h)

h
+ O(h) (3.5)

These are both called the finite difference approximation. The first is the forward

difference approximation and the second is the backward difference approximation. Both

Chapter 3. A Generative Model for Shape from Video 21

have errors on the order of h. ∂f
∂x

can also be calculated by subtracting (3.2) from (3.3):

∂f

∂x
=

f(x + h)− f(x− h)

2h
+ O(h2) (3.6)

This gives us another expression called central difference approximation. Notice that

the error is on the order of h2. This method is more accurate.

In our system, we have chosen to use finite differences instead of central differences

whenever derivatives are needed. This choice was made because we found, through exper-

imentation, that direct coupling between neighboring data-points is necessary otherwise

the system sees our problem as separate sub-problems involving all normals at either odd

or even spacing intervals on the height field.

The unit normal using finite difference approximation is:

n̄i =
[−(z(xi − 1, yi)− z(xi, yi)),−(z(xi, yi − 1)− z(xi, yi)), 1]√
(z(xi − 1, yi)− z(xi, yi))2 + (z(xi, yi − 1)− z(xi, yi))2 + 1

(3.7)

3.3 Affine Transformations and Projection

We define pi,t as being the orthographically-projected, scaled, rotated, and translated

surface point si at frame t:

si = [xi, yi, z(xi, yi)]
T (3.8)

pi,t = ρt PRt si + dt (3.9)

where

P =

 1 0 0

0 1 0

 (3.10)

Rt =

[
1 0 0
0 cos(θxt) −sin(θxt)

0 sin(θxt) cos(θxt)

] [
cos(θyt) 0 sin(θyt)

0 1 0
−sin(θyt) 0 cos(θyt)

] [
cos(θzt) −sin(θzt) 0

sin(θzt) cos(θzt) 0
0 0 1

]
(3.11)

dt =

 dxt

dyt

 (3.12)

Chapter 3. A Generative Model for Shape from Video 22

3.4 Intensity of projected point pi,t

Now that we have a way to transform and project the height field onto the screen, we

must now determine the color and intensity of each projected point pi,t. There are two

factors that will influence the observed pi,t: its RGB texture value and the shading value

at that point. We associate an RGB vector [αri
, αgi

, αbi
] to each surface point si of our

height field. The color at the projected point pi,t will therefore be represented by this

three-channel texture vector.

If the intensity of pi,t were given simply by its texture, the resulting object would

look very synthetic. The eye is very sensitive to shading cues, and in order to create a

proper generative model for imaged objects, it is imperative to include shading.

We can incorporate shading information into our model by using the Lambertian

lighting equation (2.15) (see section 2.2). This equation determines the intensity of a

surface point by using the angle between the light source and the normal at that point.

Although this model alone is a very simple approximation to real world scenes, it can

still provide the necessary cues to convince the eye of depth. We also add an ambient

term, lat , to simulate the arrival of light arriving from other objects in the scene.

The intensity value at pi,t, for each color channel c, is:

l̄ =
[lx, ly, 1]√
l2x + l2y + 1

(3.13)

Ĩt,c(pi,t) = αci

(
lat + (Rtn̄i)

T l̄
)

(3.14)

3.5 Probabilistic formulation for image generation

This section begins with a brief discussion on Gaussian distributions, followed by the

specification for a robust generative model of image formation. A final section will

outline the smoothness terms that are an important aspect of realism.

Chapter 3. A Generative Model for Shape from Video 23

µ

σ

x

p(x)

Figure 3.2: General form of Gaussian. The green line indicates the mean.

3.5.1 Gaussian distributions

Before we derive our probabilistic framework, it is imperative to first describe the func-

tions we will be using to create our generative model.

A continuous random variable can be described using a number of distribution func-

tions. By far the most popular function is the Gaussian, or normal, distribution given

as:

N
(
x|µ; σ2

)
=

1√
2πσ2

e
−(x−µ)2

2σ2 (3.15)

The Gaussian is a parameterizable distribution with mean and variance. Eq. (3.15)

is plotted in figure 3.2.

This distribution has many appealing characteristics. Its parameters are intuitive

since the distribution can be expressed in human-understandable terms. It is also believed

that most naturally occurring phenomena are normally distributed due to the Central

Limit Theorem [5] [20].

The multi-variate version of the Gaussian with covariance matrix Σ and dimension-

ality d given as follows:

N (x|µ; Σ) =
1

(2π)
d
2 |Σ| 12

e
−(x−µ)T Σ−1(x−µ)

2 (3.16)

Chapter 3. A Generative Model for Shape from Video 24

For an isotropic Gaussian with diagonal covariance matrix σ2I, Eq. (3.16) reduces

to:

N
(
x|µ; σ2

)
=

1

(2πσ2)
d
2

e
−‖x−µ‖2

2σ2 (3.17)

3.5.2 Robust imaging model

We would like to create a probability distribution such that random samples from it will

yield a plausible sequence of images produced by the transformation, illumination and

projection of the underlying parameterized patch.

The generative model can be derived from (3.14):

It,c(pi,t) = Ĩt,c(pi,t) + n (3.18)

n ∼ N
(
0; σ2

image

)
(3.19)

This generative model will always create points that are visible. That is, there will

always be a value for all It,c(pi,t) that corresponds to a projected colored surface point.

What if we wish to generate an imaged object that is partially occluded? With the

current model this is impossible. In order to add more flexibility into our model, we

should also allow for the generation of outliers, or pixels that have not been generated

from the object.

A simpler example can be used to clarify outlier generation. Imagine a generative

model that creates points on the 2d plane about a line, with Gaussian noise. Imagine this

line represents some real-world statistical correlation, and we want to design a model that

generates points that such a line could pass through. The equation could be as follows:

ȳi = mxi + b (3.20)

yi = ȳi + n (3.21)

n ∼ N
(
0; σ2

)
(3.22)

This model will always generate points around the line (figure 3.3).

Chapter 3. A Generative Model for Shape from Video 25

0 50 100 150 200 250
−50

0

50

100

150

200

x

y

Figure 3.3: Graphical depiction of 3.21 for m = 0.7, b = 1 and σ2 = 144. The red line

represents the underlying line that generated the data (y = 0.7x + 1)

If this model were generating the results of an experiment, the measurements would

never give points that all lie so close to the line. There will certainly be outliers, or points

that should be ignored because they violate the general trend found in the data.

We could imagine creating such outlier points by first deciding whether a point should

be an outlier, and then sampling from a secondary distribution to determine what value

it will be. We define a hidden variable, Wi, where 0 indicates an outlier and 1 indicates

a valid point. If the point is not an outlier, we sample from our original line-generating

model. If it is an outlier, we generate a random value. This is equivalent to sampling

from a uniform distribution c.

p(Wi = 1) = τ (3.23)

p(yi|ȳi, Wi = 1, σ2) = N
(
yi|ȳi; σ

2
)

(3.24)

p(yi|ȳi, Wi = 0, σ2) = c (3.25)

Sampled points from this model are shown in figure 3.4.

We basically follow the same scheme as above. We create a mixture of two distribu-

tions: one being our image distance function derived above, and the other a distribution

that generates outlier points. It must be noted that the uniform outlier distribution, c,

Chapter 3. A Generative Model for Shape from Video 26

0 50 100 150 200 250
−50

0

50

100

150

200

x

y

Figure 3.4: Graphical depiction of 3.24 for m = 0.7, b = 1, σ2 = 144 and τ = 0.3. The red

line is the line that generated the valid points (3.24). The green line is the least-squares

linear fit to all points, valid and outlier.

is a simplified interpretation of what outliers should be. For instance, we know more

about occlusions than simply that they come from a uniform distribution. If a hand is

occluding the object, there is some “structure” there, notably the area occupied by the

hand, it’s color etc... This is not being modeled here.

Below shows the more robust model used in our system.

RGB color-values at pi,t:

ηi,t = {It,r(pi,t), It,g(pi,t), It,b(pi,t)} (3.26)

η̃i,t = {Ĩt,r(pi,t), Ĩt,g(pi,t), Ĩt,b(pi,t)} (3.27)

Generative model:

p(Wi,t = 1) = τ (3.28)

p(ηi,t|η̃i,t, Wi,t = 1, σ2
image) =

∏
c

N
(
It,c(pi,t)|Ĩt,c(pi,t); σ

2
image

)
(3.29)

p(ηi,t|η̃i,t, Wi,t = 0, σ2
image) = c (3.30)

where Ĩt,c(pi,t) is given in (3.14).

Chapter 3. A Generative Model for Shape from Video 27

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

4

3

2

1

0

1

2

3

4

5

f(x
)

f ’ (x
)

f ’ ’ (x
)

x

y

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

4

3

2

1

0

1

2

3

4

5

f(x
)

f ’ (x
)

f ’ ’ (x
)

x

y

Figure 3.5: Smooth and non-smooth curves with their first and second derivatives

3.5.3 Priors

We have thus far explained the portion of the generative model that generates the re-

sulting images. It is also possible, however, to inject additional information on what we

assume about the parameters themselves. These are called priors.

For instance, we assume that objects typically move smoothly from frame to frame.

Objects that translate across large distances extremely quickly are very rare, and such

motions should therefore be associated with small probabilities.

In our implementation, priors are used to say: “We assume smooth parameters, since

most of the objects we see are smooth, either temporally or spatially”.

Smoothness can be measured by examining either the first or second derivatives of

a curve (figure 3.5). When looking at first derivatives, we are measuring the proximity

of neighboring points on the curve. Second derivatives measure the difference between

neighboring first derivatives, or how fast the curve is changing direction. Our system

uses second derivatives for smoothness enforcement, since it penalizes “noisy” curves.

Chapter 3. A Generative Model for Shape from Video 28

Using finite differences, the general expression for this difference of derivatives is:

∂2f

∂x2
i

≈ ∂f

∂xi

− ∂f

∂xi−1

(3.31)

≈ (f(xi+1)− f(xi))− (f(xi)− f(xi−1)) (3.32)

≈ (f(xi+1)− 2f(xi) + f(xi−1)) (3.33)

This is also a way of saying that the value of a point on the curve should be midway

between the neighboring points. We can create a Gaussian distribution that expresses

this:

p(f(x1), f(x2), . . . , f(xn), σ2) =
1

(2πσ2)
N
2

e−
1

2σ2

P
i(f(xi+1)−2f(xi)+f(xi−1))2 (3.34)

By changing the variance of this Gaussian, we are essentially changing the level of

acceptable smoothness. This will be the general form of our prior probabilities.

The objects that we will be reconstructing are generally smooth. Neighboring height

field values will generally not be very different from each other. This can be incorporated

into our generative model stating that the second derivative of all points on the surface

should be low:

υi1 = z(xi + 1, yi)− 2z(xi, yi) + z(xi − 1, yi) (3.35)

υi2 = z(xi, yi + 1)− 2z(xi, yi) + z(xi, yi − 1) (3.36)

p(z(x1, y1), z(x2, y2), . . . , z(xn, yn), σ2
shape) =

1

(2πσ2
shape)

N
e
− 1

2σ2
shape

P
i(υ2

i1
+υ2

i2
)

(3.37)

Smoothness priors can be applied to transformations as well. By this we refer to ro-

tations, translations and scaling. Our assumptions state that the smoother these entities

are, the more realistic the movement. These priors are all implemented in the same form

as previously discussed. For clarity, we show the smoothness term for scaling:

p(ρ1, ρ2, . . . , ρt, σ
2
scale) =

1

(2πσ2
scale)

T
2

e
− 1

2σ2
scale

P
t(ρt+1−2ρt+ρt−1)2

(3.38)

Chapter 3. A Generative Model for Shape from Video 29

3.6 Summary

The complete probability distribution of all variables in our generative model is given

below.

Camera parameters:

ζ = {P, ρ1, θx,1, θy,1, θz,1, tx1 , ty1 , . . . , ρt, θx,t, θy,t, θz,t, txt , tyt} (3.39)

Shape and texture parameters:

β = {z(x1, y1), αr1 , αg1 , αb1 , . . . , z(xi, yi), αri
, αgi

, αbi
} (3.40)

Model parameters:

γ = {τ, la1 , . . . , lat , lx, ly, σ
2
image, σ

2
scale, σ

2
rot, σ

2
trans} (3.41)

RGB image intensity values:

κ = {I1,r(p1,1), I1,g(p1,1), I1,b(p1,1), . . . , It,r(pi,t), It,g(pi,t), It,b(pi,t)} (3.42)

Complete model:

p(ζ, β, γ, κ) = p(κ|ζ, β, γ)p(ζ, β, γ) (3.43)

=
∏
i,t

(∑
Wε0,1

p({It,c(pi,t)}c=r,g,b|{Ĩt,c(pi,t)}c=r,g,b, Wi,t, σ
2
image)p(Wi,t)

)
︸ ︷︷ ︸

Image−generating term

p(z(x1, y1), . . . , z(xn, yn), σ2
shape)︸ ︷︷ ︸

Shape prior

p(ρ1, . . . , ρt, σ
2
scale)︸ ︷︷ ︸

Scale prior

p(tx1 , . . . , txt , σ
2
trans)p(ty1 , . . . , tyt , σ

2
trans)︸ ︷︷ ︸

Translation prior

p(θx1 , . . . , θxt , σ
2
rot)p(θy1 , . . . , θyt , σ

2
rot)p(θz1 , . . . , θzt , σ

2
rot)︸ ︷︷ ︸

Rotation prior

(3.44)

Chapter 3. A Generative Model for Shape from Video 30

=
∏
i,t

((∏
c

N
(
It,c(pi,t)|Ĩt,c(pi,t); σimage2

))
τ + (1− τ)c

)
1

(2πσ2
shape)

N
e
− 1

2σ2
shape

P
i(z(xi+1,yi)−2z(xi,yi)+z(xi−1,yi))

2+(z(xi,yi+1)−2z(xi,yi)+z(xi,yi−1))2

1

(2πσ2
scale)

T
2

e
− 1

2σ2
scale

P
t(ρt+1−2ρt+ρt−1)2

1

(2πσ2
trans)

T
e
− 1

2σ2
trans

P
t(txt+1−2txt+txt−1)

2
+(tyt+1−2tyt+tyt−1)

2

1

(2πσ2
rot)

3T
2

e
− 1

2σ2
rot

P
t(θxt+1−2θxt+θxt−1)

2
+(θyt+1−2θyt+θyt−1)

2
+(θzt+1−2θzt+θzt−1)

2

(3.45)

= (2π)−(N+3T)

(
1

σ2
shape

)N (
1

σ2
scale

)T
2
(

1

σ2
trans

)T (
1

σ2
rot

) 3T
2

∏
i,t

(((
1

2πσ2
image

) 3
2

e
− 1

2σ2
image

P
c(It,c(ρt PRt si+dt)−αci(lat+(Rtn̄i)

T l̄))
2
)

τ + (1− τ)c

)

e
− 1

2σ2
shape

P
i(z(xi+1,yi)−2z(xi,yi)+z(xi−1,yi))

2+(z(xi,yi+1)−2z(xi,yi)+z(xi,yi−1))2

e
− 1

2σ2
scale

P
t(ρt+1−2ρt+ρt−1)2

e
− 1

2σ2
trans

P
t(txt+1−2txt+txt−1)

2
+(tyt+1−2tyt+tyt−1)

2

e
− 1

2σ2
rot

P
t(θxt+1−2θxt+θxt−1)

2
+(θyt+1−2θyt+θyt−1)

2
+(θzt+1−2θzt+θzt−1)

2

(3.46)

Chapter 4

The Problem Statement for Shape

from Video

Given a video sequence I of a rigid object, we would like to learn the 3D rigid shape,

motion and texture of the underlying object assuming scaled orthographic projection and

Lambertian illumination.

4.1 Maximum A Posteriori (MAP) Estimation

We wish to obtain the parameters ζ, β, γ that produce the highest probability p(ζ, β, γ|I).

Using Bayes’ rule:

p(ζ, β, γ|I) =
p(I|ζ, β, γ)p(ζ, β, γ)

p(I)
(4.1)

The denominator, or evidence, can be ignored, as it is completely independent of the

unknowns ζ, β and γ. We are therefore left with the likelihood term and priors (3.43).

Maximizing these together with respect to the parameters is our goal.

We need to convert our probabilistic formulation into an optimization problem. Op-

timization is concerned with the minimization of an objective function that depends on

real variables.

31

Chapter 4. The Problem Statement for Shape from Video 32

We could simply take our probabilistic formulation and try and minimize the neg-

ative probability by finding the suitable parameters. It is common practice, however,

to minimize the negative log-probability of the expression. Taking the log allows us to

deal with larger-scale numbers, and we can avoid common rounding errors that occur

when multiplying many small floating point numbers together, as is the case with the

multiplication of many probability terms.

Our optimization objective (or error) function therefore becomes:

E = − ln (p(I|ζ, β, γ)p(ζ, β, γ))

= −
∑
i,t

ln

(((
1

2πσ2
image

) 3
2

e
− 1

2σ2
image

P
c(It,c(ρt PRt si+dt)−αci(lat+(Rtn̄i)

T l̄))
2
)

τ + (1− τ)c

)
︸ ︷︷ ︸

Eimage

+
1

2σ2
shape

∑
i

(
(z(xi + 1, yi)− 2z(xi, yi) + z(xi − 1, yi))

2

+ (z(xi, yi + 1)− 2z(xi, yi) + z(xi, yi − 1))2
)

︸ ︷︷ ︸
Eshape

+
1

2σ2
scale

∑
t

(ρt+1 − 2ρt + ρt−1)
2

︸ ︷︷ ︸
Escale

+
1

2σ2
trans

∑
t

(
txt+1 − 2txt + txt−1

)2
+
(
tyt+1 − 2tyt + tyt−1

)2
︸ ︷︷ ︸

Etrans

+
1

2σ2
rot

∑
t

(
θxt+1 − 2θxt + θxt−1

)2
+
(
θyt+1 − 2θyt + θyt−1

)2
+
(
θzt+1 − 2θzt + θzt−1

)2
︸ ︷︷ ︸

Erot

+ (N + 3T) ln(2π) + N ln(σ2
shape) +

T

2
ln(σ2

scale) + T ln(σ2
trans) +

3T

2
ln(σ2

rot)︸ ︷︷ ︸
Enorm

(4.2)

Chapter 5

Optimization

In the previous chapter we derived the objective function that we want to minimize. This

chapter discusses a way in which to attain this goal: using numerical optimization.

We discuss the optimization algorithm, constraints, and specific initializations and

optimization schedules used in our system. We close the chapter with an analysis and

comparison of other optimization techniques.

5.1 Overview

One of the best performing general optimization algorithms is the quasi-Newton method

BFGS [26], named after its inventors: Broyden, Fletcher, Goldfarb and Shanno. BFGS

uses both the objective function evaluation and the gradient at the current location to

make decisions about future iterates. Our system uses the large scale L-BFGS imple-

mentation by Zhu et al. [45].

While calculating the gradient for each step may seem heavy, the overhead can be

alleviated by properly optimizing the code. In most optimization problems (and partic-

ularly least squares-like problems), values that were calculated in the objective function

evaluation step are always reused for gradients. Caching is essential for speedups.

For simplicity, we show the gradient of the image-matching term (Eimage) taken with

33

Chapter 5. Optimization 34

(x, y)

L

L

x, y

L L Lx, y x, y

L

L

L

x, y

Figure 5.1: A point with it’s four closest neighbors

respect to scaling.

∂Ei

∂ρt

= −
∑

i


τ√
2πσ2

i

e
− 1

2σ2
i

P
c(I−Ĩ)2

τ√
2πσ2

i

e
− 1

2σ2
i

P
c(I−Ĩ)2

+ (1− τ)

− 1

σ2
i

∑
c

[
(I − Ĩ)((∇I)TPRtsi)

]
(5.1)

where σ2
image and Eimage have been replaced by σ2

i and Ei respectively.

5.1.1 I and ∆I

The image consists of a discrete set of pixels over three channels. We are required,

however, to provide values for both the image and its gradient (5.1). We represent each

channel using linear basis functions. This means that values anywhere on the image are

bilinearly interpolated using the four closest neighbors (figure 5.1). This is done for each

channel.

The value of I(x, y) is:

p = x− bx (5.2)

q = y − yc (5.3)

x̄ = dx− bx (5.4)

ȳ = ye − yc (5.5)

Chapter 5. Optimization 35

I(x, y) = (1− p)qIbx,ye + pqIdx,ye + p(1− q)Idx,yc + (1− p)(1− q)Ibx,yc (5.6)

The gradient ∇I(x, y) can be calculated by using (5.6) and replacing p and q as follows:

p = 1− bx (5.7)

q = 1− yc (5.8)

5.1.2 Constraints

The optimization, in its current form, does not take into account constraints we may wish

to place on some variables. For instance, a variable such as the variance of a Gaussian

(σ2) must always be positive.

BFGS supports constrained optimization by using the projected gradient method

[26]. In this technique, variables are monitored for constraint violation. When they

are violated, they become “active”, and the current downhill direction is projected onto

another manifold of active constraints, effectively bending the direction so as to respect

the bounds.

It is possible, however, to convert a constrained optimization problem into one which

is unconstrained. This has the advantage of simplifying the problem and allowing ex-

perimentation by using other optimization algorithms that may not inherently support

constraint management.

For σ2, one way to ensure that it never goes below zero during optimization is with

a change of variables: σ2 = exp(a), and we now optimize a instead of σ2.

Constraints are also needed for τ and the RGB values. In these cases, the variables

must be between 0 and 1. This can be achieved with another change of variables: τ =

1
1+exp(−b)

, and we again solve for b instead of τ .

Chapter 5. Optimization 36

Figure 5.2: Our system’s GUI

5.2 Optimization schedule

This section will cover the specifics of initialization followed by details of the full opti-

mization procedure.

5.2.1 Initialization

Simply starting from a random location on the objective function and solving for all

variables with BFGS will, in most cases, not work. The objective function is a high

dimensional manifold that contains many local minima, most of which are visually un-

acceptable solutions. Starting points can be crucial for proper convergence.

Before the full optimization can take place, we must find a good starting location.

As long as we can initialize the algorithm by placing the starting location in the general

vicinity of plausible solutions, we dramatically increase the chances of descending into

an acceptable local minimum.

When we refer to general vicinity, we are referring to “good guesses” for all of the

parameters. This is done by solving two preliminary optimizations and using these results

to initialize the main optimization step. These two optimizations also make use of BFGS.

The first step involves solving for the scale, rotation, translation and shape based on

Chapter 5. Optimization 37

0 50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Translations

Frame

T
ra

ns
la

tio
ns

 (
pi

xe
ls

)

X
Y

Figure 5.3: Recovered shape, rotations and translations from the tracking stage

selected user-tracked points across the video sequence (figure 5.2). More specifically, we

are trying to find the values of these parameters that will project these selected points

onto the image plane at the same locations that the user has specified (puserj,t). This

corresponds to a least squares optimization:

rott =


θx,t+1 − 2θx,t + θx,t−1

θy,t+1 − 2θy,t + θy,t−1

θz,t+1 − 2θz,t + θz,t−1

 (5.9)

Etrack =
λtrack

2

∑
j,t

‖pj,t − puserj,t‖2 +
λheight

2

∑
j

(z(xj, yj))
2

+
λrot

2

∑
t

‖rott‖2 (5.10)

The second term, which can be thought of as a prior on the shape, is there to ensure

that the height field values are not too large, and will not yield a surface that is far from

the XY plane. The third term is a prior on rotations. We found this necessary to reduce

sporadic jumps from θ to θ + 2π. Figure 5.3 shows recovered shape and transformations

from this tracking step.

Once these sparse height values have been found, the rest of the surface is solved

for by simply applying the surface smoothness constraint, but holding the points puserj,t

constant so that the surface passes through the user specified points (figure 5.4).

We now have initial values for scale, rotation, translation and shape. We also require

Chapter 5. Optimization 38

Figure 5.4: Smooth surface by applying the smoothness constraint to the tracked surface

Figure 5.5: Coarse-to-fine progression

initializations for lighting, texture, τ and all σ2 values. We now run a second optimization

step to determine these values.

This can be done by solving for these variables using the full objective function and

holding the others variables (the ones we solved for in the previous step) constant. This

will leave us with all variables as coherent “good guesses”.

5.2.1.1 Full optimization step

Once all initialization is complete, all variables are solved for. The algorithm proceeds

in a coarse-to-fine progression in order to resolve temporal aliasing issues (figure 5.5).

At the beginning of each step in the coarse-to-fine refinement, τ and all σ2 values

are solved for alone, as they are the only parameters that are not updated when the

resolution is doubled. They must be calculated before continuing so that they match the

rest of the data.

Chapter 5. Optimization 39

5.2.1.2 Summary

1. User selection of feature points across frames

2. Initial optimization to recover shape and motion of feature points

3. Create a smooth surface that passes through the feature points

4. Optimize full objective function using to coarse-to-fine procedure

5.3 Pre-conditioning

Szeliski [32] and Gortler et al. [13] have shown that convergence can be improved if we

represent geometry using hierarchical basis functions instead a linear finite element basis

that provides only local support. Instead of representing our height field as a set of

individual nodes that can move up or down, we use a wavelet basis [31] where coefficients

can influence many grid points. This way the optimization can easily make broad changes

when needed.

In our system, heights fields are not the only place where such a representation can be

beneficial. Since the image-matching term is dependent on both geometry and texture,

it is logical to represent all three texture channels in the wavelet form as well.

5.4 Other attempted optimization methods

BFGS is not the only way to optimize. In fact, gradient-based optimization is not the

only way to minimize the objective function. This section deals with other methods that

were attempted but did not prove satisfactory.

Chapter 5. Optimization 40

5.4.1 Stochastic gradient descent method

Calculating the full gradient at each step can be quite time consuming. Blanz et al. [6],

Jones et al. [19] and Viola and Wells [39] have shown that it is possible to obtain con-

vergence at greater speeds by using the stochastic gradient descent (SGD) method.

In this method, an estimate for the gradient is obtained by calculating it with a

random subset of the data. A step is then taken in this direction as it would be in

regular gradient descent. These estimates must be unbiased for this technique to be

effective [39]. It is also believed that local minima can be avoided due to the noise

introduced by the sampling. Furthermore, since less is being calculated, convergence will

be attained at faster speeds.

Traditional SGD simply uses a learning rate that decreases over time [5]. Our first

implementation of this method performed poorly due to the fact that the step lengths

were fixed and did not incorporate local energy-surface information. We decided to

develop a custom line search algorithm, where steps are taken by searching along the

gradient direction for the best distance to move. This was done because we suspected

that larger steps were being overlooked, whereas BFGS relies on such strategies to take

giant steps if necessary.

Line search algorithms typically utilize the gradient and objective function evaluations

to model a quadratic function (or cubic, if possible) that approximates the true slice of the

objective function in the chosen direction. The minimum of this polynomial is found and

then tested for acceptability. Should it not be acceptable, another polynomial is modeled

that incorporates this new piece of information, and again tested. This process continues

until an adequate step length is found [26]. BFGS requires both error function and

gradient calculations per step, therefore we assume that it is modeling a cubic internally

(figure 5.6).

Our implementation is similar; however since we are not calculating the true gradient

we cannot use it to model our polynomial. The gradient and objective function error

Chapter 5. Optimization 41

α

f
(x

 +
 α

g
)

Figure 5.6: Line search by cubic approximation (red) of the true slice f(x + αg). Four

pieces of information are needed to model the cubic. The two function evaluations are

represented by green circles, along with the gradients at those points.

at a particular location must coincide with each other or else the polynomial will be

completely invalid. We can, however, simply fit a polynomial through data-points and

ignore gradient information altogether. If we evaluate the error function at three separate

locations, we can do quadratic approximation (figure 5.7).

Unfortunately this increases computation time per step as we now must evaluate the

error function three times and the gradient once before modeling the polynomial, whereas

before we only evaluate the error function twice and compute gradients along the way.

It is also important to note that when BFGS moves to a new location, it starts the next

iteration from that location with the gradient that it calculated previously. SGD does

not. Since we must evaluate noisy gradients without biasing, we must recompute the

starting gradient at the beginning of each iteration thereby adding more computation

time. We also lose a little bit of precision, since we are modeling a quadratic and not a

cubic. Nonetheless, we decided to implement it anyways for if it found a local minimum

in less iterations than BFGS, it would ultimately be worth it.

The custom line search technique performed significantly better than the learning

rate implementation however it simply does not come close to the performance of BFGS

Chapter 5. Optimization 42

α

f(
x
 +

 α
g
)

Figure 5.7: Line search by quadratic approximation (red) of the true slice f(x + αg).

Three pieces of information are needed to model the quadratic. The three function

evaluations are represented by green circles.

(figure 5.8). This is certainly due to the absence of the second order term approximated by

BFGS. We also suspect that our error function is characterized by long valleys, scenarios

where gradient descent is notorious for poor convergence. In addition to this, the sheer

number of parameters in our optimization is excessively more than those of Blanz et

al. [6] and Jones et al. [19], which means our problem contains much more local minima.

Finally, the fact that we have not gained tremendously in speed due to our line search

technique was enough to cause us to abandon this route. All problems are different, and

choosing the right optimization scenario will differ from problem to problem.

5.4.2 Solution by coordinate ascent

BFGS finds a step direction by minimizing the local quadratic approximation of the

objective function at the current location. As an alternative optimization method, we

can also linearize the image function I around the current point
(
Îc,t(pi,t) = Ic,t(pc) +

∇IT (pi,t − pc)
)

and insert it into our objective function.

We can then take the derivatives of the objective function with respect to all variables

Chapter 5. Optimization 43

0 50 100 150 200 250 300
−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8
x 10

5 SGD vs. BFGS

Time (seconds)

E
rr

or

SGD
BFGS

Figure 5.8: BFGS outperforms SGD. Our line-search implementation of SGD decreases

the error function slower and ultimately less than BFGS.

and set each equation equal to zero and solve for the new value of the variable in question.

This amounts to solving a series of univariate optimization problems for each variable

update.

Although this is possible with the Newton’s method or the secant method [28] [26]

[20], the computation time increases significantly when compared to gradient-based op-

timization. This is principally due to the fact that once a variable has been updated,

all calculations that involve this variable (therefore almost all calculations performed)

must be recalculated before solving for the next one. With gradient-based methods these

variable updates do not occur and we can store previously calculated information and

reuse it when necessary (which is very often). This results in a significant speedup.

Another negative aspect of this method occurs when variables are tightly coupled,

and attempting to move them individually simply does not work. An example would

be wavelet coefficients. They are all tightly coupled to each other and therefore must

change together, and not individually. There are multidimensional versions of the secant

method [20] that will work, however computation time is excruciatingly slow. Essentially

the full Hessian is calculated, which is something we have been trying to avoid since the

beginning.

Chapter 6

Results

Our system has been tested on five video sequences. In each instance, a stationary camera

is capturing a rigid object undergoing rotations and translations.

Due to large optimization times, we were not able to operate on all images for each

coarse-to-fine level. The recovered transformations, therefore, are “coarse” since we lin-

early interpolate between recovered values. We also prematurely stop each coarse-to-fine

iteration after 3000 iterations, a value found by trial and error. If it were possible to

optimize to completion and use all frames, we expect the resulting reconstructions to

have much more surface detail. For completeness, the optimization schedule is given for

each experiments.

Not all experiments calculated scaling. This was “turned off” if deemed unnecessary

and in situations where it was causing the surface to “shrink” significantly, thereby

recovering only a portion of the intended surface. Ambient light was not always calculated

either. When it was, it was either on a per-frame basis, or as a global ambient term for

the whole sequence. Again, this was done on a trial-and-error basis.

Our system operates on blurred versions of the originals in order to reduce noise. The

screenshots depicted in this section are the original un-blurred versions, therefore the

recovered texture maps will look slightly blurred (figure 6.1)

44

Chapter 6. Results 45

Figure 6.1: Cropped original frame (left) and blurred version used by our system (right)

Chapter 6. Results 46

6.1 Computer generated sequence

Figure 6.2: 4 frames from a generated 200 frame image sequence (top), and the textured

(middle) and untextured (bottom) reconstructions

In order to demonstrate our system’s ability to reconstruct shape, motion and lighting, we

present our results on synthetic data. This will enable us to compare the reconstruction

with “ground truth” data.

Figure 6.2 (top) shows four frames from a sequence generated with OpenGL. It con-

sists of a textured height field undergoing rotations and translations. As the object is

rotated, its edges are occluded. For simplicity, there is no ambient light or scaling. The

middle and bottom rows of figure 6.2 are the reconstructions of those frames using the

recovered shape and transformations.

Chapter 6. Results 47

Resolution Number of Frames

32 × 32 200

64 × 64 100

128 × 128 50

256 × 256 25

Figure 6.3: Optimization Schedule for computer generated sequence

Table 6.3 shows the number of frames processed per level in the coarse-to-fine pro-

gression. The entire optimization took 6 days on a 3GHz/2G RAM desktop.

σ2
image 2.3715× 10−5

σ2
smooth 0.0031

τ 0.9434

light [0.195, -0.197, -1.000]

Figure 6.4: Recovered parameters for the computer generated sequence

Table 6.4 shows the parameters that were estimated. The very low variance σ2
image

indicates that the imaged model very closely matches the input sequence. The recov-

ered light source direction closely matches the input sequence’s light source direction of

[0.2,−0.2,−1.0].

In order to compare the recovered shapes, they must be aligned. This is done by

transforming the height field using the recovered rotation and translations (figure 6.7)

for the first frame. We can then subtract the recovered height field from our generated

one to obtain a difference surface. Table 6.5 lists the mean and variance of this surface’s

height and texture values, which we use to determine the reconstruction error.

If the two surface are identical, we expect the difference surface to be flat. As seen

by its variance, the surface is indeed quite flat. The mean, however, indicates that the

reconstructed version has been translated on the z-axis (its origin has moved). This is

Chapter 6. Results 48

Mean Error Variance

Heights -113.0754 0.4965

Red -0.0269 0.0026

Green -0.0237 0.0024

Blue -0.0155 0.0023

Figure 6.5: Mean and variance of the difference surface

in concordance with the wave-like behavior of the recovered translations in figure 6.7.

Once the height field is rotated, it must be translated back to compensate for the large

movement. If the reconstructed height field did not have this translational bias on the

z-axis, we would expect the recovered translations to be similar to the generated ones.

It is important to note that this discrepancy is not problematic because an ambiguity

will always exist when reconstructing 3D information from 2D. By moving the shape’s

origin, there are an infinite number of combinations of rotations and translations that

will yield a correct imaged model.

Figure 6.6 provides visual proof that our method works. The recovered shape is

nearly identical to the generated one, and the texture map is a faithful duplication of the

original. There are a few minor artifacts, but the overall results are very convincing.

Chapter 6. Results 49

Figure 6.6: Comparison of generated height field and texture map (left) with the re-

covered geometry and texture map (right). A specular component was added to the

untextured surfaces (middle) to help the visualization.

Chapter 6. Results 50

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X (recovered)
Y (recovered)
Z (recovered)
X (generated)
Y (generated)
Z (generated)

0 50 100 150 200
−20

−10

0

10

20

30

40

50

60
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X (generated)
Y (generated)
X (recovered)
Y (recovered)

Figure 6.7: Comparison of the generated height field’s rotations (left) and translations

(right)

Chapter 6. Results 51

6.2 “Lady” figurine

Figure 6.8: 4 frames from the 400 frame “Lady” sequence (top), and the textured (middle)

and untextured (bottom) reconstructions. Original video footage courtesy of Zhang et

al. [43].

For comparison with recent techniques, we ran our system on the same image sequence

as used in Zhang et al. [43]. Figure 6.8 (top) shows 4 frames from this sequence. The

Chapter 6. Results 52

middle and bottom rows of figure 6.8 are the reconstructions of those frames using the

recovered shape and transformations.

Resolution Number of Frames

32 × 32 400

64 × 64 50

128 × 128 25

256 × 256 25

512 × 512 13

Figure 6.9: Optimization Schedule for “Lady”

The entire optimization took 6 days on a 1.6GHz/1G RAM laptop. Table 6.10 shows

the recovered parameters for this input sequence.

σ2
image 1.9786× 10−5

σ2
smooth 0.0030

τ 0.9617

light [0.06 0.01 -1.00]

ambient shown in figure 6.13

Figure 6.10: Recovered parameters for “Lady” sequence

From table 6.10 we can see that the image-matching variance σ2
image is very low,

indicating a close match between input sequence and imaged model.

Novel views of the reconstructed shape are shown in figure 6.11. Fine detail (spherically-

inward bumps) on the figurine’s belly has clearly been reproduced. For completeness, we

show a side-view comparison of the reconstructed figurine alongside a photograph taken

from approximately the same angle (figure 6.12). The recovered rotations, translations,

scaling and ambient lighting are also shown, in figure 6.13.

Chapter 6. Results 53

Figure 6.11: The reconstructed “Lady” figurine

Chapter 6. Results 54

Figure 6.12: Side-view comparison of the real figurine (left) and our recovery (right)

6.2.1 Comparison with other work

Figure 6.14 shows side-view reconstructions with those of Zhang et al. [43]. Our results

are more detailed, especially in the regions around the belly. The spherically-inward

bumps have more definition in our reconstruction.

The Phong-shaded front-view reconstruction, alongside the results from Zhang et

al. [43] and concurrent work to ours of Lim et al. [22], can be seen in figure 6.15.

Compared to Zhang et al. [43], our reconstruction contains much more detail, especially

around the nose and mouth areas.

In concurrent work to ours, Lim et al. [22] have reproduced the figuring with impres-

sive results. Their reconstruction does contain a few artifacts, however, notably on the

belly where the left frontal side is indented the wrong way. This is not present in our

reconstruction. Furthermore our reconstruction has better definition of the spherically-

inwards bumps on the belly.

Chapter 6. Results 55

0 50 100 150 200 250 300 350 400
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200 250 300 350 400
−50

0

50

100
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X
Y

0 50 100 150 200 250 300 350 400
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09
Ambient Light

Frame

In
te

ns
ity

0 50 100 150 200 250 300 350 400
0.882

0.884

0.886

0.888

0.89

0.892

0.894

0.896

0.898

0.9
Scaling

Frame

S
ca

le

Figure 6.13: “Lady” rotations, translations, ambient light and scaling

Figure 6.14: Comparison between our reconstruction (bottom) and the reconstructed

“Lady” in Zhang et al. [43] (top)

Chapter 6. Results 56

Figure 6.15: Comparison of reconstructions in Zhang et al. [43] (left), Lim et al. [22]

(middle) and ours (right)

Chapter 6. Results 57

6.3 Hatake Kakashi figurine

Figure 6.16: 4 frames from a 234 frame image sequence of Hatake Kakashi figurine (top),

and the textured (middle) and untextured (bottom) reconstructions.

We show results on a matte-painted figurine exhibiting very fine detail on the torso

(figure 6.16, top). The middle and bottom rows of figure 6.16 are the reconstructions of

those frames using the recovered shape and transformations. Below is the optimization

schedule breakdown (table 6.17).

The entire optimizations took 8 days on 1.6Ghz/1G laptop. Recovered parameters

are shown in table 6.18.

Chapter 6. Results 58

Resolution Number of Frames

32 × 32 234

64 × 64 117

128 × 128 59

256 × 256 59

512 × 512 30

Figure 6.17: Optimization schedule for Hatake Kakashi figurine

σ2
image 6.4316× 10−4

σ2
smooth 0.0228

τ 0.9565

light [-0.05 -0.32 -1.00]

ambient light 0.4140

Figure 6.18: Recovered parameters for Hatake Kakashi figurine

The image-matching variance was slightly lower than the previous examples. This is

due to the fact that input image sequence is quite noisy. Severe interlacing effects can

be seen in many frames.

Figure 6.19 shows novel views of the geometric reconstruction of the object. As can

be seen, the torso contains high detail matching the input sequence, notably the lapelles

and the squarish buttons just below the collar.

The headband has been incorrectly reproduced, however. This is due to the fact that

it was quite specular. Although painted with a green matte paint, the headband was

initially silver in color and the paint was not thick enough to completely cover it. The

recovered transformations are also shown in figure 6.20.

Chapter 6. Results 59

Figure 6.19: Reconstruction of the Hatake Kakashi figurine

Chapter 6. Results 60

0 50 100 150 200 250
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200 250
−40

−30

−20

−10

0

10

20

30

40

50
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X
Y

Figure 6.20: Recovered rotations and translations of Hatake Kakashi figurine

Chapter 6. Results 61

6.4 Uzumaki Naruto figurine

Figure 6.21: 4 frames of a 237 frame image sequence of the Uzumaki Naruto figurine

(top), and the textured (middle) and untextured (bottom) reconstructions.

We now show results for a matte-painted figurine of Uzumaki Naruto (figure 6.21, top).

The middle and bottom rows of figure 6.21 are the reconstructions of those frames using

the recovered shape and transformations. The optimization schedule is shown in table

6.22.

The entire optimization took 4 days on 3.0Ghz/2G machine. The recovered parame-

Chapter 6. Results 62

Resolution Number of Frames

32 × 32 237

64 × 64 119

128 × 128 60

256 × 256 60

512 × 512 30

Figure 6.22: Optimization Schedule for Uzumaki Naruto figurine

ters are shown in table 6.23.

σ2
image 7.0943× 10−4

σ2
smooth 0.0094

τ 0.9378

light [0.04 -0.13 -1.00]

ambient 1.0205× 10−4

Figure 6.23: Recovered parameters for Uzumaki Naruto figurine

As in the previous example, the image variance σ2
image is lower than both the computer

generated sequence and the “Lady” sequence. This is normal, as this sequence was also

captured with the same camera and digitized using the same hardware. The noise level

is about the same as in the previous sequence.

In figure 6.24 we show novel views of the the recovered shape of the figurine. Once

again the detail has been successfully captured by our model. The toes and fingers are

evident, as are the indentations of the mouth and nose. The recovered rotations and

translations are shown in figure 6.25.

There are also a few artifacts. Since the texture on the face is black, there is an

inherent ambiguity between texture and shape. Blackness could be either the result of

texture or shape variation, and the algorithm has no way of distinguishing between the

Chapter 6. Results 63

two. Extra priors or user guidance are needed to disambiguate.

Chapter 6. Results 64

Figure 6.24: Recovered Uzumaki Naruto figurine

Chapter 6. Results 65

0 50 100 150 200 250
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200 250
−50

−40

−30

−20

−10

0

10

20

30

40
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X
Y

Figure 6.25: Recovered rotations and translations for Uzumaki Naruto figurine

Chapter 6. Results 66

6.5 Occluded Uzumaki Naruto figurine

In this sequence, we occlude 30% of the frames and test our robust mixture model against

a model without a mixture component for outliers.

The first section shows results for our robust model and the second section shows

results for the model without outlier support. The optimization schedule is identical for

both tests, and is given below.

Resolution Number of Frames

32 × 32 203

64 × 64 102

128 × 128 51

256 × 256 51

512 × 512 26

Figure 6.26: Optimizations Schedule for Occluded Uzumaki Naruto figurine

Chapter 6. Results 67

6.5.1 With mixture components

Figure 6.27: 4 frames of the 203 frame image sequence of the occluded Uzumaki Naruto

figurine(top), and the textured (middle) and untextured (bottom) reconstructions using

the mixture model.

The entire optimization took 4 days on 3.0Ghz/2G machine. Below are the recovered

parameters (table 6.28).

The variance σ2
image is in the same order as the variance for the previous unoccluded

Naruto sequence. Notice the value of τ is significantly smaller than all previous unoc-

Chapter 6. Results 68

σ2
image 8.6109× 10−4

σ2
smooth 0.0074

τ 0.7499

light [-0.22 -0.13 -1.00]

ambient 1.0198× 10−4

Figure 6.28: Recovered parameters for Occluded Uzumaki Naruto figurine using the

mixture model

cluded tests. This value tells us that that the model has determined that 25% of the

pixels are outliers.

Novel views of the recovered are shown in figure 6.29. The recovered rotations and

translations are shown in figure 6.30.

Although a little noisier than the unoccluded Naruto results shown previously, we can

see that the shape has nonetheless been faithfully reproduced.

It is important to note that if the optimization schedule was modified to consider

more frames per coarse-to-fine level, perhaps the reconstruction would be more exact. It

is also worth mentioning again that we prematurely stop each level after 3000 iterations,

and it is entirely possible that more iterations may be needed in occluded circumstances.

Chapter 6. Results 69

Figure 6.29: Recovered shape for Occluded Uzumaki Naruto figurine using the mixture

model

Chapter 6. Results 70

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200
−60

−40

−20

0

20

40

60

80

100

120
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X
Y

Figure 6.30: Recovered rotations and translation for Occluded Uzumaki Naruto figurine

using the mixture model

Chapter 6. Results 71

6.5.2 Without mixture components

Figure 6.31: The same 4 frames of the 203 frame image sequence of the occluded Uzumaki

Naruto figurine(top), and the textured (middle) and untextured (bottom) reconstructions

without using the mixture model.

We now examine the recovered shape and motion using a simple Gaussian instead of

our mixture model. These experiments were conducted by forcing τ to 1.0 during the

entire optimization. The recovered parameters are shown below (table 6.32). The entire

optimization took 2 days on 3.0Ghz/1G machine.

The value of σ2
image is much larger than it was with the mixture model. This makes

Chapter 6. Results 72

σ2
image 0.0038

σ2
smooth 0.0022

τ 1.0 (forced)

light [-0.22 -0.13 -1.00]

ambient 1.0198× 10−4

Figure 6.32: Recovered parameters of Occluded Uzumaki Naruto figurine without mix-

ture model

perfect sense since the Gaussian must now explain all pixels, outliers or not. In order to

do so, it must have a large variance.

This large variance means that the generative model is producing images that do

properly not match the input sequence. We end up with a mediocre shape reconstruction

as a result of this (figure 6.33). The recovered rotations and translations are shown in

figure 6.34.

Although the colors are generally correct, the shape is flat and contains no surface

detail. Upon examining figure 6.35, the reason for this becomes evident. When the object

becomes occluded, the model “matches” the occluded frame by rotating the object out

of sight in order to shade it as much as possible to simulate the hand’s dark texture.

Notice how the mixture model remains robust and relies on the headband to preserve

orientation.

Chapter 6. Results 73

Figure 6.33: Recovered shape for Occluded Uzumaki Naruto figurine without mixture

model

Chapter 6. Results 74

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

2
Rotations

Frame

A
ng

le
 (

ra
di

an
s)

X
Y
Z

0 50 100 150 200
−60

−40

−20

0

20

40

60

80

100

120
Translations

Frame

T
ra

ns
la

tio
n

(p
ix

el
s)

X
Y

Figure 6.34: Recovered rotations and translations for Occluded Uzumaki Naruto figurine

without mixture model

Figure 6.35: Comparison of reconstruction for frame 113 (left) where the mixture model

is robust to outliers (middle), and the absence of mixture model leads to reconstruction

problems (right)

Chapter 7

Discussion and Future Directions

We have presented a direct, robust method for recovering dense 3D shape, texture, motion

and lighting from monocular image streams. We have demonstrated that our method

works, even in the presence of occlusion.

7.1 Improvements

The computation time needed for recovery is quite lengthy and this poses a real bottleneck

in the system. All examples took around a week of continuous calculations, and even

then the optimization never reaches convergence. If we wish to reconstruct long, high

resolution video sequences, it is imperative to find ways to speedup the process. The

most logical decision would be to clusterize the algorithm. This is entirely possible, since

the system calculates gradients by operating on one frame at a time. We could envisage

distributing this task so that machines operate on different frames concurrently, and then

sum all gradient calculations together before passing them to BFGS.

At present, the user manually tracks sparse features across the input sequence in

order to initialize the system. If we wish to have a truly automatic system, it will be

necessary to automate the feature tracking. This leads to two options: feature tracking

in varying illumination [18, 25], or a custom method that tracks mini-surfels modeled as

75

Chapter 7. Discussion and Future Directions 76

flat patches with one normal. This technique could use illumination information to also

derive normal orientations. This way we would have tracked features as well as a sparse

set of normals which would greatly improve initialization.

7.2 Extensions

A logical future step would be to incorporate deformable models into the framework.

This can be achieved by representing shape as a linear combination of n basis shapes and

placing temporal priors on shape deformations.

The constraint on Lambertian objects could also be relaxed. By considering other

reflectance models [9, 40], we could reconstruct more “real world” objects, since most

objects are never purely Lambertian. We could simply replace the Lambertian model

with another model.

7.3 Validation

There are important comparisons that need to be made with current feature-based visual

modeling systems in order to determine whether shading plays a crucial role in detailed

shape recovery. It is unclear, for instance, whether the system proposed by Pollefeys

et al. [27] can obtain “close-up” detail the way photometric methods can, since most of

their results are from sequences that are taken from vantage points with little illumination

changes. A comparison of our and their techniques is needed on objects with fine detail

in order to fully justify the importance of shading.

Bibliography

[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework.

International Journal of Computer Vision, 56(3):221–255, 2004.

[2] R. Basri and D. Jacobs. Photometric stereo with general, unknown lighting. 2:374–

381, 2001.

[3] Ronen Basri and David W. Jacobs. Lambertian reflectance and linear subspaces.

IEEE Trans. Pattern Anal. Mach. Intell., 25(2):218–233, 2003.

[4] Peter N. Belhumeur, David J. Kriegman, and Alan L. Yuille. The bas-relief ambi-

guity. Int. J. Comput. Vision, 35(1):33–44, 1999.

[5] Christopher M. Bishop. Neural networks for pattern recognition. Oxford University

Press, Oxford, UK, UK, 1996.

[6] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. pages

187–194, 1999.

[7] Matthew Brand. Morphable 3d models from video. In CVPR (2), pages 456–463,

2001.

[8] Michael J. Brooks. Shape from shading. MIT Press, Cambridge, MA, USA, 1989.

[9] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM

Trans. Graph., 1(1):7–24, 1982.

77

Bibliography 78

[10] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Commun. ACM, 24(6):381–395, 1981.

[11] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-

puter graphics (2nd ed. in C): principles and practice. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1996.

[12] Robert T. Frankot and Rama Chellappa. A method for enforcing integrability in

shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 10(4):439–

451, 1988.

[13] Steven J. Gortler and Michael F. Cohen. Hierarchical and variational geometric

modeling with wavelets. In Symposium on Interactive 3D Graphics, pages 35–42,

205, 1995.

[14] Berthold K. P. Horn. Height and gradient from shading. Int. J. Comput. Vision,

5(1):37–75, 1990.

[15] Katsushi Ikeuchi and Berthold K. P. Horn. Numerical shape from shading and

occluding boundaries. Artif. Intell., 17(1-3):141–184, 1981.

[16] Michal Irani. Multi-frame optical flow estimation using subspace constraints. In

ICCV, pages 626–633, 1999.

[17] Michal Irani and P. Anandan. About direct methods. In ICCV ’99: Proceedings

of the International Workshop on Vision Algorithms, pages 267–277, London, UK,

2000. Springer-Verlag.

[18] Hailin Jin, Paolo Favaro, and Stefano Soatto. Real-time feature tracking and outlier

rejection with changes in illumination. In ICCV, pages 684–689, 2001.

Bibliography 79

[19] Michael J. Jones and Tomaso Poggio. Multidimensional morphable models. In ICCV

’98: Proceedings of the Sixth International Conference on Computer Vision, page

683, Washington, DC, USA, 1998. IEEE Computer Society.

[20] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, Inc., New

York, NY, USA, 1993.

[21] K. M. Lee and C. C. J. Kuo. Shape from shading with a linear triangular element

surface model. IEEE Trans. Pattern Anal. Mach. Intell., 15(8):815–822, 1993.

[22] Jongwoo Lim, Jeffrey Ho, Ming-Hsuan Yang, and David Kriegman. Passive photo-

metric stereo from motion. In ICCV ’05: Proceedings of the Ninth IEEE Interna-

tional Conference on Computer Vision.

[23] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60(2):91–110, 2004.

[24] B.D. Lucas and T. Kanade. An iterative image registration technique with an ap-

plication to stereo vision. In IJCAI81, pages 674–679, 1981.

[25] Shahriar Negahdaripour. Revised definition of optical flow: Integration of radio-

metric and geometric cues for dynamic scene analysis. IEEE Trans. Pattern Anal.

Mach. Intell., 20(9):961–979, 1998.

[26] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.

[27] Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis,

Jan Tops, and Reinhard Koch. Visual modeling with a hand-held camera. Int. J.

Comput. Vision, 59(3):207–232, 2004.

[28] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes: The Art of Scientific Computing. Cambridge University Press,

Cambridge (UK) and New York, 2nd edition, 1992.

Bibliography 80

[29] R. Ramamoorthi and P. Hanrahan. On the relationship between radiance and irra-

diance: determining the illumination from images of a convex lambertian object. J.

Optical Soc. of Am. A, 18(10):2448–2458, 2001.

[30] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’94), Seattle, June 1994.

[31] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for computer

graphics: A primer, part 1. IEEE Computer Graphics and Applications, 15(3):76–

84, 1995.

[32] R. Szeliski. Fast surface interpolation using hierarchical basis functions. IEEE Trans.

Pattern Anal. Mach. Intell., 12(6):513–528, 1990.

[33] R. Szeliski and S. B. Kang. Recovering 3d shape and motion from image streams

using nonlinear least squares. Journal of Visual Communication and Image Repre-

sentation, 5(1):10–28, 1994.

[34] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under

orthography: a factorization method. Int. J. Comput. Vision, 9(2):137–154, 1992.

[35] Lorenzo Torresani and Aaron Hertzmann. Automatic non-rigid 3d modeling from

video. In ECCV (2), pages 299–312, 2004.

[36] Lorenzo Torresani, Danny B. Yang, Eugene J. Alexander, and Christoph Bregler.

Tracking and modeling non-rigid objects with rank constraints. In CVPR (1), pages

493–500, 2001.

[37] PingSing Tsai and Mubarak Shah. Shape from shading using linear approximation.

Image and Vision Computing Journal, 12(8):487–498, 1994.

[38] T.Poggio V. Blanz, C. Basso and T. Vetter. Reanimating faces in images and video.

pages 641–650, 2003.

Bibliography 81

[39] P. Viola and III W. M. Wells. Alignment by maximization of mutual information. In

ICCV ’95: Proceedings of the Fifth International Conference on Computer Vision,

page 16, Washington, DC, USA, 1995. IEEE Computer Society.

[40] Gregory J. Ward. Measuring and modeling anisotropic reflection. In SIGGRAPH

’92: Proceedings of the 19th annual conference on Computer graphics and interactive

techniques, pages 265–272, New York, NY, USA, 1992. ACM Press.

[41] Robert J. Woodham. Photometric method for determining surface orientation from

multiple images. pages 513–531, 1989.

[42] Gang Zeng, Yasuyuki Matsushita, Long Quan, and Heung-Yeung Shum. Interactive

shape from shading. In CVPR (1), pages 343–350, 2005.

[43] Li Zhang, Brian Curless, Aaron Hertzmann, and Steven M. Seitz. Shape and motion

under varying illumination: Unifying structure from motion, photometric stereo,

and multi-view stereo. In ICCV ’03: Proceedings of the Ninth IEEE International

Conference on Computer Vision, page 618, Washington, DC, USA, 2003. IEEE

Computer Society.

[44] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape from

shading: A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 21(8):690–706, 1999.

[45] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:

L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM

Trans. Math. Softw., 23(4):550–560, 1997.

