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Abstract. The state complexity κ(L) of a regular language L is the
number of states in the minimal deterministic finite automaton recog-
nizing L. In a general pattern-matching problem one has a set T of texts
and a set P of patterns; both T and P are sets of words over a finite
alphabet Σ. The matching problem is to determine whether any of the
patterns appear in any of the texts, as prefixes, or suffixes, or factors,
or subsequences. In previous work we examined the state complexity of
these problems when both T and P are regular languages, that is, we
computed the state complexity of the languages (PΣ∗) ∩ T , (Σ∗P )∩ T ,
(Σ∗PΣ∗) ∩ T , and (Σ∗ P ) ∩ T , where is the shuffle operation. It
turns out that the state complexities of these languages match the naïve
upper bounds derived by composing the state complexities of the basic
operations used in each expression. However, when P is a single word w,
and Σ has two or more letters, the bounds are drastically reduced to the
following: κ((wΣ∗)∩T ) � m+n−1; κ((Σ∗w)∩T ) � (m−1)n−(m−2);
κ((Σ∗wΣ∗) ∩ T ) � (m − 1)n; and κ((Σ∗ w) ∩ T ) � (m − 1)n. The
bounds for factor and subsequence matching are the same as the naïve
bounds, but this is not the case for prefix and suffix matching. For unary
languages, we have a tight upper bound of m+ n− 2 in all four cases.

Keywords: all-sided ideal, combined operation, factor, finite automa-
ton, left ideal, pattern matching, prefix, regular language, right ideal,
state complexity, subsequence, suffix, two-sided ideal

1 Introduction

The state complexity of a regular language L, denoted κ(L), is the number of
states in the minimal deterministic finite automaton (DFA) recognizing L. The
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state complexity of an operation on regular languages is the worst-case state
complexity of the resulting language, expressed in terms of the the input lan-
guages’ state complexities. A language attaining this worst-case state complexity
is called a witness for the operation.

The state complexities of “basic” regular operations such as intersection and
concatenation have been thoroughly studied [7,8,9]. There has also been some
attention devoted towards “combined” operations such as concatenation with
Σ∗ to form languages called ideals [3]. A practical application of ideals is in pat-
tern matching, or finding occurrences of a pattern in a text, commonly as either
prefixes, suffixes, factors, or subsequences. (For a detailed treatment of pattern
matching, see [4].) Brzozowski et al. [1] formulated several pattern matching
problems as the construction of a regular language, using the intersection be-
tween a text language T and an ideal of a pattern language P . In the general case,
given that κ(T ) � n and κ(P ) � m, and denoting as the shuffle operation,
the following state complexity bounds were shown to be tight:

1. Prefix: κ((PΣ∗) ∩ T ) � mn.
2. Suffix: κ((Σ∗P ) ∩ T ) � 2m−1n.
3. Factor: κ((Σ∗PΣ∗) ∩ T ) � (2m−2 + 1)n.
4. Subsequence: κ((P Σ∗) ∩ T ) � (2m−2 + 1)n.

These bounds are in fact the naïve bounds derived from composing the state
complexity of the intersection between the Σ∗-concatenated pattern language
and the text language. However, these bounds are exponential in m, which leads
to the following question: to what degree would restricting P lower the bounds?
In this paper, we focus on restricting P to be a single word; that is, P = {w}.

Single-word pattern matching has many practical applications. For example,
a common use of the grep utility in Unix is to search for the files in a directory
in which a search word appears. In bioinformatics, a DNA sequence t is often
searched to locate a sequence of nucleotides w [5]. There has also been work in
distributed systems to “learn” common execution patterns from log files and use
them to identify anomalous executions in new logs [6].

In this paper, we show that for languages T and {w} such that κ(T ) � n
and κ({w}) � m, the following upper bounds hold:

1. Prefix: κ((wΣ∗) ∩ T ) � m+ n− 1.
2. Suffix: κ((Σ∗w) ∩ T ) � (m− 1)n− (m− 2).
3. Factor: κ((Σ∗wΣ∗) ∩ T ) � (m− 1)n.
4. Subsequence: κ((Σ∗ w) ∩ T ) � (m− 1)n.

Furthermore, in each case there exist languages Tn and {w}m that meet the
upper bounds. All of these bounds can be achieved using a binary alphabet, but
not using a unary alphabet.

2 Terminology and Notation

A deterministic finite automaton (DFA) is a 5-tuple D = (Q,Σ, δ, q0, F ), where
Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ →
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Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to functions δ : Q×Σ∗ → Q and δ : 2Q ×Σ∗ → 2Q as
usual.

A language L(D) is accepted by D if, for all w ∈ L(D), δ(q0, w) ∈ F . If q
is a state of D, then the language Lq(D) of q is the language accepted by the
DFA (Q,Σ, δ, q, F ). Let L be a language over Σ. The quotient of L by a word
x ∈ Σ∗ is the set x−1L = {y ∈ Σ∗ | xy ∈ L}. In a DFA D = (Q,Σ, δ, q0, F ), if
δ(q0, w) = q, then Lq(D) = w−1L(D).

Two states p and q of D are indistinguishable if Lp(D) = Lq(D). A state q is
reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA D is minimal if
it has the smallest number of states and the smallest alphabet among all DFAs
accepting L(D). It is well known that a DFA is minimal if it uses the smallest
alphabet, all of its states are reachable, and no two states are indistinguishable.

We sometimes define transition functions as transformations induced by let-
ters, written as a : t where t : Q → Q, for all a ∈ Σ. In particular, we use
� to denote the identity transformation (i.e., δ(q, a) = q for all q ∈ Q), and
(q0, q1, . . . , qk−1) to denote a k-cycle, where δ(qi, a) = qi+1 for 0 � i � k − 2
and δ(qk−1, a) = q0. For states not in {q0, q1, . . . , qk−1}, the k-cycle acts as the
identity transformation.

Throughout the paper, we fix w = a1 · · · am−2, where ai ∈ Σ for 1 � i �
m− 2. Let w0 = ε (where ε denotes the empty word) and for 1 � i � m− 2, let
wi = a1 · · · ai. We write W = {w0, w1, . . . , wm−2} for the set of all prefixes of w.
Note that if the state complexity of {w} is m, then w is of length m− 2.

3 Matching a Single Prefix

Theorem 1. Suppose m � 3 and n � 2. If w is a non-empty word, κ({w}) � m
and κ(T ) � n then we have

κ((wΣ∗) ∩ T ) �
{
m+ n− 1, if |Σ| � 2;
m+ n− 2, if |Σ| = 1.

Furthermore, these upper bounds are tight.

Remark 1. When |Σ| = 1 (that is, P and T are languages over a unary alphabet),
the tight upper bound m + n − 2 actually holds in all four cases we consider
in this paper. This is because if L is a language over a unary alphabet Σ, then
the ideals LΣ∗, Σ∗L, Σ∗LΣ∗ and Σ∗ L coincide; thus the prefix, suffix, factor
and subsequence matching cases coincide.

Proof. We first derive upper bounds for the two cases of |Σ|.
Upper Bounds: Let DT = (Q,Σ, δ, q0, FT ), where Q = {q0, . . . , qn−1}, be
a DFA accepting T . Let P = {w} and let the minimal DFA of P be DP =
(W ∪ {∅}, Σ, α,w0, {wm−2}). Here wm−2 is the only final state, and ∅ is the
empty state. Define α as follows: for 0 � i � m− 2, we set

α(wi, a) =

{
wi+1, if a = ai;

∅, otherwise.
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Also define α(∅, a) = ∅ for all a ∈ Σ. Let the state reached by w in DT be
qr = δ(q0, w); we construct a DFA DL that accepts L = (wΣ∗)∩T . As shown in
Figure 1, let DL = (Q ∪ (W \ {wm−2}) ∪ {∅}, Σ, β, w0, FT ), where β is defined
as follows: for q ∈ Q ∪ (W \ {wm−2}) ∪ {∅} and a ∈ Σ,

β(q, a) =



δ(q, a), if q ∈ Q;

α(q, a), if q ∈ W \ {wm−2, wm−3};
qr, if q = wm−3, and a = am−2;

∅, otherwise.

Arbitrary DFA DT ; the qij are not necessarily distinct.

w0 w1 . . . wm−4 wm−3

∅

q0 qi1 qi2 qr. . .

a1 a2 am−4 am−3

am−2

Σ \ {a1} Σ \ {am−2}

Σ \ {a2} Σ \ {am−3}

a2a1 am−2a3

Σ

Fig. 1. DFA DL for matching a single prefix. The final state set FT is a subset of the
states from the arbitrary DFA DT ; final states are not marked on the diagram.

Recall that in a DFA D, if state q is reached from the initial state by a word u,
then the language of q is equal to the quotient of L(D) by u. Thus the language
of state qr is the quotient of T by w, that is, the set w−1T = {y ∈ Σ∗ | wy ∈ T}.
The DFA DL accepts a word x if and only if it has the form wy for y ∈ w−1T ;
we need the prefix w to reach the arbitrary DFA DT , and w must be followed
by a word that sends qr to an accepting state, that is, a word y in the language
w−1T of qr. So L = {wy | y ∈ w−1T} = {wy | y ∈ Σ∗, wy ∈ T} = (wΣ∗) ∩ T .
That is, L is the set of all words of T that begin with w, as required. It follows
that the state complexity of L is less than or equal to m+ n− 1. If |Σ| = 1, all
the Σ \ {ai} are empty and state ∅ is not needed. Hence the state complexity of
L is less than or equal to m+ n− 2 in this case.
Lower Bound, |Σ| = 1: For m � 3, let P = {am−2} where κ(P ) = m. For
n � 2, let T be the language of the DFA Dn = (Qn, {a}, δ1, 0, {r − 1}), where
κ(T ) = n, δ1 is defined by a : (0, 1, . . . , n − 1), and r = δ1(0, a

m−2). Let DL

be the DFA shown in Figure 2 for the language L = (PΣ∗) ∩ T . Obviously
DL has m + n − 2 states and they are all reachable. Since the shortest word
accepted from any state is distinct from that of any other state, all the states
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are pairwise distinguishable. Hence P and T constitute witnesses that meet the
required bound.

0′ 1′ . . . (m− 4)′ (m− 3)′

0 1 . . . r − 1 r . . . n− 1

a a a a

a

a a a a a a

a

Fig. 2. Minimal DFA of L for the case |Σ| = 1.

∅

0′ 1′ . . . (m− 4)′ (m− 3)′

0 1 . . . r − 1 r . . . n− 1

a

b

a

b

a
b

a

a

b

a a a a a a

a

b b b b

b

b

Fig. 3. Minimal DFA of L for the prefix case with |Σ| > 1.

Lower Bound, |Σ| � 2: For m � 3, let P = {am−2} where κ(P ) = m. For
n � 2, let T be the language of the DFA Dn = (Qn, {a, b}, δ2, 0, {r − 1}) where
κ(T ) = n, δ2 is defined by a : (0, 1, . . . , n − 1) and b : �, and r = δ2(0, a

m−2).
Construct the DFA DL for the language L = (PΣ∗)∩T as is shown in Figure 3.
It is clear that all states are reachable and distinguishable by their shortest
accepted words. ��

4 Matching a Single Suffix

Let w, x, y, z ∈ Σ∗. We introduce some notation:

– x 	p y means x is a prefix of y, and x 
s y means x has y as a suffix.
– If x 
s y and y 	p z, we say y is a bridge from x to z or that y connects x

to z. We also denote this by x → y → z.
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– x � y � z means that y is the longest bridge from x to z. That is, x →
y → z, and whenever x → w → z we have |w| � |y|. Equivalently, y is the
longest suffix of x that is also a prefix of z.

Proposition 1. If the state complexity of {w} is m, then the state complexity
of Σ∗w is m− 1.

Proof. Let A = (W,Σ, δA, w0, {wm−2}) be the DFA with transitions defined as
follows: for all a ∈ Σ and wi ∈ W , we have wia � δA(wi, a) � w. That is,
δA(wi, a) is defined to be the maximal-length bridge from wia to w, or equiva-
lently, the longest suffix of wia that is also a prefix of w. Note that if a = ai+1,
then δA(wi, a) = wi+1.

We observe that every state wi ∈ W is reachable from w0 by the word wi,
and that each state wi is distinguished from all other states by ai+1 · · · am−2. It
remains to be shown that Σ∗w = L(A). In the following, for convenience, we
simply write δ rather than δA.

We claim that for x ∈ Σ∗, we have wix � δ(wi, x) � w. That is, the
defining property of the transition function extends nicely to words. Recall that
the extension of δ to words is defined inductively in terms of the behavior of δ
on letters, so it is not immediately clear that this property carries over to words.

We prove this claim by induction on |x|. If x = ε, this is clear. Now suppose
x = ya for some y ∈ Σ∗ and a ∈ Σ, and that wiy � δ(wi, y) � w. Let δ(wi, y) =
wj and let δ(wi, x) = δ(wj , a) = wk. We want to show that wix � wk � w.

First we show that wix → wk → w. We know wk 	p w, so it remains to
show that wix 
s wk. Since wk = δ(wi, x) = δ(wj , a), by definition we have
wja � wk � w. Since δ(wi, y) = wj , we have wiy � wj � w. In particular,
wiy 
s wj and thus wix = wiya 
s wja. Thus wix 
s wja 
s wk as required.

Next, we show that whenever wix → w� → w, we have |w�| � |wk|. If w� = ε,
this is immediate, so suppose w� �= ε. Since wix = wiya 
s w�, and w� is non-
empty, it follow that w� ends with a. Thus w� = w�−1a. Since wiya 
s w�−1a,
we have wiy 
s w�−1. Additionally, w�−1 	p w, so wiy → w�−1 → w. Since
wiy � wj � w, we have |w�−1| � |wj |. Since wiy 
s wj and wiy 
s w�−1 and
|wj | � |w�−1|, we have wj 
s w�−1. Thus wja 
s w�−1a = w�. It follows that
wja → w� → w. But recall that δ(wi, x) = δ(wj , a) = wk, so wja � wk � w,
and |w�| � |wk| as required.

Now, we show that A accepts the language Σ∗w. Suppose x ∈ Σ∗w and write
x = yw. The initial state of A is w0 = ε. We have yw � δ(ε, yw) � w, that is,
δ(ε, yw) is the longest suffix of yw that is also a prefix of w. But this longest
suffix is simply w itself, which is the final state. So x is accepted. Conversely,
suppose x ∈ Σ∗ is accepted by A. Then δ(ε, x) = w, and thus x � w � w by
definition. In particular, this means x 
s w, and so x ∈ Σ∗w. ��

Next we establish an upper bound on the state complexity of (Σ∗w) ∩ T .
The upper bound in this case is quite complicated to derive. Suppose w has
state complexity m and T has state complexity at most n, for m � 3 and n � 2.
Let A be the (m− 1)-state DFA for Σ∗w defined in Proposition 1, and let D be
an n-state DFA for T with state set Qn, transition function α, and final state set
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F . The direct product A×D with final state set {w}×F recognizes (Σ∗w)∩T .
We claim that this direct product has at most (m− 1)n− (m− 2) reachable and
pairwise distinguishable states, and thus the state complexity of (Σ∗w)∩T is at
most (m− 1)n− (m− 2).

Since A has m − 1 states and D has n states, there are at most (m − 1)n
reachable states. It will suffice to show that for each word wi with 1 � i � m−2,
there exists a word wf(i) �= wi and a state pi ∈ Qn such that (wi, pi) is indistin-
guishable from (wf(i), pi). This gives m−2 states that are each indistinguishable
from another state, establishing the upper bound.

We choose f(i) so that wi � wf(i) � wi−1. In other words, wf(i) is the
longest suffix of wi that is also a proper prefix of wi. To find pi, first observe that
there exists a non-final state q ∈ Qn and a state r ∈ Qn such that α(r, w) = q.
Indeed, if no such states existed, then for all states r, the state α(r, w) would be
final. Thus we would have Σ∗w ⊆ T , and the state complexity of (Σ∗w) ∩ T =
Σ∗w would be m − 1, which is lower than our upper bound since n � 2. Now,
set pi = α(r, wi), and note that α(pi, ai+1) = pi+1, and α(pi, ai+1 · · · am−2) = q.

To establish the upper bound, we will need two technical lemmas. Their
proofs can be found in [2].

Lemma 1. If i < m − 2 and a �= ai+1, or if i = m − 2, then δA(wi, a) =
δA(wf(i), a).

Lemma 2. If i < m− 2, then δA(wf(i), ai+1) = wf(i+1).

Proposition 2. Suppose m � 3 and n � 2. If w is non-empty, κ({w}) � m,
and κ(T ) � n, then we have κ((Σ∗w) ∩ T ) � (m− 1)n− (m− 2).

Proof. It suffices to prove that states (wi, pi) and (wf(i), pi) are indistinguishable
for 1 � i � m− 2. We proceed by induction on the value m− 2− i.

The base case is m−2−i = 0, that is, i = m−2. Our states are (wm−2, pm−2)
and (wf(m−2), pm−2). By Lemma 1, we have δA(wm−2, a) = δA(wf(m−2), a) for
all a ∈ Σ. Thus non-empty words cannot distinguish the states. But recall that
pm−2 = q is a non-final state, so the states we are trying to distinguish are both
non-final, and thus the empty word does not distinguish the states either. So
these states are indistinguishable.

Now, suppose m−2−i > 0, that is, i < m−2. Assume that states (wi+1, pi+1)
and (wf(i+1), pi+1) are indistinguishable. We want to show that (wi, pi) and
(wf(i), pi) are indistinguishable. Since f(i) < i < m−2, both states are non-final,
and thus the empty word cannot distinguish them. By Lemma 1, if a �= ai+1.
then δA(wi, a) = δA(wf(i), a) for all a ∈ Σ. So only words that start with ai+1

can possibly distinguish the states. But by Lemma 2, letter ai+1 sends the states
to (wi+1, pi+1) and (wf(i+1), pi+1), which are indistinguishable by the induction
hypothesis. Thus the states cannot be distinguished. ��

Next we show that the upper bound of Proposition 2 is tight.

Definition 1. Let T be the language accepted by the DFA D with state set Qn,
alphabet Σ, initial state 0, final state set {0, . . . , n − 2}, and transformations
a : (0, . . . , n− 1) and b : �. See Figure 4.
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0 1 2 · · · n− 2 n− 1
a a a a a

a

b b b bb

Fig. 4. Witness language T of Definition 1.

Theorem 2. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T ) = n, such that κ((Σ∗w)∩T ) = (m−1)n−(m−2).

Proof. Let Σ = {a, b} and let w = bm−2. Let A be the DFA for Σ∗w. Let T be
the language of Definition 1. The DFA A×D is illustrated in Figure 5.

We show that A×D has (m− 1)n− (m− 2) reachable and pairwise distin-
guishable states. For reachability, for 0 � i � m− 2 and 0 � q � n− 1, we can
reach (bi, q) from the initial state (ε, 0) by the word aqbi. For distinguishability,
note that all m−1 states in column n−1 are indistinguishable, and so collapse to
one state under the indistinguishability relation. Indeed, given states (bi, n− 1)
and (bj , n − 1), if we apply a both states are sent to (ε, 0), and if we apply b
we simply reach another pair of non-final states in column n− 1. Hence at most
(m − 1)n − (m − 2) of the reachable states are pairwise distinguishable. Next
consider (bi, q) and (bj , q) with i < j and q �= n − 1. We can distinguish these
states by bm−2−j . So pairs of states in the same column are distinguishable, with
the exception of states in column n− 1. For pairs of states in different columns,
consider (bi, p) and (bj , q) with p < q. If q �= n − 1, then by an−1−q we reach
(ε, n−1+p−q) and (ε, n−1). These latter states are distinguished by w = bm−2.
If q = n−1, then (bi, p) and (bj , n−1) are distinguished by bm−2−i. Hence there
are (m− 1)n− (m− 2) reachable and pairwise distinguishable states. ��

5 Matching a Single Factor

Proposition 3. If the state complexity of {w} is m, then the state complexity
of Σ∗wΣ∗ is m− 1.

Proof. Let A = (W,Σ, δA, w0, {wm−2}) be the DFA with transitions defined as
follows: for all a ∈ Σ and wi ∈ W , we have wia � δA(wi, a) � w. Recall from
Proposition 1 that A recognizes Σ∗w. We modify A to obtain a DFA A′ that
accepts Σ∗wΣ∗ as follows.

Let A′ = (W,Σ, δA′ , w0, {wm−2}), where δA′ is defined as follows for each
a ∈ Σ: δA′(wi, a) = δA(wi, a) for i < m − 2, and δA′(wm−2, a) = wm−2. Note
that A′ is minimal: state wi can be reached by the word wi, and states wi and
wj with i < j are distinguished by aj+1 · · · am−2. It remains to show that A′

accepts Σ∗wΣ∗.
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ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a

a

a a a a a

a

a a a a a

a

Fig. 5. DFA A × D for matching a single suffix, with m = 5 and n = 5. Column 0 is
duplicated for a cleaner diagram; the DFA contains only one copy of this column.

To simplify the notation, we write δ′ instead of δA′ and δ instead of δA.
Suppose x is accepted by A′. Write x = yz, where y is the shortest prefix of x
such that δ′(ε, y) = wm−2. Since y is minimal in length, for every proper prefix y′

of y, we have δ′(ε, y′) = wi for some i < m− 2. It follows that δ′(ε, y) = δ(ε, y)
by the definition of δ′. So δ(ε, y) = wm−2, and hence y is accepted by A. It
follows that y ∈ Σ∗w. This implies x = yz ∈ Σ∗wΣ∗.

Conversely, suppose x ∈ Σ∗wΣ∗. Write x = ywz with y minimal. Since
yw ∈ Σ∗w, we have δ(ε, yw) = wm−2. Furthermore, yw is the shortest prefix of
x such that δ(ε, yw) = wm−2, since if there was a shorter prefix then y would
not be minimal. This means that δ(ε, yw) = δ′(ε, yw) by the definition of δ′. So
δ′(ε, ywz) = wm−2 and hence x = ywz is accepted by A′. ��

Fix w with state complexity m, and let A and A′ be the DFAs for Σ∗w and
Σ∗wΣ∗, respectively, as described in the proof of Proposition 3. Fix T with state
complexity at most n, and let D be an n-state DFA for T with state set Qn and
final state set F . The direct product DFA A′ × D with final state set {w} × F
recognizes (Σ∗wΣ∗) ∩ T . Since A′ ×D has (m− 1)n states, this gives an upper
bound of (m− 1)n on the state complexity of (Σ∗wΣ∗) ∩ T .

Theorem 3. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T ) = n, such that κ((Σ∗wΣ∗) ∩ T ) = (m− 1)n.

Proof. Let Σ = {a, b} and let w = bm−2. Let A′ be the DFA for Σ∗wΣ∗. Let T
be the language of Definition 1. The DFA A′ ×D is illustrated in Figure 6.

We show that A′ × D has (m − 1)n reachable and pairwise distinguishable
states. For reachability, for 0 � i � m−2 and 0 � q � n−1, we can reach (bi, q)
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from the initial state (ε, 0) by the word aqbi. For distinguishability, suppose we
have states (bi, q) and (bj , q) in the same column q, with i < j. By bm−2−j we
reach (bm−2+i−j , q) and (w, q), with bm−2+i−j �= w. Then by a we reach (ε, qa)
and (w, qa), which are distinguishable by a word in a∗. For states in different
columns, suppose we have (bi, p) and (bj , q) with p < q. By a sufficiently long
word in b∗, we reach (w, p) and (w, q). These states are distinguishable by an−1−q.
So all reachable states are pairwise distinguishable. ��

ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a

a

a a a a a

a

a a a a a a

Fig. 6. DFA A′ ×D for matching a single factor, with m = 5 and n = 5. Column 0 is
duplicated for a cleaner diagram; the DFA contains only one copy of this column.

6 Matching a Single Subsequence

Proposition 4. If the state complexity of {w} is m, then the state complexity
of Σ∗ w is m− 1.

Proof. Define a DFA A = (W,Σ, δA, ε, {w}) where δA(wi, ai+1) = wi+1, and
δA(wi, a) = wi for a �= ai+1. Note that A is minimal: state wi is reached by word
wi and states wi, wj with i < j are distinguished by aj+1 · · · am−2. We claim
that A recognizes Σ∗ w.

Write δ rather than δA to simplify the notation. Suppose x ∈ Σ∗ w. Then
we can write x = x0a1x1a2x2 · · · am−2xm−2, where x0, . . . , xm−2 ∈ Σ∗. We claim
that δ(ε, x0a1x1 · · · aixi) = wj for some j � i. We proceed by induction on i.
The base case i = 0 is trivial.

Now, suppose that i > 0 and δ(ε, x0a1x1 · · · ai−1xi−1) = wj for some j � i−1.
Then δ(ε, x0a1x1 · · · aixi) = δ(wj , aixi). We consider two cases:
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– If j = i − 1, we have δ(wi−1, aixi) = δ(wi, xi) = wk for some k with k � i,
as required.

– If j > i− 1, we have δ(wj , aixi) = wk for some k with k � i, as required.

This completes the inductive proof. It follows then that δ(ε, x) = wm−2 = w,
and so x is accepted by A. Conversely, if x is accepted by A, then it is clear from
the definition of the transition function that the letters a1, a2, . . . , am−2 must
occur within x in order, and so x ∈ Σ∗ w. ��

Fix w with state complexity m, and let A be the DFA for Σ∗ w described
in the proof of Proposition 4. Fix T with state complexity at most n, and let
D be an n-state DFA for T with state set Qn and final state set F . The direct
product DFA A×D with final state set {w}×F recognizes (Σ∗ w)∩T . Since
A×D has (m− 1)n states, this gives an upper bound of (m− 1)n on the state
complexity of (Σ∗ w) ∩ T .

Theorem 4. Suppose m � 3 and n � 2. There exists a word w and a language
T , with κ({w}) = m and κ(T ) = n, such that κ((Σ∗ w) ∩ T ) = (m− 1)n.

Proof. Let Σ = {a, b} and let w = bm−2. Let A be the DFA for Σ∗ w. Let T
be the language of Definition 1. The DFA A×D is illustrated in Figure 7.

We show that A × D has (m − 1)n reachable and pairwise distinguishable
states. For reachability, for 0 � i � m−2 and 0 � q � n−1, we can reach (bi, q)
from the initial state (ε, 0) by the word aqbi. For distinguishability, suppose we
have states (bi, q) and (bj , q) in the same column q, with i < j. By bm−2−j we
reach (bm−2+i−j , q) and (w, q), with bm−2+i−j �= w. These states are distinguish-
able by a word in a∗. For states in different columns, suppose we have (bi, p) and
(bj , q) with p < q. By a sufficiently long word in b∗, we reach (w, p) and (w, q).
These states are distinguishable by an−1−q. So all reachable states are pairwise
distinguishable. ��

7 Conclusions

Building on previous work, we investigated the state complexity of “pattern
matching” operations on regular languages, based on finding all words in a text
language T which contain the single word w as either a prefix, suffix, factor, or
subsequence. In all cases, the bounds were significantly lower than the general
case, where w is replaced by a regular language P . Prefix matching is now linear
in the input languages’ state complexities, and the remaining cases are polyno-
mial in the input state complexities. The general bounds were polynomial for
prefix matching and exponential in the other cases. It is also worth noting that
a binary alphabet is sufficient to reach all these bounds, including subsequence
matching, whose bound was defined in terms of a growing alphabet in the gen-
eral case. For languages with a unary alphabet, the state complexity was linear
in all four cases.
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ε, 0 ε, 1 ε, 2 ε, 3 ε, 4 ε, 0

b, 0 b, 1 b, 2 b, 3 b, 4 b, 0

b2, 0 b2, 1 b2, 2 b2, 3 b2, 4 b2, 0

b3, 0 b3, 1 b3, 2 b3, 3 b3, 4 b3, 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a

a a a a a a

a a a a a a

a a a a a a

Fig. 7. DFA A×D for matching a single subsequence, with m = 5 and n = 5. Column
0 is duplicated for a cleaner diagram; the DFA contains only one copy of this column.
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