
Fast Evaluation of Smooth Distance Constraints on Co-Dimensional
Geometry
ABHISHEK MADAN, University of Toronto, Canada
DAVID I.W. LEVIN, University of Toronto, Canada

Time

Fig. 1. Using a smooth distance function as an intersection-free constraint, we can simulate rigid body contact between a variety of meshes. Here, a motorcycle
jumps onto a point cloud street, where it slides and crashes through the street, hitting electrical poles along the way. Collisions are resolved using a single
inequality constraint in a primal-dual interior-point solver.

We present a new method for computing a smooth minimum distance func-
tion based on the LogSumExp function for point clouds, edge meshes, tri-
angle meshes, and combinations of all three. We derive blending weights
and a modified Barnes-Hut acceleration approach that ensure our method
approximates the true distance, and is conservative (points outside the zero
isosurface are guaranteed to be outside the surface) and efficient to evaluate
for all the above data types. This, in combination with its ability to smooth
sparsely sampled and noisy data, like point clouds, shortens the gap between
data acquisition and simulation, and thereby enables new applications such
as direct, co-dimensional rigid body simulation using unprocessed lidar data.

CCS Concepts: • Computing methodologies→ Collision detection.

Additional Key Words and Phrases: smooth distances, co-dimensional geom-
etry

ACM Reference Format:
Abhishek Madan and David I.W. Levin. 2022. Fast Evaluation of Smooth
Distance Constraints on Co-Dimensional Geometry. ACM Trans. Graph. 41,
4, Article 68 (July 2022), 17 pages. https://doi.org/10.1145/3528223.3530093

1 INTRODUCTION
Distance fields are integral to many applications in computer graph-
ics and scientific computing. In rendering, distance fields provide
an implicit shape representation that enables both flexible editing

Authors’ addresses: Abhishek Madan, University of Toronto, Toronto, Canada,
amadan@cs.toronto.edu; David I.W. Levin, University of Toronto, Toronto, Canada,
diwlevin@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART68 $15.00
https://doi.org/10.1145/3528223.3530093

and fast display, while in physics simulation they provide a con-
venient way to represent distance-mediated interactions between
simulated objects — such as collisions. Any geometric representa-
tion can be converted into a distance field, whether it be a point
cloud, edge mesh, or triangle mesh. Thus, algorithms that rely on
distance field representations are theoretically invariant to input
geometry type. This is important because many applications of ge-
ometry processing and physics simulation act on mixed geometric
input (e.g., self-driving car simulations represent the cars as polyg-
onal models but the environment is acquired as a point cloud via
lidar scan).
Unfortunately, current distance field representations fall short

of living up to these theoretical advantages. Storing distance fields
on grids is memory intensive and can require costly preprocess-
ing, while fitting neural networks alleviates the memory pressure
but requires a much higher upfront cost in training time and data
consumption, while also being difficult to generalize. Complicating
proceedings is the fact that, often, representing the exact distance
field is not ideal for practical applications since input geometric
models are usually an approximation of the underlying true object.
Representing any curved, smooth surface using piecewise linear
triangles is an obvious example, but noisy or incomplete data, like
lidar point clouds, is another. While methods exist for accurately
simulating the latter (Fig. 2 reproduced from Ferguson et al. [2021]),
the result is not generally applicable to cases where discrete samples
are meant to coalesce into a smooth surface.

Further complicating matters is the fact that exact distance fields
are typically not smooth, which limits the choice of algorithms that
can be applied. Finally, existing geometry processing pipelines are
often set up to receive closed triangle mesh input only [Li et al.
2020a], with co-dimensional inputs (inputs that feature a mixture of
triangles, edges, and points) considered special cases [Li et al. 2021].

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530093
https://doi.org/10.1145/3528223.3530093

68:2 • Abhishek Madan and David I.W. Levin

Fig. 2. Using Rigid IPC [Ferguson et al. 2021], a collision between a sphere
of points and a sphere of disjoint planes causes them to lock together on
impact. While an impressive demonstration of robustness, this result is
counter intuitive if the point cloud were meant to represent a solid sphere.

In this paper we present a smooth distance formulation that ad-
dresses these issues while simultaneously guaranteeing theoretical
properties that are crucial for distance fields to function robustly in
rendering and simulation applications. Specifically, our method
• is an implicit function, which naturally fits in an optimization
context;
• is an approximation of the exact unsigned minimum distance
between two geometric quantities;
• can represent different types of geometry (in this paper we
focus on points, edges, and triangles), and can represent both
closed and open or co-dimensional geometry;
• is smooth (i.e., able to take derivatives), which is beneficial
for optimization;
• is efficient to evaluate;
• conservatively estimates (i.e., underestimates) exact distance.

We achieve these goals by using a smooth minimum distance
function based on LogSumExp (sometimes called Kreisselmeier-
Steinhauser distance), augmented by weight functions to remove
bulge artifacts from edge and trianglemesh isosurfaces, and a conser-
vative Barnes-Hut approximation to speed up function evaluations
while inducing slight discontinuities at the near field-far field bound-
ary (see Section 4.3). We demonstrate the efficacy and ease-of-use of
our smooth distance field representation on a number of colliding
rigid body simulations which directly act on co-dimensional geom-
etry, including difficult cases such as collision-mediated interaction
with lidar data featuring millions of points. Our approach could be
a drop in improvement to many existing computer graphics applica-
tions as well as a major step forward for cutting-edge pursuits such
as the direct simulation of self-driving cars in lidar environments.

2 RELATED WORK
The LogSumExp function is commonly used in deep learning (see,
e.g., [Zhang et al. 2020]) as a smooth estimate of the maximum of
a set of data. Its gradient is the softmax function (which is not a
maximum as the name implies, but a smooth estimate of the one-
hot argmax of a set of data). LogSumExps can be easily modified to
return a smooth minimum distance rather than a maximum (and
its gradient is the softmin). Aside from deep learning, LogSum-
Exps also appear in other contexts where smooth approximations
to min/max functions are needed: for example, they are known
in the engineering literature as the Kreisselmeier-Steinhauser dis-
tance [Kreisselmeier and Steinhauser 1979]. LogSumExps have also
been used recently in computer graphics by Panetta et al. [2017]
to smoothly blend between microstructure joints. LogSumExp is
just one of a number of smooth distance functions. For instance,

the 𝐿𝑝 norm function has been used as a smooth distance as well,
for smooth blending between implicit surfaces [Wyvill et al. 1999]
and computing smooth shells around surfaces [Peng et al. 2004].
A similar function can be computed directly from boundary inte-
grals [Belyaev et al. 2013]. These functions could act as a drop in
replacement for much of our proposed algorithm, but the former
function tends to return numerically 0 results for far-away points
which makes the zero isosurface ambiguous, and it is unclear if the
latter even exhibits the important underestimate property. Not only
do LogSumExps satisfy the desired property, but they numerically
return inf for far-away points which leaves the zero isosurface
unambiguous, and so we choose to construct our method around
the LogSumExp function.

Gurumoorthy and Rangarajan [2009] demonstrated a relationship
between the Eikonal equation and the time-independent Schrödinger
equation (which is a screened Poisson equation), and used this to
derive the LogSumExp function as an approximate solution to the
Eikonal equation. They evaluate the LogSumExp using a convolu-
tion in the frequency domain, which requires a background grid
to compute the FFT and its inverse. Further, their method requires
all data points to be snapped to grid vertices. While more efficient
than a full evaluation, our method achieves comparable asymptotic
performance without a background grid and therefore respects the
input geometry. Sethi et al. [2012] extended this line of work by
adding support for edges, but they integrate the exponentiated dis-
tance over each edge, which, as we show in Section 3.1, can lead to
overestimated distances. Computing a distance approximation by
taking a logarithm is also conceptually similar to Varadhan’s for-
mula geodesic distance, which was the inspiration for the geodesics
in heat method [Crane et al. 2017].
Smooth signed distance functions (SDFs) have recently become

popular in machine learning as well. A full accounting is beyond
the scope of this paper but see for instance Chen and Zhang [2019];
Mescheder et al. [2019]; Park et al. [2019]. These approaches encode
geometric information in latent vectors to be used at evaluation time,
along with an input position in space to evaluate a learned signed
distance function. Aside from being unsigned rather than signed,
our distance approximation diverges in two important ways from
work on Neural SDFs. First, our representation is an augmentation
to the exact geometry as a smooth approximation rather than an
outright replacement. This means that algorithms that still require
the original discrete geometry [Li et al. 2020b] for operations such as
continuous collision detection can make use of our method. Second,
the only preprocessing in our method is building a BVH over the
data (which typically takes less than a second) rather than training
a neural network, which is significantly more expensive.
One particular feature of smooth distance functions is that they

can use point data to construct implicit functions whose zero iso-
surface represents the surface. There are many other methods that
accomplish this, such as radial basis functions [Carr et al. 2001] and
Poisson surface reconstruction [Kazhdan et al. 2006; Kazhdan and
Hoppe 2013]. Although these methods are capable of producing
very accurate surface reconstructions, they require solving large
linear systems, while in our approach the implicit function is readily
available. Another surface reconstruction method is the point set
surface [Alexa et al. 2003], though instead of obtaining an implicit

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:3

Increasing

Exact Distances

Smooth Distances

Fig. 3. A comparison between smooth and exact (offset) distance isosurfaces, with gradients represented by colour, at varying values of � , using 1/� for exact
distance offets. Exact distances trade off between inflating noisy data in the center and far side of the point cloud at low � , and noisy gradients at high � .
Meanwhile, smooth distances (bottom) transition from smooth and inflated to more exact as � increases, without exacerbating noisy data or yielding poor
gradients.

function, this method finds points on the described surface. Level
set methods [Zhao et al. 2001] have also been used to reconstruct
surfaces, though this requires a grid and may require prohibitively
dense voxels to capture fine detail in the underlying surface.

Collision resolution has long been a difficult problem in physics-
based animation and engineering. While no efficient method for
deformable SDFs exists, a useful approximation is to use a signed
distance function of the undeformed space [McAdams et al. 2011].
Mitchell et al. [2015] extended this work by using a non-manifold
grid to accurately represent high-frequency and even zero-width
features. Recently, Macklin et al. [2020] have used SDFs to represent
rigid objects that robustly collide with deformable objects in an
extended position-based dynamics framework [Macklin et al. 2016].
Further, barrier energies for constrained optimization can be seen
as a smooth analog for distance-based constraints. These have seen
much success in geometry processing [Smith and Schaefer 2015] and
physics simulation [Ferguson et al. 2021; Li et al. 2020b], and follow-
up work has proposed separate extensions to co-dimensional [Li
et al. 2021] and medial geometry [Lan et al. 2021]. While effective
for this particular application, the methods of Macklin et al. [2020]
and Li et al. [2020b] lack the ability to smooth input data [Ferguson
et al. 2021] and so cannot, for instance, approximate point clouds
as closed surfaces (Fig. 1) for smooth collision resolution. Another
shared technical limitation of these methods is the large number of
constraints they generate (one per primitive pair), which must be
mitigated through techniques like spatial hashing. For these reasons,
we view our method as complementary to the aforementioned ap-
proaches: our method smooths the input data while also combining
every pairwise primitive constraint into a single constraint.

Simulation frameworks such as Bullet [Coumans and Bai 2021]
and PhysX [NVIDIA 2021] often accelerate collisions through bound-
ing proxies that cover sections of geometry such as convex hulls,
spheres, and cylinders. These approaches are effective for real-time
simulation where speed is preferred over accuracy, but not compa-
rable with our method since we aim for accurate off-line simulation.

The key to our method is a carefully designed weighted smooth
distance function, combined with a specialized Barnes-Hut approxi-
mation [Barnes and Hut 1986]. The Barnes-Hut algorithm was first
developed for N-body simulations to reduce computational effort on
far-away bodies with negligible contributions to force. Barnes-Hut
approximations have seen use in many graphics applications which
use rapidly decaying kernels (e.g., [Alexa et al. 2003; Barill et al. 2018;
Yu et al. 2021]), but as we will show, careful modification is needed to
ensure that fast evaluation does not break the conservative bounds
of the LogSumExp function.

Contributions. In this paper we present a new method for comput-
ing smooth distance fields on co-dimensional input geometry. We
derive blending weights and a modified Barnes-Hut acceleration ap-
proach that ensures our method is conservative (points outside the
zero isosurface are guaranteed to be outside the surface), accurate,
and efficient to evaluate for all the above data types. This, in combi-
nation with its ability to smooth sparsely sampled data like point
clouds, enables new applications such as direct, co-dimensional rigid
body simulation using unprocessed lidar data.

3 METHOD
Given an input geometry Ω embedded in R3, the unsigned distance
field is defined as

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:4 • Abhishek Madan and David I.W. Levin

𝑑 (q) = min
Ω

𝑑 (x, q) , (1)

where x ∈ Ω is a point on the input geometry and q ∈ R3 is an
arbitrary query point.

In our case, the input geometry is represented as a co-dimensional
data mesh,M = (𝑉 , 𝐹). Here 𝑉 is a set of vertices v𝑖 in R3, and 𝐹

is a set of primitives. In this paper, we deal exclusively with points,
edges, and triangles, so we use the terms “simplex” and “primitive”
interchangeably. A simplex 𝑓𝑖 consists of a tuple of indices into 𝑉 .
For example, a triangle would be represented as 𝑓𝑖 = (𝑖0, 𝑖1, 𝑖2) where
each 𝑖𝑘 indexes 𝑉 . We also need to reference the faces of a simplex,
which we define as any non-empty subset of a simplex; for example,
edges and points are faces of triangles. Based on this definition,
edges that are faces of triangles can be constructed from triangle
indices using, e.g., 𝑖01 = (𝑖0, 𝑖1). Lastly, we denote the dimension
of a simplex as 𝑛(𝑓𝑖) and the volume of a simplex as |𝑓𝑖 | (which is
1 for points). 𝐹 can be omitted for point clouds, but we will use it
throughout to keep the notation consistent.

With respect to this discretized input, the distance field computa-
tion can be reframed as finding the minimum distance between the
query point and all constituent simplicies ofM:

𝑑 (M, q) = min
𝑖

𝑑 (𝑓𝑖 , q) . (2)

However, min is only
𝐶0, and has discontinu-
ities along the medial
axes of the data mesh (see
inset, left, for a plot of
min(𝑥,𝑦), with the gradi-
ent discontinuity 𝑥 = 𝑦

shown as a dashed line). Furthermore, exact distances are a poor
representation of co-dimensional geometric representations like
point clouds that only loosely approximate the true underlying (vol-
umetric) geometry. The distance isosurfaces to a point cloud have
poor gradients at small offsets and amplify sample noise at large
offsets (Fig. 3). Our goal is to tackle both problems by designing a
distance function that is at least 𝐶1 differentiable and produces a
smooth isosurface approximating the underlying geometry.
We begin by converting the true distance to a smooth distance

via an application of the LogSumExp smooth minimum function
which yields

𝑑 (M, q) = − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝑤𝑖 (q) exp(−𝛼𝑑𝑖)ª®¬ , (3)

where 𝑑𝑖 = 𝑑 (𝑓𝑖 , q), 𝛼 controls the accuracy and smoothness of the
approximation and𝑤𝑖 are influence weights for each simplex, which
will be discussed in more detail in Section 3.3. (See inset, right, for a
plot of −0.1 log(exp(−10𝑥) + exp(−10𝑦)).)

Importantly, this function is differentiable for all finite values of
𝛼 with gradient (with respect to q)

∇𝑑 (M, q) =
∑

𝑓𝑖 ∈𝐹 𝑤𝑖 (q) exp(−𝛼𝑑𝑖)∇𝑑𝑖 − 1
𝛼 exp(−𝛼𝑑𝑖)∇𝑤𝑖 (q)∑

𝑓𝑖 ∈𝐹 𝑤𝑖 (q) exp(−𝛼𝑑𝑖) ,

(4)

0

0.6

Exact Distance Field Non-Conservative Field

On Surface In Surface

Fig. 4. Points (red) starting outside a shape can be prevented from crossing
into it by ensuring their trajectories (dashed line) never cross the 0 isosurface
of an unsigned distance field. Non-conservative estimates break this prop-
erty, allowing interpenetration of the underlying geometry. Such estimates
are unusable if downstream algorithmic stages require the geometries to be
intersection-free.

and is guaranteed to underestimate the true distance to the input
mesh when every𝑤𝑖 ≥ 1, with error bounded by log(𝐴 |𝐹 |)

𝛼 where 𝐴
is the maximum value of all𝑤𝑖 (Appendix A). The differentiability
of LogSumExp allows us to preserve the underlying smoothness
of the distance functions, which are at least 𝐶1 almost everywhere
(Appendix B), and the underestimate (or conservative) property
means that our smooth distance will alert us to q crossing the input
surface before it happens. This conservative property is crucial for
applications such as collision detection since it ensures that main-
taining separation with regards to the smooth distance is sufficient
to maintain separation between input shapes (Fig. 4). Ergo, the out-
put of our method will remain usable if downstream applications
require the underlying geometric representations to be separated.
An additional nice property of LogSumExp is its accuracy: not

only is its error merely logarithmic in mesh size, but as 𝛼 increases,
distances become more accurate.

3.1 Smooth Distance to a Single Query Point
As a didactic example let us apply Eq. 3 to a point cloud which we
do by setting 𝑑𝑖 = ∥q − v𝑖 ∥ and 𝑤𝑖 = 1. We can directly observe
the smoothing effect of 𝛼 (Fig. 5), which can be used to close point
clouds. Decreasing 𝛼 produces progressively smoother surface ap-
proximations, and surfaces produced with smaller 𝛼 values nest
those produced with higher 𝛼 ’s. This nesting is a consequence of
the conservative behaviour of the LogSumExp formula.

All of this taken together means that the naive LogSumExp works
well for point cloud geometry.

3.2 Smooth Distances to Co-Dimensional Geometry
A natural extension of Eq. 3 to edge and triangle meshes is to re-
place the discrete sum over points with a continuous integral (see,
e.g., [Sethi et al. 2012]) over the surface:

𝑑 (𝑓𝑖 , q) = − 1
𝛼

log
(∫

𝑓𝑖

exp(−𝛼 ∥x − q∥)𝑑x
)
.

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:5

α = 1 α = 2 α = 41 2 4

Fig. 5. At low values of � , the sharp antlers and face of this deer point cloud
become puffy and smooth (top left). Increasing � resolves features in the
face more clearly (top middle), and the individual points become visible at
high � (top right). The bottom row shows the transition between different
� values — higher-� surfaces are contained in lower-� surfaces.

Sampled Integrated Exact

Fig. 6. Computing edge distances with LogSumExp and sampled point
quadrature (left) creates holes in the isosurface at high � . Integrating over
the edge (middle) using 5th order Gaussian quadrature can remove the
holes but will overestimate distance at low � . Computing exact distances
(right) produces the correct isosurface. The edge and a small offset surface
are shown in each, where the underestimate property requires that only the
first color interval should be contained in the offset region.

When discretized, this becomes equivalent to applying Eq. 3 to
quadrature points on the mesh, while the�� become the quadrature
weights.

While simple, this formulation will unfortunately break the im-
portant conservative property of the LogSumExp function because
the quadrature weights will, in general, not be greater than or equal
to 1. Fig. 6 shows examples of the overestimation errors introduced
by this approach.
Rather we must return to Eq. 3 and compute the respective �� ’s

to the constituent mesh triangles and edges exactly. This can be
accomplished via efficient quadratic programming which we detail
in Appendix B. However, using unit valued weights, as we did for
points, produces bulging artifacts where primitives connect (Fig. 7).
What remains is to compute weight functions that mitigate these
effects while simultaneously satisfying our ≥ 1 constraint.

(a) Edges

(b) Triangles

Unweighted Weighted

Unweighted Weighted

(a) Edges

Unweighted

(a) Edges

Weighted

Fig. 7. Distances tend to concentrate where primitives overlap, creating thin
edges (top left) and bumps in the surface (bottom left). Weight functions
help mitigate these effects (right), for both edge meshes (a) and triangle
meshes (b).

3.3 Weight Functions
First, we must understand why these bulging artifacts occur. If the
closest point on M to q is on a simplex face, then every simplex
containing that face will have the same closest point, resulting in a
more severe underestimate of the true distance than usual. While
this phenomenon occurs any time q is on the medial axis of M
(the cause of the logarithmic error term), separately computing the
distance to each primitive effectively creates an artifical medial axis
where there is only one true closest point that is contained in multi-
ple primitives. Panetta et al. [2017] observe the same concentration
artifacts when using LogSumExp on edge meshes, but they propose
fixing it using weighted blending, where the weight calculation re-
lies on knowing the convex hull of the edge mesh neighborhood and
blending between smooth and exact distance fields. Unfortunately,
it is unclear how to extend this to triangles or apply acceleration
schemes like Barnes-Hut. Instead, we propose a different weighting
scheme which is fast, local and can be easily adapted to triangles.
We center the design for our per-primitive weight functions��

around high-accuracy use cases, which correspond to high values of
� . The weights must be spatially varying to counteract the local con-
centration artifacts, and for simplicity, the function will be defined in
terms of the barycentric coordinates of the closest point projection
of q onto �� . The projection function is denoted by �� (q) and the
barycentric coordinates of a point p within �� are denoted �� (p); us-
ing these definitions, our weight function is�� (q) = �� (�� (�� (q))).
We will first design a weight function that mitigates the bulge ar-
tifacts without regard for maintaining the conservative property,
which we will denote as �̃� , and then derive an appropriate global
scale factor for every �̃� inM to achieve the conservative property.

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:6 • Abhishek Madan and David I.W. Levin

x

y
z

Closest Point

q0

q1

q2

q0 = (q1) = (q2)

Fig. 8. All points (such as q1 and q2) along a line extending perpendicular to
a simplex boundary share a closest point q0, and thus the normal derivative
of the closest point projection � is the zero vector.

Fig. 9. An example of the unscaled triangle weights, �̃, computed by our
method for a single triangle.

The weight functions will be defined as polynomials in terms of
�� , so constructing the weight functions is a matter of determining
the polynomial coefficients by solving a system of linear equations,
determined by both point constraints and derivative constraints.
Qualitatively, the point constraints aim to both assign a low weight
to the simplex boundary and assign a high weight to the simplex
interior (see Appendix C formore details). The derivative constraints
constrain the normal derivative to be 0 along the boundary, which
is necessary in order to ensure �� is smooth everywhere. To see
this, we note that the gradient of �̃� with respect to q is

∇�̃� =
���
�q

���
���

��̃�

���
, (5)

where we use the indexing convention
[
�y
�x

]
��

=
�y�
�x� for a generic

vector function y(x) (i.e., gradients with respect to a scalar function
are column vectors). �� is in fact a �0 function, with a derivative
discontinuity on the boundary. When �� (q) is in the interior of
�� , the gradient ���

�q ∈ R3×3 is the identity matrix, but when it
is on the boundary, the gradient has a null space in the direction
perpendicular to the boundary, making the normal derivative the
zero vector (Fig. 8) and creating a derivative discontinuity at the
simplex boundary. Left unchecked, this discontinuity will propagate
to�� as well. We opt to hide this discontinuity by coercing ���

���
to

have zero normal derivative along the boundary while also being
smooth. SeeAppendix C for details on how the derivative constraints
are enforced, and Fig. 9 for an example weight function.

Since the point constraints require �̃� to be less than 1 along the
simplex boundary, they break the conservative property. We rectify

Unscaled Gradients Scaled Gradients

Fig. 10. Small meshes produce large weight gradients which produce notice-
able ridges on this torus (left); uniformly scaling the ambient space allows
us to control the length of these gradients and smooth out the ridges (right).

this by scaling �̃� by a factor� associated withM and not individual
simplices, so that ��̃� ≥ 1 for all �� ∈ M. Although this inflates the
zero isosurface, it does so uniformly, so we do not reintroduce the
artifacts we wanted to remove. This error is logarithmic in � and
becomes negligible at higher values of � .
We can further refine our weight functions to improve their be-

haviour. One such improvement targets the ���

���
term in the gradient.

Since �� is restricted to producing points within �� , this term is in
fact equivalent to linear shape function gradients from finite ele-
ment analysis. For triangles, our barycentric coordinate vector is
�� = [�1

�
, �2

�
]�, and our gradients (with respect to points in ��) are

∇�1
�
=

(v�0 −v�2)⊥
2 | �� | and ∇�2

�
=

(v�1 −v�0)⊥
2 | �� | where x⊥ represents a

90-degree counterclockwise rotation of x. We see that gradients
are inversely proportional to triangle area, and thus create gradient
artifacts in smaller triangles (Fig. 10). Our goal is to control the
magnitude of these gradients.
Since larger triangles have smaller gradients, a simple way to

fix the gradients is to isotropically scale the space by a factor � ,
compute �̂ , and then scale back to the original space at the end.
This way, weight gradients are computed in the scaled space and
we can directly control the magnitude of the barycentric gradients.
However, if we expand Eq. 3 using distances scaled by � , we notice
that � behaves the exact same way as � , and so we do not actually
need a new parameter. Instead, � itself can be interpreted as a
uniform scale factor in space, and controlling accuracy with � is
equivalent to measuring lengths with the metric �2� where � is the
identity matrix. Going back to weight gradients, we now measure
lengths in �-scaled space, and we get barycentric gradients such
as ∇�1

�
=

(v�0 −v�2)⊥
2� | �� | , which allows us to reduce the norm of the

problematic gradient term (Fig. 10). Other quantities stay the same
since they are either independent of the metric (e.g., ∇��), or their
dependence on � and thus the metric space is explicit and already
accounted for.

Another improvement is the behaviour of the�� ’s at low � . A key
assumption in our design of�� is that� is sufficiently large, but since
� is a controllable user parameter, this assumption can sometimes be
violated, and the weights can overcompensate for concentration. In
these cases�� needs to be further modified to avoid artifacts (Fig. 11).
If � surpasses some threshold �� (which at a high level represents a

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:7

Increasing Increasing Increasing Increasing

Fig. 11. At a low value of � , the weight function overcompensates and
produces creases and other spurious artifacts in this very blobby hexagonal
torus; adjusting �� makes it possible to blend between weighted and un-
weighted distances to mitigate these artifacts.

upper bound on � — see Section 4.3 for more information on how it
is selected), then we can use�� as-is; if � < �� , then we must flatten
or attenuate�� . Experimentally we observe that using a scale factor
� = �

max(�,��) to define an attenuated weight function �� (q) =

(��̃� (q))� , with gradient ∇�� (q) = � (��̃� (q))�−1∇�̃� (q), helps
minimize these issues. Note that this heuristic does not eliminate
the issue for all � but does mitigate it sufficiently for all ranges of �
used in this paper.

3.4 GeneralizedQuery Primitives
We will briefly discuss how to generalize our query point into a
general query primitive �, which can also be an edge or a triangle.
Just like with points, we can compute the distance to another simplex
�� as � (�� , �) using a positive semidefinite quadratic program with
linear constraints (see Appendix B). We now also obtain barycentric
coordinates for � through the argmin, which we will denote as �.
All formulas in the preceding subsections can be adapted for this
generalization by simply replacing q with �, and using the closest
point toM on �, �(�), when a single point is needed (e.g., in weight
functions). These changes imply that ∇�̂ is now with respect to an
entire query primitive, but this simply describes a rigid translation
of �. Taking gradients with respect to entire primitives also ensures
that, even in configurations with multiple closest point pairs such
as parallel edges, the gradient is the same for each closest point pair
and thus well-defined.

3.5 Barnes-Hut Approximation
Although our distance function is smooth and easy to differentiate,
it requires evaluation of a distance between every pair of primitives
in the most general case. However, its use of exponentially decaying
functions enables the application of the well-known Barnes-Hut ap-
proximation [Barnes and Hut 1986] to accelerate evaluation. Barnes-
Hut uses a far field approximation to cluster groups of far-away
primitives together (typically using a spatial subdivision data struc-
ture like an octree or bounding volume hierarchy) and treat them
as a single point. The approximation is characterized by the centers
of each bounding region, and a user parameter � which controls
where the far field approximation is employed — see Appendix D for
details. At a high level, lower � is more accurate, and � = 0 results
in an exact evaluation.

Placing the far-field expansion at the center of mass reduces over-
all error [Barnes and Hut 1986] but it can possibly overestimate the
true distance, breaking the conservative nature of the LogSumExp

Center of Mass Closest Point

Fig. 12. The center of the Barnes-Hut approximation (purple) has a signifi-
cant effect on the sign of the error. The center of mass can potentially be
farther away than some data points (orange), which can lead to an over-
estimate of the true distance. On the other hand, the closest point on the
bounding box is guaranteed to be closer than every data point (blue), so the
final result will always be an underestimate.

smooth distance. A minor modification can reinstate this property –
placing the expansion center on the closest point of the cluster re-
gion to the query primitive�, rather than at the center of mass.When
using an octree or BVH, we pick the closest point on the bounding
box to the query point. This may increase the error relative to using
the center of mass, but it guarantees that the Barnes-Hut estimate
only underestimates the exact smooth distance (Fig. 12). Note that
this choice does not affect the gradient if the bounding region is
convex (which is the case for bounding box hierarchies and octrees),
since rigidly translating � farther away along the gradient direction
does not change the closest point.

Finding the closest point on a box to a query point is simple, but
finding the closest point on a box to a query edge or triangle is more
complex, and requires solving a quadratic program. However, this
is relatively expensive for what is meant to be a fast check to help
reduce computation time, so we instead use an approximation of
the problem. Viewing a box as the intersection of 6 halfspaces, we
identify which halfspaces the primitive lies completely outside of.
If there are 3 such halfspaces, they identify a corner of the box that
is closest to the primitive; if there are 2 halfspaces, they identify
an edge of the box; and if there is 1 halfspace, it identifies a face
of the box. If there are no halfspaces that satisfy this criteria, then
we simply return the distance to the box as 0 and force the traver-
sal to visit its children. Although this test somewhat inhibits the
Barnes-Hut approximation’s ability to group primitives together,
the computational savings per visited node more than make up
for it — we noticed over a 5× improvement in performance in our
experiments.
Psueodocode summarizing our method so far is given in Algo-

rithm 1 and Algorithm 2.

3.6 Smooth Distance to aQuery Mesh
Now that we are equipped with an efficient method for comput-
ing �̂ (M, �), we can combine these distances using LogSumExp to
obtain a smooth distance betweenM and a query mesh M̄ = (�̄ , �̄):

�̂ (M, M̄) = − 1
��

log ��
�

∑

�� ∈�̄
exp

(
−���̂ (M, � �)

)��
�
, (6)

where we have introduced a new accuracy-controlling parameter
�� that is independent of the inner � . In an exact evaluation (� = 0),

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:8 • Abhishek Madan and David I.W. Levin

ALGORITHM 1: Collecting contributions for 𝑑 (M, 𝑔)
collectContributions

Inputs :Data meshM, BVH node 𝐵, query primitive 𝑔,
parameters 𝛼 , 𝛼𝑈 , 𝛽

Outputs :Sum of exponentials 𝑐 and sum of weighted distance
gradients ∇𝑐

// 𝐵 has children 𝐵.𝑙 and 𝐵.𝑟

if BarnesHutCondition(M, 𝐵, 𝑔, 𝛽) ; // App. D, Sec. 3.5

then
Return far field expansion ; // App. D

else if 𝐵 is a leaf containing 𝑓𝑖 then
(𝑑𝑖 , ∇𝑑𝑖 ,𝝓𝑖 ,𝝀) ← 𝑑 (𝑓𝑖 , 𝑔) ; // Sec. 3.4, App. B

(𝑤𝑖 , ∇𝑤𝑖) ← weightFn(𝑓𝑖 ,𝝓𝑖 , 𝑔,𝝀, 𝛼, 𝛼𝑈) ; // Sec. 3.3

𝑐 ← 𝑤𝑖 exp(−𝛼𝑑𝑖) ; // Eq. 3

∇𝑐 ← 𝑐∇𝑑𝑖 − 1
𝛼

exp(−𝛼𝑑𝑖)∇𝑤𝑖 ; // Eq. 4

Return (𝑐, ∇𝑐) ;
else
(𝑐𝑙 , ∇𝑐𝑙) ← collectContributions(M, 𝐵.𝑙, 𝑔, 𝛼, 𝛼𝑈 , 𝛽) ;
(𝑐𝑟 , ∇𝑐𝑟) ← collectContributions(M, 𝐵.𝑟, 𝑔, 𝛼, 𝛼𝑈 , 𝛽) ;
Return (𝑐𝑙 + 𝑐𝑟 , ∇𝑐𝑙 + ∇𝑐𝑟) ;

end

ALGORITHM 2: Computing 𝑑 (M, 𝑔) smoothMinDist
Inputs :Data meshM, BVH node 𝐵, query primitive 𝑔,

parameters 𝛼 , 𝛼𝑈 , 𝛽
Outputs :Smooth min distance 𝑑 and gradient ∇𝑑
(𝑐, ∇𝑐) ← collectContributions(M, 𝐵, 𝑔, 𝛼, 𝛼𝑈 , 𝛽) ;
𝑑 ← − 1

𝛼
log𝑐 ;

∇𝑑 ← ∇𝑐
𝑐+𝜖 ; // Avoid divide-by-zero

this strongly resembles the LogSumExp of all the pairwise distances
between each 𝑓𝑖 and 𝑔 𝑗 .
A subtle issue with the current formulation is that the distance

gradients ∇𝑑 (M, 𝑔 𝑗) are with respect to 𝑔 𝑗 as a whole, but we need
per-vertex gradients as those are the true degrees of freedom. One
simple way to do this is to split exp(−𝛼𝑞𝑑 (M, 𝑔 𝑗)) equally between
the vertices of 𝑔 𝑗 , and rewriting the summation over vertices and
one-ring neighbourhoods gives us:

𝑑 (M, M̄) = − 1
𝛼𝑞

log ©«
∑︁
q𝑘 ∈𝑉

∑︁
𝑔𝑗 ∈N𝑘

1
𝑛(𝑔 𝑗) + 1 exp

(
−𝛼𝑞𝑑 (M, 𝑔 𝑗)

)ª®¬ ,
(7)

whereN𝑘 is the set of one-ring neighbours of q𝑘 . Then, the gradient
with respect to query vertex q𝑘 is

∇𝑘𝑑 (M, M̄) =
∑
𝑔𝑗 ∈N𝑘

1
𝑛 (𝑔𝑗)+1 exp

(
−𝛼𝑞𝑑 (M, 𝑔 𝑗)

)
∇𝑑 (M, 𝑔 𝑗)∑

𝑔𝑗 ∈𝐹 exp
(
−𝛼𝑞𝑑 (M, 𝑔 𝑗)

) .

(8)
Once again, the convexity of the query and data primitives means
that we can interpret the ∇𝑑 (M, 𝑔 𝑗) as a rigid translation of 𝑔 𝑗 that
affects all its vertices equally.

The summation in Eq. 6 can be easily parallelized, and the gradient
computation requires only a small amount of serialization at the
end to redistribute gradients onto vertices.

4 RESULTS

4.1 Implementation
We implemented our method using C++ with Eigen [Guennebaud
et al. 2010] and libigl [Jacobson et al. 2018]. We designed the im-
plementation so that it could be ported onto the GPU, and to this
end, we implemented the BVH traversal algorithm outlined in Al-
gorithm 1 using the stackless method of Hapala et al. [2011]. Since
GPUs exhibit poor performance for double-precision floating point,
most of our computations (particularly vector arithmetic) are con-
ducted in single-precision, while exponential sums are tracked using
double-precision to increase the range of usable 𝛼 values. Primitive
distances were hand coded if feasible, and were otherwise imple-
mented using a null-space quadratic program solver written using
Eigen (edge-triangle and triangle-triangle distances). An important
aspect of these distance computations is robustness, which becomes
particularly important because distances are computed using single-
precision floats, and errors in the distance can result in breaking
the conservative property. The hand-coded distance functions made
extensive use of an algorithm by Kahan which employs the fused-
multiply-add instruction to reduce cancellation error [Kahan 2004],
while the quadratic program solver leveraged Eigen’s numerically
stable algorithms.

4.2 Sphere Tracing
Sphere tracing is a method to render signed (and unsigned) distance
functions [Hart 1996]. We can use sphere tracing to visualize the
zero isosurface of 𝑑 with M̄ as a single point, which we have done
throughout the paper for demonstrative purposes.

4.3 Parameter Analysis
To demonstrate the effectiveness of Barnes-Hut, we conduct an
ablation study on 𝛽 . In order for Barnes-Hut to be useful in approxi-
mating a constraint function, it primarily needs to be accurate near
the zero isosurface, as that is where it is evaluated in constrained
optimization problems (e.g., rigid body contact constraints are only
evaluated when there is a potential collision). The approximation
becomes increasingly inaccurate farther away from the surface, but
since we are only concerned with the zero isosurface, we use sphere
tracing as a sampling technique. Using the Stanford bunny mesh’s
vertices, edges, and triangles, with 𝛼 = 200, 𝛼𝑈 = 1200, and 𝛽 be-
tween 0 and 1, we measure the amount of time taken to render a
512 × 512 image, as well as the distance along each ray between the
approximation’s estimate of the isosurface and the actual isosurface
(𝛽 = 0). The results are shown in Fig. 13, using 4 threads on a 2015
MacBook Pro. We see that running time decreases by an order of
magnitude even for 𝛽 = 0.2 in all three cases, and all renders take
less than 10s at 𝛽 = 0.5. The error relative to the bounding box
diagonal also remains below 4% for these values of 𝛽 . As a result,
we use 𝛽 = 0.5 in all of our examples in the paper unless otherwise
stated. We find that 𝛽 can be increased with low error for higher

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

β

Time (s)

Triangles

Edges

Points

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Error

β

Triangles

Edges

Points

Fig. 13. Sphere tracing the Stanford bunny’s smooth distance function over
its vertices (green), edges (orange), and triangles (purple) obtains order-of-
magnitude speedups (top) even for small 𝛽 , while achieving low isosurface
approximation error relative to the bounding box diagonal (bottom).

values of 𝛼 (or equivalently, meshes with lower sampling density),
but this is not necessary to obtain significant speedups.

Due to Barnes-Hut relying on a switch between a near field and
far field approximation, the smooth distance field can exhibit dis-
continuities. In order to quantify the effect of these discontinuities,
we perform a sensitivity analysis on 𝛽 at points where the evalu-
ation switches between a near field and far field expansion, since
we expect a change in 𝛽 to also change the leaves visited in the
evaluation. Using the city lidar point cloud from Fig. 1 and 𝛽 = 0.5,
we generate sample points by uniformly sampling points on the
top and bottom of the bounding box, and sphere tracing rays along
the vertical coordinate axis (z-axis in this case) until the ray either
misses the surface or has a smooth distance of 0.1 or less. Then, with
these sample points on the 0.1 isosurface, we trace small rays in
the same vertical direction, and whenever the evaluation switches
from a far field to near field expansion in a bounding box (i.e., tra-
verses inside a new bounding box), we also measure the smooth
distance using 𝛽 = 0.5001 and compute the discrepancy in smooth

distance and the cosine between gradient vectors. We collect 259
field switch points where 𝛽 = 0.5001 traverses less of the BVH than
𝛽 = 0.5, and observe that the mean smooth distance discrepancy is
7.6 × 10−5 and the maximum discrepancy is 6.6 × 10−3; for gradi-
ents, the mean cosine is 1 and the minimum cosine is 0.9974. These
results are sufficient for our rigid body simulations with geometry
orders of magnitude larger than these discrepancies, though for ap-
plications with more demanding smoothness requirements, smooth
Barnes-Hut approximations are a potential area for future work.
The remaining parameters 𝛼 and 𝛼𝑈 are associated with the

geometry ofM. In cases where we want a function resembling our
underlying geometry, we want to select an 𝛼 that is high enough
to produce a good approximation of the surface, but low enough to
prevent numerical problems. Since we can interpret 𝛼 as a metric,
we can select 𝛼 based on the density of our geometry. One heuristic
we found to be a useful starting point for edge and triangle meshes is
to set 𝛼 to be the reciprocal of the minimum edge length. For points,
we set 𝛼 to be 100 times the length of the bounding box diagonal.
These results can be refined by sphere tracing the zero isosurface
and tweaking the results until the surface looks satisfactory. 𝛼𝑈 is
essentially an upper bound on 𝛼 and can be determined using this
same procedure, which allows it to be used in low-𝛼 scenarios as
well. 𝛼𝑞 is very similar to 𝛼 but is related to the geometry of M̄, and
can be selected using the same process. A fully automated solution
for selecting these parameters is left as future work.

4.4 Performance Benchmark
We performed a large-scale performance evaluation of our method
on the Thingi10K dataset [Zhou and Jacobson 2016]. For each model,
we created 3 data meshes: all of the model’s vertices 𝑉 , all of its
edges 𝐸, and all of its triangles 𝐹 . We then scaled and translated
each of these meshes so that their bounding boxes were centered
at [0.5, 0.5, 0.5]⊤, with a bounding box diagonal of 0.5. Then, we
evaluated 𝑑 from each mesh to each of the voxel centers of a 100 ×
100 × 100 grid between [0, 0, 0]⊤ and [1, 1, 1]⊤, in parallel using
16 threads. The results are reported in Fig. 14. We can see that
performance is proportional to the number of visited leaves (i.e., the
number of primitive distance calculations and far field expansions
employed), and the percentage of visited leaves drops significantly
as meshes increase in size. These results show that our method is
quite scalable, and is very good at handling large meshes. Just like
in Section 4.2, points tend to perform much better than edges and
triangles, but now we can see why this is the case. Point clouds
have lower variances than edge meshes and triangle meshes in
their average leaves visited percentage — for example, even at at
1000 edges/triangles, several meshes require the traversal to visit
well over 10% of the leaves in their BVH on average. Also, points
generally visit far fewer leaves — point cloud tests visit at most 70
leaves, while edge meshes and triangle meshes can require over 2000
visited leaves. As we can see from the first graph, less leaves visited
corresponds to faster query times, and so points are empirically
faster than the other two types of meshes.

We also ran this benchmark on a GPU — see Appendix E for the
results.

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:10 • Abhishek Madan and David I.W. Levin

101 102 103 104 105 106 10710-4

10-3

10-2

10-1

1

10

100

|E |

Avg % Leaves Visited

100

500 1000 1500 2000 2500
0

10

20

30

40

50

60

Avg Leaves Visited

Edge Voxel Grid Eval Time (s)

101 102 103 104 105 106 10710-3

10-2

10-1

1

10

100
Avg % Leaves Visited

|V |
100

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Avg Leaves Visited

Point Voxel Grid Eval Time (s)

101 102 103 104 105 106 10710-4

10-3

10-2

10-1

1

10

100

|F |

Avg % Leaves Visited

100

500 1000 1500 2000 2500
0

20

40

60

80

100

120

Avg Leaves Visited

Triangle Voxel Grid Eval Time (s)

Fig. 14. Results of the Thingi10K benchmark, using the vertices𝑉 , edges 𝐸, and triangles 𝐹 of each mesh in the dataset to evaluate queries on a 100 × 100 × 100
voxel grid. The top row shows that running time is linearly proportional to the number of visited leaves for all mesh types, and the percentage of visited leaves
drops sharply as mesh size increases. Furthermore, points tend to perform much better than edges and triangles.

4.5 Rigid Body Collisions
One popular application of distance functions is in collision resolu-
tion, where they can be used as an intersection-free optimization
constraint. To focus on the distance function constraint rather than
the mechanics, we simulate frictionless rigid body contact, using a
variety of configurations and a variety of geometry. Each time step
of our simulation is driven by an incremental potential energy based
on Ferguson et al. [2021] with a single smooth distance constraint.
For example, the optimization problem corresponding to a single
object M̄ colliding with one other static objectM in the scene is

min
p,𝜽

𝐸 (p, 𝜽)

𝑠 .𝑡 . 𝑑 (M, M̄(p, 𝜽)) ≥ 0,
(9)

where p and 𝜽 are vectors in R3 describing the world space po-
sition and orientation of M̄, respectively, and 𝐸 is an objective
function whose unconstrained minimizer is equivalent to an im-
plicit Euler time step in position and an exponential Euler time
step in orientation. We solved this optimization problem using a
primal-dual interior-point solver [Nocedal and Wright 2006] writ-
ten in C++, where every iteration produces a feasible point, and we
replace the Hessian block of the primal-dual system with an identity
matrix (similar to gradient descent on the optimization problem’s
Lagrangian). For multi-object simulations, each object in the scene

has an associated 𝛼 and 𝛼𝑈 to use in smooth distance evaluations,
and every pairwise smooth distance constraint is combined into a
single constraint using LogSumExp with the maximum 𝛼 among all
objects in the scene. Inertial quantities were computed using the
underlying geometry. We did not implement continuous collision
detection, so we use relatively small time steps in our examples.

Since we wrap every pairwise primitive distance constraint into
a single constraint, a much simpler alternative to smooth distances
is the exact minimum of all pairwise distances. However, as we
discussed in Section 3, the exact minimum is 𝐶0, which is undesir-
able (other methods that use exact distance use multiple constraints,
which is better behaved than a single exact minimum constraint [No-
cedal and Wright 2006]). We demonstrate its poor behaviour in two
2D examples where a point is dropped into a V-shaped bowl, and
compare the results between exact minimum distance and smooth
distance constraints (Fig. 15). In both simulations, exact distances
perform qualitatively worse than smooth distances, because they
do not smooth the geometry and must deal with the sharp gradient
change after passing the medial axis passing vertically through the
base of the bowl.
We now show a variety of simulations in three dimensions us-

ing smooth distances. First, we show two rigid bunnies colliding
together and falling onto a bumpy ground plane as a simple test

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:11

Time

Fig. 15. A comparison of exact and smooth distance constraints in rigid
body simulations of a point mass dropping onto two different V-shaped
bowls. In the shallow bowl (top), exact distances (green) lose a lot of kinetic
energy after the sharp base, while smooth distances (orange) allow the point
to roll out of the bowl. In the deep bowl (bottom), exact distances simply
get stuck, while smooth distances are able to continue past the sharp base
for a time.

Time

Fig. 16. Two bunnies colliding and falling onto a bumpy plane, where they
bounce along the surface.

(Fig. 16). The two bunnies bounce off each other and fall down, with-
out intersections. Now we depart from traditional examples and
simulate co-dimensional geometry. We can simulate the edges of a
faceted icosphere falling into a net-like bowl (Fig. 17), where it rolls
to the other side and falls back into the bowl. Both of these meshes
are represented as edge meshes in the simulation, and we see again
that there is no interpenetration. Similarly, we can show a sphere
roll down a slide represented as an edge mesh (Fig. 18). In a more
complex scenario, we can mix primitive types in a mesh and still
compute distances. We can take a sphere mesh, attach some spikes
represented as edges to it, and then simulate this shape falling into
the net bowl (Fig. 19). We see one of the spikes hit the lip of the
bowl and the spiky ball rolling up the other side of the bowl.
We can go even further and use our function to simulate cases

that have not been well-defined in previous methods, like point
cloud collisions. Although recent work has simulated contact with
highly co-dimensional geometry [Ferguson et al. 2021; Li et al. 2021],
the inflated isosurfaces provided by �̂ allow us to close the surface
defined by the point cloud without a surface reconstruction prepro-
cess. We demonstrate this by tossing a trefoil knot, represented as a
piecewise linear curve, into a ring toss game represented as a point
cloud (Fig. 20). In larger examples, we simulate an octopus triangle
mesh (Fig. 21) and a point cloud bunny (Fig. 22) sliding and rolling
down point cloud terrain acquired from a lidar scanner. We also
simulated a motorcycle jumping onto a lidar-acquired point cloud
street (Fig. 1).

Time

Fig. 17. An icosphere edge mesh is dropped into a hemispherical bowl which
is also represented as an edge mesh, where it rolls around in the bowl. Note
that both meshes are only rendered as triangle meshes, and are represented
in the simulation as edge meshes.

Time

Fig. 18. A triangle mesh sphere rolls down a twisting slide made of edges.

We summarize the performance results of the 3D simulations in
Table 1, in particular the average time taken to evaluate �̂ (M, M̄).
Each evaluation was run with 28 CPU threads parallelizing over
per-primitive distance computations.

5 LIMITATIONS AND FUTURE WORK
We have demonstrated a variety of applications of our method, but
it is not a panacea. For example, our method tends to be overly
conservative in contact resolution, and may need to be augmented
with a more exact method to accurately handle tight contacts like a
nut screwing into a bolt. Furthermore, it can be difficult to select
parameters optimally. Although we can select � satisfactorily, �
and related parameters require some extra care to select in a way
that does not produce inf values and yields highly accurate solu-
tions. One possibility would be to analyze the distribution of mesh
edge lengths to pick a reasonable � that is robust to noise in the
distribution. Furthermore, our weight functions, while effective, are
designed heuristically, and it would be interesting to see if there is a
more exact way to define them based on the underlying geometry as
well as the connectivity. They are also only applied to the data mesh
in the current formulation because our weights require a global min-
imizer for computing barycentric coordinates of the closest point.
Generalizing weights to work for both data and query meshes, per-
haps through a more theoretically grounded weight function, is
interesting future work. Another related direction of future work is
analyzing the distribution of a point cloud to eliminate concentra-
tion artifacts caused by non-uniform point distributions. Although
this is not a problem for point clouds that come from most lidar
scanners, it is a useful property to ensure the generalizability of our
method. Working with noisy point clouds also makes it desirable to
eliminate such noise from the dataset entirely. Smooth distances do
not amplify noisy data like exact distances, but the noise still exists
in the underlying dataset, which can be problematic particularly at
high values of � where the noise begins to separate from the main
body into small satellite regions.

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:12 • Abhishek Madan and David I.W. Levin

Time

Fig. 19. A spiky sphere made from a triangle mesh and edges for the spikes, falls into a bowl edge mesh and rolls up the side of the bowl, with the spikes
hitting the bowl’s wires. Due to low � values, the spikes rarely poke through the bowl.

Time

Fig. 20. A trefoil knot is thrown into a ring toss game, represented by point samples, where it hits a ring spike and slides around it before resting on the base.

Time

Fig. 21. An octopus triangle mesh slides through terrain defined by a lidar point cloud.

Table 1. Timing results from the simulations presented in the paper. We give information about the data mesh and query mesh, as well as the average distance
evaluation time and the simulation time step size. Each distance evaluation was parallelized over 28 CPU threads.

M M Type |� | � M̄ M̄ Type |�̄ | �� Avg. Dist Time (ms) dt (s)

Bowl Edges 736 50 Icosphere Edges 120 50 2.72934 1/200
Bowl Edges 736 50 Spiky Sphere Tris+Edges 966 20 34.7789 1/1000
Terrain Points 6591087 100 Bunny Points 3485 20 250.0031 1/100
Terrain Points 6591087 100 Octopus Tris 4432 1000 189.5989 1/100
Bunny Tris 6966 200 Bunny Tris 6966 200 92.5717 1/400
Bumpy Plane Tris 800 200 Bunny Tris 6966 200 470.3857 1/400
Slide Edges 615 100 Sphere Tris 960 100 33.5601 1/100
Ring Toss Points 12400 20 Trefoil Edges 100 20 1.4727 1/200
City Street Points 6747648 50 Motorcycle Tris 8800 100 581.2362 1/100

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:13

Time

Fig. 22. A bunny point cloud rolls and bounces along a lidar point cloud hill.

Another avenue for future work is applying our method to de-
forming meshes in both elastodynamics simulations and friction
simulation. Due to � ’s dependence on the underlying mesh, it would
also need to change over time, so it would be interesting to treat
� as part of the simulation’s evolving state. Friction is particularly
interesting because it involves computing a tangent plane at each
contact point, and since contact points are implicitly wrapped in
the constraint, such a formulation would require a smooth friction
computation over every primitive in the data and query mesh. We
also believe that there are interesting applications in purely particle-
based simulation methods like spherical particle hydrodynamics
that have no background grid to store implicit functions, where our
method could be dropped in to render the fluid surface or induce
collision forces onto the particles from other objects.

Another useful application is to integrate smooth distances into
existing simulation frameworks such as IPC [Li et al. 2020b] and
application extensions [Fang et al. 2021], replacingmultiple exact dis-
tance constraints with a single smooth distance constraint. Although
these methods can be implemented using first-order derivative infor-
mation via gradient descent, their efficient implementations require
Hessians to use in Newton iterations. Smooth distance Hessians
inherit discontinuities at projected primitive boundaries from their
constituent pairwise primitive distances (though �1 functions are
not nearly as problematic as �0 functions — for example, see the
Supplemental of Li et al. [2020b]), but the more pressing issue is
computing and storing them efficiently, since they are large dense
matrices. It would be worthwhile to investigate how these Hessians
can be approximated using techniques like hierarchical matrices.

The explosion of popularity in implicit functions through recon-
struction work such as neural SDFs means that improved compu-
tational tools for implicit functions are on the horizon, which can
also be used to improve the versatility of smooth distances. For
example, computing inertial quantities by directly integrating over
the volume enclosed by the zero isosurface would allow simula-
tion frameworks to forget about the underlying geometry almost
entirely.
The parallelizability of our method also makes it interesting to

consider its integration in purely GPU-based applications. In par-
ticular, there are many possible locations for parallelization; for
example, while our current implementation parallelizes the query
primitive distance computations, an alternative approach could par-
allelize the traversals in each per-query primitive evaluation. We
believe analyzing the tradeoffs of these sort of approaches in the
style of Halide [Ragan-Kelley et al. 2013] is promising future work.

6 CONCLUSION
We have presented a smooth distance function that can be efficiently
evaluated in such a way that it conservatively estimates the distance
to the underlying geometry. Our function works on various types
of geometry that can be encountered: points, line segments, and
triangles, and utilizes weight functions to eliminate isosurface arti-
facts. We have benchmarked our method on the Thingi10K dataset
and shown that it scales quite well for large geometry. It enables
applications such as rigid body contact with lidar point cloud data.
We believe this geometric abstraction is very powerful, and due to
its basic preprocessing requirements (simply building a BVH), it can
provide a lightweight yet versatile augmentation to the underlying
geometry.

ACKNOWLEDGMENTS
This research has been funded by in part by NSERC Discovery
(RGPIN-2017-05524), Connaught Fund (503114), Ontario Early Re-
searchers Award (ER19-15-034), Gifts from Adobe Research and
Autodesk, and the Canada Research Chairs Program.

The authors would like to thank Hsueh-Ti Derek Liu, Silvia Sel-
lán, Ty Trusty, Yixin Chen, and Honglin Chen for proofreading, and
Silvia Sellán and Ty Trusty for help in figure rendering. The motor-
cycle, deer, and octopus models are from the Thingi10K dataset; the
bunny is from the Stanford 3D Scanning Repository; the city lidar
point cloud is from the Toronto-3D dataset; and the terrain point
cloud is from OpenTopography.

REFERENCES
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. 2003. Computing and rendering point set surfaces. IEEE Transactions
on visualization and computer graphics 9, 1 (2003), 3–15.

Gavin Barill, Neil G Dickson, Ryan Schmidt, David IW Levin, and Alec Jacobson. 2018.
Fast winding numbers for soups and clouds. ACM Transactions on Graphics (TOG)

37, 4 (2018), 1–12.
Josh Barnes and Piet Hut. 1986. A hierarchical O (N log N) force-calculation algorithm.

nature 324, 6096 (1986), 446–449.
Alexander Belyaev, Pierre-Alain Fayolle, and Alexander Pasko. 2013. Signed Lp-distance

fields. Computer-Aided Design 45, 2 (2013), 523–528. https://doi.org/10.1016/j.cad.
2012.10.035 Solid and Physical Modeling 2012.

Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright,
Bruce C McCallum, and Tim R Evans. 2001. Reconstruction and representation of
3D objects with radial basis functions. In Proceedings of the 28th annual conference

on Computer graphics and interactive techniques. 67–76.
Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape

Modeling. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 5932–5941. https://doi.org/10.1109/CVPR.2019.00609
Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Python module for physics

simulation for games, robotics and machine learning. http://pybullet.org.
Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2017. The Heat Method for

Distance Computation. Commun. ACM 60, 11 (Oct. 2017), 90–99. https://doi.org/
10.1145/3131280

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed
Globally Injective 3D Deformation Processing. ACM Trans. Graph. (SIGGRAPH) 40,
4, Article 75 (2021).

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.
Intersection-free Rigid Body Dynamics. ACM Trans. Graph. 40, 4, Article 183 (2021).

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Karthik S. Gurumoorthy and Anand Rangarajan. 2009. A SchröDinger Equation for

the Fast Computation of Approximate Euclidean Distance Functions. In Proceedings

of the Second International Conference on Scale Space and Variational Methods in

Computer Vision (Voss, Norway) (SSVM ’09). Springer-Verlag, Berlin, Heidelberg,
100–111. https://doi.org/10.1007/978-3-642-02256-2_9

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

https://doi.org/10.1016/j.cad.2012.10.035
https://doi.org/10.1016/j.cad.2012.10.035
https://doi.org/10.1109/CVPR.2019.00609
http://pybullet.org
https://doi.org/10.1145/3131280
https://doi.org/10.1145/3131280
https://doi.org/10.1007/978-3-642-02256-2_9

68:14 • Abhishek Madan and David I.W. Levin

Alireza Ghaffari Hadigheh, Oleksandr Romanko, and Tamás Terlaky. 2007. Sensitivity
analysis in convex quadratic optimization: simultaneous perturbation of the ob-
jective and right-hand-side vectors. Algorithmic Operations Research 2, 2 (2007),
94–94.

Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran, and Philipp Slusallek.
2011. Efficient stack-less BVH traversal for ray tracing. In Proceedings of the 27th

Spring Conference on Computer Graphics. 7–12.
John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545.
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. https://libigl.github.io/.
William Kahan. 2004. On the cost of floating-point computation without extra-precise

arithmetic. World-Wide Web document (2004), 21.
Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-

construction. In Proceedings of the fourth Eurographics symposium on Geometry

processing, Vol. 7.
Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.

ACM Transactions on Graphics (ToG) 32, 3 (2013), 1–13.
G. Kreisselmeier and R. Steinhauser. 1979. Systematic Control Design by Optimizing a

Vector Performance Index. IFAC Proceedings Volumes 12, 7 (1979), 113–117. https:
//doi.org/10.1016/S1474-6670(17)65584-8 IFAC Symposium on computer Aided
Design of Control Systems, Zurich, Switzerland, 29-31 August.

Lei Lan, Yin Yang, Danny M. Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang.
2021. Medial IPC: Accelerated Incremental Potential Contact With Medial Elastics.
ACM Trans. Graph. (2021).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020a. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM Trans.

Graph. (SIGGRAPH) 39, 4, Article 49 (2020).
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele

Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020b. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM

Transactions on Graphics 39, 4 (2020).
Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental

Potential Contact. ACM Trans. Graph. 40, 4, Article 170 (2021).
Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke,

and Zach Corse. 2020. Local Optimization for Robust Signed Distance Field Collision.
Proc. ACM Comput. Graph. Interact. Tech. 3, 1, Article 8 (April 2020), 17 pages.
https://doi.org/10.1145/3384538

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient Elasticity for Character Skinning with
Contact and Collisions. ACM Trans. Graph. 30, 4, Article 37 (July 2011), 12 pages.
https://doi.org/10.1145/2010324.1964932

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015.
Non-Manifold Level Sets: A Multivalued Implicit Surface Representation with Ap-
plications to Self-Collision Processing. ACM Trans. Graph. 34, 6, Article 247 (Oct.
2015), 9 pages. https://doi.org/10.1145/2816795.2818100

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2e ed.). Springer,
New York, NY, USA.

NVIDIA. 2021. NVIDIA PhysX SDK. https://developer.nvidia.com/physx-sdk.
Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-Case Stress Relief

for Microstructures. ACM Trans. Graph. 36, 4, Article 122 (July 2017), 16 pages.
https://doi.org/10.1145/3072959.3073649

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).
Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive Modeling of

Topologically Complex Geometric Detail. ACM Trans. Graph. 23, 3 (Aug. 2004),
635–643. https://doi.org/10.1145/1015706.1015773

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan

Notices 48, 6 (2013), 519–530.
Manu Sethi, Anand Rangarajan, and Karthik Gurumoorthy. 2012. The Schrödinger

distance transform (SDT) for point-sets and curves. In 2012 IEEE Conference on

Computer Vision and Pattern Recognition. 198–205. https://doi.org/10.1109/CVPR.
2012.6247676

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4 (2015).

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the CSG Tree. Warping,
Blending and Boolean Operations in an Implicit Surface Modeling System. Computer

Graphics Forum 18, 2 (1999), 149–158. https://doi.org/10.1111/1467-8659.00365
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00365

Chris Yu, Henrik Schumacher, and Keenan Crane. 2021. Repulsive Curves. ACM Trans.

Graph. 40, 2 (2021).
Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2020. Dive into Deep

Learning. https://d2l.ai.
Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. 2001. Fast surface reconstruction

using the level set method. In Proceedings IEEE Workshop on Variational and Level

Set Methods in Computer Vision. IEEE, 194–201.
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

A PROOF OF UNDERESTIMATE PROPERTY
Here we prove that smooth distances underestimate the true dis-
tance, when each distance contribution has an associated weight
function.

Theorem A.1. Let M = (𝑉 , 𝐹) be the data mesh, and let 𝑔 be

a query primitive, and each 𝑓𝑖 ∈ 𝐹 has an associated weight func-

tion 𝑤𝑖 (𝑔), where 1 ≤ 𝑤𝑖 (𝑔) ≤ 𝐴 for some constant 𝐴. Suppose

𝑑𝑚𝑖𝑛 = min𝑓𝑖 ∈𝐹 𝑑 (𝑓𝑖 , 𝑔). Then, defining 𝑑 (M, 𝑔) as in Eq. 3 (but us-

ing a general query primitive 𝑔 instead of a point), we have 𝑑𝑚𝑖𝑛 ≥
𝑑 (M, 𝑔) ≥ 𝑑𝑚𝑖𝑛 − log𝐴 |𝐹 |

𝛼 for all 𝛼 > 0.

Proof. Let 𝑘 = argmin𝑓𝑖 ∈𝐹 𝑑 (𝑓𝑖 , 𝑔 𝑗). Using this notation, 𝑑𝑚𝑖𝑛 =
𝑑𝑘 . Then,

𝑑𝑘 = − 1
𝛼

log (exp (−𝛼𝑑𝑘))

≥ − 1
𝛼

log (exp (−𝛼𝑑𝑘)) −
1
𝛼

log𝑤𝑘 (𝑔) (𝑤𝑘 (𝑔) ≥ 1)

= − 1
𝛼

log (𝑤𝑘 (𝑔) exp (−𝛼𝑑𝑘))

≥ − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝑤𝑖 (𝑔) exp(−𝛼𝑑 (𝑓𝑖 , 𝑔))ª®¬ (𝑑 (M, 𝑔))

≥ − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝐴 exp(−𝛼𝑑 (𝑓𝑖 , 𝑔))ª®¬ (𝑤𝑖 (𝑔) ≤ 𝐴)

≥ − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝐴 exp (−𝛼𝑑𝑘)ª®¬
= 𝑑𝑘 −

log𝐴|𝐹 |
𝛼

Therefore, we have 𝑑𝑚𝑖𝑛 ≥ 𝑑 (M, 𝑔) ≥ 𝑑𝑚𝑖𝑛 − log𝐴 |𝐹 |
𝛼 . □

B EXACT DISTANCE FORMULATION
Here we discuss our distance formulation between simplices 𝑓 and𝑔.
Denoting barycentric coordinates of 𝑓 as 𝝓 and 𝑔 as 𝝀, the points on
each simplex referenced by the barycentric coordinates are denoted
as 𝑓 (𝝓) and 𝑔(𝝀) respectively. (For points, the barycentric coordi-
nate vector is 0-dimensional, so the barycentric coordinate vector
can be omitted.) For example, if 𝑓 is a triangle consisting of 3 vertices
v0, v1, v2, and 𝝓 = [𝜙1, 𝜙2]⊤, 𝑓 (𝝓) = (1−𝜙1 −𝜙2)v0 +𝜙1v1 +𝜙2v2.
Furthermore, we are restricted to convex combinations of v𝑖 (i.e.,
0 ≤ 𝜙𝑖 ≤ 1, and

∑
𝑖 𝜙

𝑖 ≤ 1). Since any point on a simplex can be
referenced using barycentric coordinates, we can determine the

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.1145/3384538
https://doi.org/10.1145/2010324.1964932
https://doi.org/10.1145/2816795.2818100
https://developer.nvidia.com/physx-sdk
https://doi.org/10.1145/3072959.3073649
https://doi.org/10.1145/1015706.1015773
https://doi.org/10.1109/CVPR.2012.6247676
https://doi.org/10.1109/CVPR.2012.6247676
https://doi.org/10.1111/1467-8659.00365
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00365
https://d2l.ai

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:15

closest point pair on 𝑓 and 𝑔 by minimizing the squared distance
between all points on each simplex:

𝑑2 (𝑓 , 𝑔) = min
𝝓∗,𝝀∗
∥ 𝑓 (𝝓∗) − 𝑔(𝝀∗)∥2, (10)

where 𝝓 and 𝝀 are the argmin of the problem. Combined with the
aforementioned constraints on 𝝀 and 𝝓, we have a quadratic pro-
gram with linear constraints (and in the case of points, the problem
simplifies to the 𝐿2 norm).

We are also interested in taking derivatives of this distance. It is
well-known that quadratic programs are differentiable [Hadigheh
et al. 2007], and in this case, the distance gradient (with respect to 𝑔)
is equivalent to the distance gradient of the closest point pair 𝑓 (𝝓)
and 𝑔(𝝀) with respect to 𝑔(𝝀), which is

∇𝑑 (𝑓 , 𝑔) =
{

𝑔 (𝝀)−𝑓 (𝝓)
∥𝑔 (𝝀)−𝑓 (𝝓) ∥ 𝑑 (𝑓 , 𝑔) ≠ 0
0 otherwise.

(11)

Although there is a gradient discontinuity when 𝑓 and 𝑔 intersect,
this is not an issue in our simulation applications, because smooth
distance constraints ensure that the underlying geometries will
never touch.

This formulation is also tied to the closest point projection func-
tion used to define weight functions in Section 3.3. Given a closest
point projection 𝝅 onto simplex 𝑓 , 𝝅 (𝑔) = 𝝅 (𝑔(𝝀)) = 𝑓 (𝝓).

C WEIGHT FUNCTIONS
Here we provide more details on the construction and storage of
weight functions𝑤𝑖 (q) for edges and triangles.

C.1 Pointwise Case Analysis
To identify appropriate point constraints for the weight polynomials,
we derive the exact weights in various cases depending on the
location of the closest point on a data meshM = (𝑉 , 𝐹) to point q.
First, suppose the closest point is on a vertex v𝑘 ∈ 𝑉 . Looking at 𝑑 ,
and assuming 𝛼 is large, we have

𝑑 (M, q) = − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝑤𝑖 (q) exp(−𝛼𝑑 (𝑓𝑖 , q))ª®¬
≈ − 1

𝛼
log ©«©«

∑︁
𝑓𝑖 ∈N𝑘

𝑤𝑖 (q)ª®¬ exp(−𝛼𝑑 (v𝑘 , q))ª®¬
= 𝑑 (v𝑘 , q) −

log
(∑

𝑓𝑖 ∈N𝑘
𝑤𝑖 (q)

)
𝛼︸ ︷︷ ︸
𝑟𝑘

In the above derivation, N𝑘 denotes the set of one-ring neighbours
of v𝑘 , and the second line is a consequence of high 𝛼 making the
other terms in the summation negligible. Our goal is to ensure that
𝑟𝑘 = 0, which is equivalent to the condition

∑
𝑓𝑖 ∈N𝑘

𝑤𝑖 (q) = 1. We
can accomplish this by setting 𝑤𝑖 (q) = 1

|N𝑘 | if q’s closest point
to 𝑓𝑖 is its vertex v𝑘 (which will be the case for all 𝑓𝑖 ∈ N𝑘 when
q’s closest point on M is v𝑘). When M is a triangle mesh and
the closest point is along an edge (𝑘, ℓ), we can use an identical

argument to derive 𝑤𝑖 (q) = 1
|N𝑘ℓ | where N𝑘ℓ denotes the set of

triangles incident on (𝑘, ℓ).
Now suppose the closest point is on a simplex 𝑓𝑖 ∈ 𝐹 (but not on

one of its faces, in which case the earlier discussion applies). Again
assuming 𝛼 is large, we have

𝑑 (M, q) = − 1
𝛼

log ©«
∑︁
𝑓𝑖 ∈𝐹

𝑤𝑖 (q) exp(−𝛼𝑑 (𝑓𝑖 , q))ª®¬
≈ − 1

𝛼
log (𝑤𝑖 (q) exp(−𝛼𝑑 (𝑓𝑖 , q)))

= 𝑑 (𝑓𝑖 , q) −
log𝑤𝑖 (q)

𝛼

In this case, we can simply set �̃�𝑖 (q) = 1.
Of course, we cannot directly use these exact weights, since they

are not smooth and do not satisfy the conservative property𝑤𝑖 (q) ≥
1. Instead, we use these cases as guidelines for point constraints in
building non-conservative polynomial weights �̃�𝑖 and computing
an appropriate scale factor 𝐴 to ensure the conservative property
holds.

To simplify the notation in the remainder of this section, we will
work with barycentric coordinates of the closest point projection of
q onto 𝑓𝑖 (i.e., �̃�𝑖 (𝝓𝑖)).

C.2 Edge Weights
Edges have a single barycentric coordinate, so the weight function
of an edge 𝑓𝑖 in terms of barycentric coordinates is �̃�𝑖 (𝜙𝑖). The
weight function is a 4th order polynomial, with point constraints
�̃�𝑖 (0) = 1

|N𝑖0 |
, �̃�𝑖 (1) = 1

|N𝑖1 |
, and �̃�𝑖 (0.5) = 1, and derivative

constraints �̃�𝑖 (0) = �̃�𝑖 (1) = 0. Using the polynomial coefficients as
unknowns, the five above equations become a linear system that
can be solved for unique coefficients that satisfy the constraints. We
have set the three extrema of this quartic function by construction,
which allows us to cheaply compute 𝐴 = max𝑘 |N𝑘 |.

C.3 Triangle Weights
Triangles have two barycentric coordinates, so the weight function
of a triangle 𝑓𝑖 in terms of barycentric coordinates is �̃�𝑖 (𝜙1

𝑖
, 𝜙2

𝑖
).

In order to satisfy the constraints, �̃�𝑖 is a 7th order polynomial,
with 36 coefficients. Since we must store a set of coefficients for
each triangle in a mesh, we additionally require that the function is
symmetric, �̃�𝑖 (𝜙1

𝑖
, 𝜙2

𝑖
) = �̃�𝑖 (𝜙2

𝑖
, 𝜙1

𝑖
), so that we can roughly halve

the number of coefficients that must be stored.
We use 10 point constraints: one per vertex, two per edge (spaced

equally along their lengths), and one for the triangle barycenter. In
order to ensure that �̃�𝑖 is symmetric, we assign the same value at
each vertex constraint and at each edge constraint, based on the
maximumvertex and edge valence, respectively.More concretely, we
first find 𝑣𝑖 = max{|N𝑖0 |, |N𝑖1 |, |N𝑖2 |} and 𝑒𝑖 = max{|N𝑖01 |, |N𝑖12 |, |N𝑖20 |}
(noting that 𝑣𝑖 ≥ 𝑒𝑖), and assign �̃�𝑖 (0, 0) = �̃�𝑖 (1, 0) = �̃�𝑖 (0, 1) =
1
𝑣𝑖
, and �̃�𝑖 (1/3, 0) = �̃�𝑖 (2/3, 0) = �̃�𝑖 (1/3, 2/3) = �̃�𝑖 (2/3, 1/3) =

�̃�𝑖 (0, 1/3) = �̃�𝑖 (0, 2/3) = 1
𝑒𝑖
. Without carefully setting the final

barycenter constraint, it is possible to produce spurious local ex-
trema in regions other than the vertices, edges, and barycenter,
which is problematic for determining an appropriate 𝐴, and can

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

68:16 • Abhishek Madan and David I.W. Levin

500 1000 1500 2000 25000
5
10
15
20
25
30
35
40
45
50

Avg. Leaves Visited

Edge GPU Speedup

500 1000 1500 2000 2500
0

5

10

15

2.5

7.5

12.5

Edge Voxel Grid GPU Eval Time (s)

Avg. Leaves Visited

10 20 30 40 50 60 700

10

20

30

40

50

60

70

Avg. Leaves Visited

Point GPU Speedup

10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Avg. Leaves Visited

Point Voxel Grid GPU Eval Time (s)

500 1000 1500 2000 2500
0
10
20
30
40
50
60
70
80
90
100

Avg. Leaves Visited

Triangle GPU Speedup

500 1000 1500 2000 2500
0

5

10

15

20

25
Triangle Voxel Grid GPU Eval Time (s)

Avg. Leaves Visited

Fig. 23. Results of the Thingi10K benchmark run on the GPU, with the same test as in Fig. 14. The top row shows times and average leaves visited, while the
bottom row shows speedups relative to the CPU benchmark. The dotted lines represent a speedup of 1 (i.e., identical performance on the CPU and GPU).

even lead to phenomena like negative weights. We have found that
a barycenter constraint of �̃� (1/3, 1/3) = ��−1

��
prevents this spuri-

ous extrema issue; although the barycenter weight is no longer 1,
the weight at the barycenter is still significantly higher than at the
vertices, so the deviation from exact weights is acceptable. Then,
like with edges, we have � = max� �� .
The normal derivative constraints, are more complex than for

edges: we must enforce constraints on the lines �1
�
= 0, �2

�
= 0, and

�1
�
+ �2

�
= 1 within the barycentric triangle. Taking care to ensure

symmetry, these constraints are �

��1
�

�̃� (0, �) = �

��2
�

�̃� (�, 0) = 0 for

all � ∈ [0, 1], and
(

�

��1
�

+ �

��2
�

)
�̃� (�, 1 − �) =

(
�

��1
�

+ �

��2
�

)
�̃� (1 −

�, �) = 0 for all � ∈ [0, 1]. Essentially, each constraint equation is
assigning a 6th order univariate polynomial to be zero over a line
segment, which can only happen with the zero polynomial. Thus,
each coefficient of these polynomials, which is a linear combina-
tion of coefficients of �̃� , must be 0 as well, creating 7 new linear
equations per constraint. Noting that the 1st order coefficients of
�

��1
�

�̃� (0, �) and �

��2
�

�̃� (�, 0) are equal, as well as the 6th order coef-

ficients of
(

�

��1
�

+ �

��2
�

)
�̃� (�, 1− �) and

(
�

��1
�

+ �

��2
�

)
�̃� (1− �, �), we

have 26 unique equations, leading to a total of 36 equations. This
system of equations still has a non-trivial null space, but we can
solve for reasonable weight coefficients using the pseudoinverse.

To further reduce the memory footprint of these weights, we
observe that the constraint equations corresponding to �1

�
= 0 and

�2
�
= 0 are each in terms of a single �̃� coefficient, so we do not

need to store those 13 coefficients at all. Combined with symmetry,
we only need to store 13 unique coefficients per weight function.

D FAR FIELD APPROXIMATION
Here we describe the Barnes-Hut far field approximation in more de-
tail. Let be a bounding region of points,�� be the number of points
in , | | be the diameter of (e.g., the bounding box diagonal), and
y� be the center of the far field approximation of . If |� |

� (y� ,�) < �

for some user-defined � , then approximate the exponential summa-
tion over points as

∑
�� ∈� exp(−�� (�� , �)) ≈ �� exp(−�� (y�, �)).

Similarly, the gradient contribution of (in the numerator sum-
mation of Eq. 4) is now �� exp(−�� (y�, �)) � (�)−y�

‖� (�)−y� ‖ . When our
data primitives are edges or triangles, we must take some care with
the weight function, which must be incorporated to ensure the ap-
proximation is reasonably smooth. Since the approximation is just a
single point, there is no undesirable concentration in some regions
and we can simply use a weight of� = �� , which corresponds to a
constant weight function scaled by � and attenuated by � .

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

Fast Evaluation of Smooth Distance Constraints on Co-Dimensional Geometry • 68:17

Viewing the far field approximation as a Taylor series, we have
only included the constant term. However, we found that higher-
order Taylor series terms tended to produce worse results due to
the off-center expansion point amplifying the error of those terms.

E GPU BENCHMARK
Here we present the results of our GPU benchmark. Structurally,
it is identical to the benchmark in Section 4.4, but it is run on
a GPU instead of several CPU threads. We ran these tests on a
Titan RTX, and implemented our method in CUDA by ensuring our
CPU code was also GPU-compatible. The results are presented in
Fig. 23. We see that, while performance is still linearly proportional
to leaves visited, and the GPU code consistently outperforms CPU
code by staying over the speedup=1 line and achieving an average
30× speedup on points and 5× speedup on edges and triangles, the
relative speedups vary greatly, and are significantly reduced as more
leaves are visited. This is likely because global memory accesses
become a significant issue in these cases, on top of the additional
computation. This is an especially pronounced issue on GPUs since
memory is much slower to access on a GPU than a CPU.

ACM Trans. Graph., Vol. 41, No. 4, Article 68. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Smooth Distance to a Single Query Point
	3.2 Smooth Distances to Co-Dimensional Geometry
	3.3 Weight Functions
	3.4 Generalized Query Primitives
	3.5 Barnes-Hut Approximation
	3.6 Smooth Distance to a Query Mesh

	4 Results
	4.1 Implementation
	4.2 Sphere Tracing
	4.3 Parameter Analysis
	4.4 Performance Benchmark
	4.5 Rigid Body Collisions

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Proof of Underestimate Property
	B Exact Distance Formulation
	C Weight Functions
	C.1 Pointwise Case Analysis
	C.2 Edge Weights
	C.3 Triangle Weights

	D Far Field Approximation
	E GPU Benchmark

