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Fig. 1. The local parameterizations produced by our method provide low-distortion maps on a variety of different types of geometry. We can place scratches
on a well-used children’s toy represented by a signed distance function (SDF); stick letters onto a flute composed with CSG operations, which as a result does
not behave like an SDF; place pictorial labels on a triangle mesh of a brain reconstructed from an MRI scan (zoom in to see more details); fill in one eye and
some plumage of an owl represented by a neural implicit function; and even add some forest decals onto a terrain point cloud with over 29 million points
acquired from LiDAR data.

We present a general method for computing local parameterizations rooted

at a point on a surface, where the surface is described only through a signed

implicit function and a corresponding projection function. Using a two-

stage process, we compute several points radially emanating from the map

origin, and interpolate between them with a spline surface. The narrow

interface of our method allows it to support several kinds of geometry such

as signed distance functions, general analytic implicit functions, triangle

meshes, neural implicits, and point clouds. We demonstrate the high quality

of our generated parameterizations on a variety of examples, and show

applications in local texturing and surface curve drawing.
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1 INTRODUCTION
Local parameterizations are particularly useful geometric tools map-

ping a planar coordinate system to a local, manifold region around

a specified origin, and enable graphics tasks like placing decals and

small texture patches on surfaces (Fig. 1). Local parameterizations

are particularly well suited for complex geometry, trading a global
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parameterization problem that must deal with topologically man-

dated difficulties like singularity placements and seams [Lévy et al.

2002; Mullen et al. 2008; Soliman et al. 2018] for a local problem

with looser preconditions.

However, most of the approaches developed for computing local

parameterizations only work on meshes, or more generally, graphs.

This allows them to leverage existing tools such as discrete differen-

tial operators [Herholz and Alexa 2019; Sharp et al. 2019] or Dijk-

stra’s algorithm [Melvær and Reimers 2012; Schmidt 2013; Schmidt

et al. 2006], but ties output quality to sampling or mesh quality.

The sources of geometric representations in modern applications

are quite varied (from large artist-generated meshes, to LiDAR-

scanned point clouds, to hand-crafted implicits, and even neural

network-encoded implicit functions [Müller et al. 2022; Takikawa

et al. 2021]) and for many of these, it can be difficult to extract the

high-quality samples and topological information required to ap-

ply previous methods. Meshes, for instance, may have low-quality

triangles that are unsuitable for finite element-based computation;

point clouds lack explicit topology altogether and may contain noise

from the acquisition procedure; and implicit functions lack both

explicit geometry and topology, with possibly noisy isosurfaces in

the case of neural implicits. Many methods exist to address these

problems, from remeshing [Botsch and Kobbelt 2004], to surface

reconstruction [Chen et al. 2022; Chen and Zhang 2021; Ju et al.

2002; Lorensen and Cline 1987; Sellán et al. 2023], and even sam-

pling the surface [De Goes et al. 2012; Witkin and Heckbert 1994],

but these methods are quite disparate, and as such there is no uni-

fied way to generate local parameterizations for all these types of

representations.

We propose a technique to avoid such preprocessing by only re-

quiring a very narrow interface from the input geometry: a signed

implicit function, along with a projection function derived from
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Fig. 2. Our method consists of two main components: tracing out points
along radial curves from an origin p (left), and interpolating those points to
form a continuous map 𝑞p (right).

this implicit function. It is typically straightforward to compute

this implicit representation: for example, obtaining an implicit func-

tion from meshes is simply a matter of computing the unsigned

minimum distance and signing it with the winding number [Barill

et al. 2018; Jacobson et al. 2013]. Our algorithm proceeds in two

stages: first tracing geodesic-like paths from a prescribed origin,

and then fusing them into a continuous local map using a spline

surface. Tracing geodesics along surfaces via projection is a sim-

ple yet surprisingly delicate procedure (Fig. 3), so we also present a

curvature-sensitive substepping procedure that avoids path-splitting

steps in high-curvature regions, as well as an inter-curve smoothing

method that greatly reduces map artifacts created by large varia-

tions in curvature across the surface. To our knowledge, our method

is the first to develop a radial tracing method for local parameteri-

zations that explicitly addresses both of these issues. By exclusively

relying on pointwise implicit function queries rather than global

surface operators, we obtain an output-sensitive method (i.e., where

computational work scales in proportion to the size of the map)

that produces local parameterizations meeting or exceeding the

quality of previous methods, particularly on surfaces other than

high-quality triangle meshes. We demonstrate the efficacy of our ap-

proach on a wide variety of geometric representations and regions

on these geometries.

2 RELATED WORK
Computing geodesics. Several methods have been developed to com-

pute geodesics on meshes, both exact and approximate [Crane et al.

2017; Kimmel 1998; Polthier and Schmies 2006; Surazhsky et al. 2005].

This problem comes in many flavours, from tracing out geodesic

paths, to finding globally shortest geodesics between two given

points, and even to finding all geodesics from one point to the rest

of a set of points — see Crane et al. [2020] for a more comprehensive

survey. Many of these methods can operate in a purely intrinsic

setting due to them having access to an underlying mesh, which

allows them to avoid an extrinsic projection-like procedure, but as

such they are limited in the kinds of representations they can oper-

ate on. On the other hand, our work removes the underlying mesh

assumption and works on a broader set of representations, though

we note that we focus only on the geodesic tracing problem to build

our parameterizations, rather than the full set of geodesic problems

that have been studied. Some recent work also explores regularized

geodesic distances [Edelstein et al. 2023], but this is primarily re-

stricted to meshes as well. While there has been some prior work

on computing geodesics on implicit surfaces which also leverages

a projection operator derived from the implicit function [Pedersen

1995], it requires an underlying blue noise global sampling of the

surface to warm start the procedure, which our method avoids. Pro-

jection can also behave poorly in high-curvature regions (Fig. 3),

which is why many previous methods prefer intrinsic mesh-based

operations; however, we utilize a substepping procedure that pre-

emptively avoids difficult projection scenarios, making it a feasible

building block for our parameterization.

Parallel transport.A concept closely related to geodesics is parallel

transport, an operation which provides a way to connect tangent

spaces on a manifold. For example, tracing out geodesics is equiv-

alent to parallel transporting the geodesic’s tangent vector across

the surface, while simultaneously following along that tangent. One

early method for discretizing parallel transport is Schild’s ladder,

which approximates parallel transport by drawing geodesic paral-

lelograms on the surface. Although it has found some use in image

analysis [Lorenzi and Pennec 2014], it requires a method to find

geodesics and as such does not help to compute geodesics on its own.

There exist multiple frameworks for parallel transport on meshes

which operate on different subsimplices, such as faces and the dual

edges connecting them [Crane et al. 2010], and vertices [Knöppel

et al. 2013]. A practical mesh-free way to compute parallel transport

involves computing the smallest rotation to align nearby tangent

planes [Schmidt et al. 2006], which is the approach we use as well.

Local parameterizations. Local parameterizations are also a well-

explored topic in graphics. Pedersen [1995] presents an interactive

system for drawing paramaterization boundaries for rectangular

patches, but this approach can be difficult to implement and use

robustly, and also requires global surface samples. As such, many

interactive local parameterization methods compute maps about a

fixed origin instead, and let the algorithm expand the map on the

surface rather than having the user guess appropriate boundaries.

Local parameterization methods have also been developed using

neural networks [Groueix et al. 2018; Srinivasan et al. 2023;Williams

et al. 2019], but like Pedersen [1995], these methods do not center

about a specific point and also must be trained on surface samples

(though it is worth noting that the aim of these neural methods is

to produce an ensemble of local charts for a global chart, so they

are less concerned with user-defined initial conditions).

Exponential maps. Another local parameterization approach is

based on the exponential map, which maps tangent space points

onto the surface around an origin p. Discrete exponential maps are

one example of such a method [Schmidt 2013; Schmidt et al. 2006];

despite the method name, it computes the logarithmic map (i.e., the

inverse of the exponential map), given a graph connecting the point

to nearby surface samples. As a result, the method is very sample-

dependent, producing bad results in regions that are insufficiently

sampled relative to their curvature. Another Dijkstra-like method

is by Melvær and Reimers [2012], which infers appropriate distance

information by leveraging triangle mesh connectivity rather than a

general graph. More recently, the vector heat method [Sharp et al.
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Fig. 3. Farther away from the origin p on𝑇pM, the (unsmoothed) projection
image of a tangent line ontoM can shrink significantly, and even split into
disconnected pieces onM past the medial axis (vertical dashed line).

2019] computes logarithmic maps using a connection Laplacian

operator on the surface to approximate parallel transport, but the

result quality is also strongly tied to the underlying triangulation

(even with the aid of intrinsic Delaunay remeshing). Although the

method only requires a way to compute the required operator matrix

and thus is not strictly tied to triangle meshes, it can struggle to

produce good results on poorly distributed point clouds, even when

leveraging a high-quality point cloud Laplacian algorithm [Sharp

and Crane 2020]. A similar method was concurrently proposed

by Herholz and Alexa [2019], which also uses a heat method to

compute log maps, but uses angles between distance gradients to

approximate geodesic polar angles. Another drawback of PDE-based

approaches is that they solve a global linear system to compute a

local parameterization. Like Schmidt et al. [2006] and Schmidt [2013],

our method is output-sensitive, doing work proportional to the size

and complexity of the region to be parameterized, independent of the

rest of the surface. This is because our method generates the samples

it needs on the fly, and can be evaluated to produce high-quality

maps on even poor sample sets. Local parameterizations based on

exponential maps have also been used to develop a generalized

convolution neural architecture for triangle meshes [Masci et al.

2015], where geodesics are estimated by triangle unfolding, which

(unlike our approach) limits it to triangle meshes by construction.

3 METHOD
The theoretical framework for our local parameterization technique

is based on the exponential map. Mathematically speaking, an ex-

ponential map expp is a function rooted at a point p on a manifold

M, which maps tangent vectors t from p’s tangent space TpM
(represented by vectors in R2) and has the following properties:

• expp (0) = p (i.e., the zero tangent vector maps to the origin

p); and
• expp (t) = 𝛾 (∥t∥), where 𝛾 is an (arc-length parameterized)

geodesic described by the initial conditions 𝛾 (0) = p and

𝛾 ′ (0) = t/∥t∥.
Essentially, exponential maps describe how to trace out geodesics

emanting from p ontoM. As such, they exhibit low distortion near

the origin and are thus a very useful construction to build upon

for local parameterizations. This radial tracing interpretation also

suggests a two-step process for generating a local parameterization

around p: (1) trace out several geodesic-like curves from p (Sec-

tions 3.1–3.3), and (2) interpolate these curves radially to produce a

continuous map (Section 3.4). Fig. 2 contains a visual overview of

the algorithm.

Key to the generality of our approach is the limited interface it

requires from input geometry. We assume that we are only given an

implicit function 𝑓 (x) which contains the surface of interest in its

zero isosurfaceM. From 𝑓 , we can obtain a gradient∇𝑓 (x), a normal

n(x) = ∇𝑓 (x)
∥ 𝑓 (x) ∥ (defined only onM), and a projection operator 𝝅 (x)

ontoM. We define 𝝅 based on the general projection procedure

described in Atzmon et al. [2019], which generalizes signed distance

projection through an iterative root-finding procedure x𝑖+1 = x𝑖 −
𝑓 (x) ∇𝑓 (x)∥∇𝑓 (x) ∥2 , x0 = x. It is worth noting that, in order to have a

well-defined n (and hence well-defined tangent planes), 0 must not

be a local extremum of 𝑓 ; in particular, unsigned distance functions

do not work unless they are offset to have a different zero isosurface.

Also, unless otherwise stated, we use a smoothed gradient ∇̃𝑓 (x) =(∫
𝐵x,𝜖
∇𝑓 (y)𝑑y

)
/|𝐵x,𝜖 | instead of ∇𝑓 (x) to define normals, tangent

planes, and projections, where 𝐵x,𝜖 is the ball of radius 𝜖 centered

at x and |𝐵x,𝜖 | is its volume, to remove 𝐶1
discontinuities in 𝑓 . This

essentially turns the medial axis into regions of rapidly changing

gradients, which becomes useful for detecing large accumulated

curvature (Section 3.2).

3.1 Radial Tracing
Wewish to find a local parameterization about a point p ∈ M, which

we denote by 𝑞p : TpM →M (we do not write it as expp since, as

we will describe later, we do not always want an exact exponential

map). To start, we set 𝑞p (0) = p, and then we numerically integrate

𝑚 equally spaced geodesic-like radial curves radiating from p, with
initial tangent directions defined extrinsically in R3. Using 𝑇pM
to represent the tangent plane at p toM (i.e., the embedding of

TpM in R3), these tangent directions are denoted by t𝑖,0 ∈ 𝑇pM,

0 ≤ 𝑖 ≤ 𝑚 − 1. We perform a single integration step in direction 𝑖 by

moving along t𝑖,0 for a prescribed step size ℎ, and projecting toM:

q𝑖,1 = 𝝅 (p + ℎt𝑖,0). (1)

For small ℎ, this is a good approximation to integrating a short

geodesic from p along the surface ofM, where the exact geodesic

path’s preimage through 𝝅 on 𝑇pM would be a curved path.

To continue integrating the radial curves for more steps, we now

need to parallel transport the t𝑖,0’s to their corresponding q𝑖,1 points,
or in other words, transfer them from 𝑇pM to the tangent plane

at q𝑖,1, 𝑇q𝑖,1M. We can do this by computing the smallest rotation

that transforms 𝑇pM into 𝑇q𝑖,1M, denoted 𝑅𝑖,0, and applying it

to t𝑖,0: t𝑖,1 = 𝑅𝑖,0t𝑖,0. More concretely, 𝑅𝑖,0 = exp[𝛼𝑖,0â𝑖,0], where
𝛼𝑖,0 = arccos(n(p) · n(q𝑖,1)), â𝑖,0 =

n(p)×n(q𝑖,1 )
∥n(p)×n(q𝑖,1 ) ∥ , and exp[v] is

the matrix exponential of the skew-symmetric cross product matrix

of v. According to Minding’s theorem, t𝑖,1 is precisely the result of

parallel transporting t𝑖,0 to q𝑖,1 for constant curvature surfaces, and
therefore it is a good approximation for nearby points whose local

neighbourhoods are similar [Schmidt et al. 2006]. Using the t𝑖,1’s,
we can repeat the integration step described earlier, but where q𝑖,1
replaces p along each path 𝑖 . For a general step 𝑗 + 1, we therefore
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have:

q𝑖, 𝑗+1 = 𝝅 (q𝑖, 𝑗 + ℎt𝑖, 𝑗 ) . (2)

To more explicitly show the correspondence between Eq. 1 and

Eq. 2, we can denote p by q𝑖,0. We repeat for 𝑛 iterations until we

have the set of traced points 𝑄 = {q𝑖, 𝑗 | 0 ≤ 𝑖 ≤ 𝑚 − 1, 0 ≤
𝑗 ≤ 𝑛}, which can be arranged into the set of radial curves Γ =

{𝛾0, 𝛾1, . . . , 𝛾𝑚−1} where 𝛾𝑖 = [q𝑖,0, . . . , q𝑖,𝑛], as well as the set of
isolines Ψ = {𝜓0,𝜓1, . . . ,𝜓𝑛} where 𝜓 𝑗 = [q0, 𝑗 , q1, 𝑗 , . . . , q𝑚−1, 𝑗 ]
(note that𝜓0 is simply p). We treat 𝛾𝑖 and𝜓 𝑗 as both point sequences

and curves connecting the points, depending on context.

Pseudocode describing this step, along with the improvements

described in Sections 3.2 and 3.3, is given in Alg. 1.

ALGORITHM 1: Radial tracing radialTrace
Inputs : Implicit function 𝑓 , # of radial curves𝑚, # of steps 𝑛, step

size ℎ

Outputs :Point samples𝑄

1 𝑄 ← {p};
2 for 𝑗 ← 0, . . . , 𝑛 − 1 do
3 for 𝑖 ← 0, . . . ,𝑚 − 1 do

// Section 3.2

4 ˜ℎ ← ℎ;

5 q̃𝑖,𝑗 ← q𝑖,𝑗 ;
6 t̃𝑖,𝑗 ← t𝑖,𝑗 ;
7 while ˜ℎ ≥ 10

−6 do
8 ℓ ← solve Eq. 3 in

[
0, ˜ℎ

]
;

9 𝝉𝑖,𝑗 ← q̃𝑖,𝑗 + ℓ t̃𝑖,𝑗 ;
10 ˜ℎ ← ˜ℎ − ∥𝝅 (𝝉𝑖,𝑗 ) − q̃𝑖,𝑗 ∥ ;
11 Transport t̃𝑖,𝑗 from q̃𝑖,𝑗 to 𝝅 (𝝉𝑖,𝑗 ) ;
12 q̃𝑖,𝑗 ← 𝝅 (𝝉𝑖,𝑗 ) ;
13 end
14 end

// Section 3.3

15 𝚯𝑗+1 ← solve Eq. 5;

16 for 𝑖 ← 0, . . . ,𝑚 − 1 do
17 q𝑖,𝑗+1 ← q̃𝑖,𝑗 ;
18 t𝑖,𝑗+1 ← rotate t̃𝑖,𝑗 about n(q𝑖,𝑗+1 ) by 𝜃𝑖,𝑗+1;
19 𝑄 ← 𝑄 ∪ {q𝑖,𝑗+1};
20 end
21 end
22 Return𝑄 ;

3.2 Substepping
Although ℎ is small, projecting a straight line from a general𝑇q𝑖,𝑗M
ontoM can still behave poorly far away from the plane origin: its

projection image can shrink significantly to almost zero length in

regions of very high curvature, and can even split near the medial

axis (Fig. 3). Since n is a smoothed normal, it already prevents im-

age splitting, but can instead lead to deformed projection images,

which significantly degrade the quality of the final parameteriza-

tion. Therefore, we sometimes need to take substeps smaller than

ℎ to ensure that each full step has a geodesic length of roughly ℎ,

which is a technique commonly used when numerically integrating

No Smoothing Ours

Fig. 4. Without holonomy smoothing (left), the traced paths can drastically
separate and intersect with each other away from the origin after they
encounter a small pothole. Smoothing out the wedge holonomies (right)
causes the paths to more closely emulate their trajectories on a similar
surface with constant curvature (in this case, a sphere without a pothole).

differential equations in order to obtain higher accuracy [Dahlquist

and Björck 2008].

To achieve a uniform step size across all directions, we find a

point along each straight line 𝝉𝑖, 𝑗 (ℓ) = q𝑖, 𝑗 + ℓt𝑖, 𝑗 which satisfies

the following projected alignment equation for each 𝑖:

n(q𝑖, 𝑗 ) · n(𝝅 (𝝉𝑖, 𝑗 (ℓ))) = 𝑠

s.t. ℓ ∈ [0, ℎ], (3)

where 𝑠 is a prescribed alignment cosine (we used 𝑠 = cos
𝜋
4

=
1√
2

in all our experiments). This equation can be solved using a

general non-linear root finding procedure such as the bisection

method, and if no solution is found, we return the upper bound of

the interval,ℎ. Essentially, we want to find the point along 𝝉𝑖, 𝑗 where
its projected normal significantly deviates from the plane normal,

which indicates a large accumulation of curvature and/or having

approached a normal discontinuity onM. To further ensure that we

are taking full steps of approximate geodesic length ℎ, we estimate

our projected step size for the substep as ∥𝝅 (𝝉𝑖, 𝑗 (ℓ))−q𝑖, 𝑗 ∥, subtract
it from ℎ to get a new max step size, and repeat the procedure until

the max step size is sufficiently small (see Alg. 1).

3.3 Holonomy Smoothing
Aside from high curvature along a path on the surface, another issue

is the variation in curvature between nearby geodesics. The rela-

tionship between nearby geodesics is captured by the Jacobi equa-
tion [Do Carmo 1992; Pottmann et al. 2010], where the acceleration

of the separation between geodesics is proportional to the negative

Gaussian curvature of the surface. As a result, geodesics accelerate
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towards each other on surfaces with positive Gaussian curvature,

accelerate away from each other on surfaces with negative Gauss-

ian curvature, and retain their separation velocity on surfaces with

zero Gaussian curvature (Fig. 4, left). When acceleration rates vary

significantly between traced geodesics, downstream interpolation

becomes more challenging, because some regions of the map exhibit

significant stretching and poorly represent the underlying surface,

while others experience foldovers and lose injectivity (Fig. 8, right).

These issues are prominent on surfaces with high frequency details,

or even “noisy” surfaces like those from neural implicits.

Since the underlying issue is variance in acceleration, we must

simultaneously correct all traced radial curves to give them more

uniform acceleration. One possible approach is to adjust the traced

points directly, but this would require a difficult constrained opti-

mization over surface point positions. Instead, we use the following

simplifications: (1) we perform an optimization after each (full) in-

tegration step 𝑗 , and (2) we optimize over rotations in the tangent

plane that, at a high level, “smooth out” the traced paths over the

integration front 𝜓 𝑗 . Optimizing rotations in this way allows the

projected steps do most of the work while we nudge the paths in

better directions as we progress.

<latexit sha1_base64="t/tJ/NpeTN6SjUmYbENFt/8EVFM=">AAACAXicbVDLSsNAFJ34rPVV69JNsAiCUhKR6rLUjcsK9gFNKTPTSTpkHnFmIi0hK//DrboTt/6I/o1T7UJbz+rcc+6Fcw9KGNXG8z6dpeWV1bX1wkZxc2t7Z7e0V25rmSpMWlgyqboIasKoIC1DDSPdRBHIESMdFF9N/c49UZpKcWsmCelzGAkaUgyNlQalcsChGaEwu8sHGT3xT+N8UKp4Ve8b7iLxZ6QCZmgOSh/BUOKUE2Ewg1r3NI2wFGE/g5hDZfJikMCIiJQjoqiIskgim8/KjJiggVAcKMLguBikmiQQx3Y5g1zrCUe5ezQNqOe9qfivh3j+e+6lJrzsZ1QkqSEC2xPrhSlzjXSnfbhDqgg2bGIJxIoail08ggpiY1uzVfjzjy+S9lnVr1VrN+eVemNWSgEcgENwDHxwAergGjRBC2AwBo/gCTw7D86L8+q8/awuObObffAHzvsXLfmX5w==</latexit>q8+1,:<latexit sha1_base64="eLJ1gO7UabWoPkeLxVzW/S9XfIc=">AAACA3icbVC7TsMwFHXKq5RXeWwsERUSElAlCBXGqiyMRaIPqaki23VSq7YTbAdRooz8ByuwIVb+A/4GFzJAy5nOPede6dyDYkaVdpxPqzA3v7C4VFwurayurW+UN7faKkokJi0csUh2EVSEUUFammpGurEkkCNGOmh0MfE7t0QqGolrPY5Jn8NQ0IBiqI3kl3c8DvUQBelN5qf00D0aHbuZX644Vecb9ixxc1IBOZp++cMbRDjhRGjMoFI9RUMciaCfQsyh1FnJi2FIRMIRkVSEaRghk9DIjGivgdDIk4TBu5KXKBJDPDLLKeRKjTnK7P1JRDXtTcR/PcSz33Mv0cF5P6UiTjQR2JwYL0iYrSN70og9oJJgzcaGQCypptjGQygh1qY3U4U7/fgsaZ9U3Vq1dnVaqTfyUopgF+yBA+CCM1AHl6AJWgCDe/AInsCz9WC9WK/W289qwcpvtsEfWO9fFnGYWQ==</latexit>q8+1,:�1

<latexit sha1_base64="IkyOWD09IbtEAueJQ+um3AqrtyI=">AAAB/3icbVC7TsMwFHV4lvIKMLJEVEgMqEoRKoxVWRiLRB9SU0W266RWbCfYTkUVZeA/WIENsfIn8Dc4kAFaznTuOfdK5x6UMKq0635aS8srq2vrlY3q5tb2zq69t99TcSox6eKYxXKAoCKMCtLVVDMySCSBHDHSR9FV4fenRCoai1s9S8iIw1DQgGKojeTbtsehnqAgu8v9jJ5GuW/X3Lr7DWeRNEpSAyU6vv3hjWOcciI0ZlCpoaIhjkUwyiDmUOq86iUwJCLliEgqwiyMkUlnZEa010Yo8iRh8L7qpYokEEdmOYNcqRlHuXNcxFPzXiH+6yGe/56HqQ4uRxkVSaqJwObEeEHKHB07RRvOmEqCNZsZArGkmmIHT6CEWJvOTBWN+ccXSe+s3mjWmzfntVa7LKUCDsEROAENcAFa4Bp0QBdgMAWP4Ak8Ww/Wi/Vqvf2sLlnlzQH4A+v9C0nPl3c=</latexit>q8,:<latexit sha1_base64="2W9/nhnf4ws6h98o/gJjW+qMdjI=">AAACAXicbVC7TsMwFHV4lvIqZWSJqJAYoEoQKoxVWRiLRB9SU1W266RW/Ai2g1pFmfgPVmBDrPwI/A0udICWM517zr3SuQcljGrjeZ/O0vLK6tp6YaO4ubW9s1vaK7e1TBUmLSyZVF0ENWFUkJahhpFuogjkiJEOiq+mfueeKE2luDWThPQ5jAQNKYbGSoNSOeDQjFCY3eWDjJ7Ep34+KFW8qvcNd5H4M1IBMzQHpY9gKHHKiTCYQa17mkZYirCfQcyhMnkxSGBERMoRUVREWSSRzWdlRkzQQCgOFGFwXAxSTRKIY7ucQa71hKPcPZoG1PPeVPzXQzz/PfdSE172MyqS1BCB7Yn1wpS5RrrTPtwhVQQbNrEEYkUNxS4eQQWxsa3ZKvz5xxdJ+6zq16q1m/NKvTErpQAOwCE4Bj64AHVwDZqgBTAYg0fwBJ6dB+fFeXXeflaXnNnNPvgD5/0LMYeX6Q==</latexit>q8,:�1

<latexit sha1_base64="FZisjfiASkYoPgvlm3FyVeDyICs=">AAAB9HicbVC7TsMwFHXKq5RXgZElokJiQFWCUGGsysJYBH1ITVXZrpNa8SOynYoqykewAhti5Xvgb3AhA7Sc6dxzzpXuPShhVBvP+3RKK6tr6xvlzcrW9s7uXnX/oKtlqjDpYMmk6iOoCaOCdAw1jPQTRSBHjPRQfD33e1OiNJXi3swSMuQwEjSkGBor9e5GGT2L81G15tW9b7jLxC9IDRRoj6ofwVjilBNhMINaDzSNsBThMIOYQ2XySpDAiIiUI6KoiLJIInuSlRkxQQuhOFCEwYdKkGqSQBzbcAa51jOOcveEQzPRi95c/NdDPP89D1ITXg0zKpLUEIHtivXClLlGuvMK3DFVBBs2swRiRQ3FLp5ABbGxRdkq/MXHl0n3vO436o3bi1qzVZRSBkfgGJwCH1yCJrgBbdABGMTgETyBZ2fqvDivzttPtOQUO4fgD5z3L11vkwg=</latexit>

(8,:

<latexit sha1_base64="llAUHdWlIFERd6SM6UlExqaDNYU=">AAAB+XicbVDLTsMwEHTKq5RXgSOXiAqJA6oShArHqnDgWCT6kJqqst1Namo7ke0gqii/wRW4Ia78DPwNLvQALXOanZmVdocknGnjeZ9OYWl5ZXWtuF7a2Nza3inv7rV1nCoKLRrzWHUJ1sCZhJZhhkM3UYAF4dAh48up37kHpVksb80kgb7AkWQho9hYKQiugBs8yNjJXT4oV7yq9w13kfgzUkEzNAflj2AY01SANJRjrXuaRTSWYT/DVGBl8lKQ4AhkKggoJqMsiom9y8ocTNAgZBwo4PihFKQaEkzHNpxhofVEkNw9EtiM9Lw3Ff/1iMh/z73UhBf9jMkkNSCpXbFemHLXxO60B3fIFFDDJ5Zgqphh1KUjrDA1ti1bhT//+CJpn1b9WrV2c1apN2alFNEBOkTHyEfnqI6uURO1EEUJekRP6NnJnBfn1Xn7iRac2c4++gPn/QsmCZUs</latexit>

�8, 9

<latexit sha1_base64="ebdM1aFdSRPwdMu3jKAeC2uv3u8=">AAACAXicbVC7TsMwFHXKq5RXKCNLRIWEBKoahApjVRbGItGH1FSR7Tqpqe0E20Gtokz8ByuwIVZ+BP4GBzpAy5nOPede6dyDYkaVrtU+rcLS8srqWnG9tLG5tb1j75Y7KkokJm0csUj2EFSEUUHammpGerEkkCNGumh8mfvdeyIVjcSNnsZkwGEoaEAx1Eby7bLHoR6hIL3L/JQeuye3mW9XatXaN5xF4s5IBczQ8u0PbxjhhBOhMYNK9RUNcSSCQQoxh1JnJS+GIREJR0RSEaZhhEw+IzOivSZCY08SBiclL1EkhnhsllPIlZpylDmHeUA17+Xivx7i2e+5n+jgYpBSESeaCGxOjBckzNGRk/fhDKkkWLOpIRBLqil28AhKiLVpzVThzj++SDqnVbderV+fVRrNWSlFsA8OwBFwwTlogCvQAm2AwQQ8gifwbD1YL9ar9fazWrBmN3vgD6z3Lyxul+Y=</latexit>q8+1, 9
<latexit sha1_base64="aaDLIkG4Z5Qc3g4mOyO8bAKh1tk=">AAAB/3icbVC7TsMwFHXKq5RXgJElokJiQFWKUGGsysJYJPqQmiqyXSc1tZ1gOxVVlIH/YAU2xMqfwN/gQAZoOdO559wrnXtQzKjSrvtplZaWV1bXyuuVjc2t7R17d6+rokRi0sERi2QfQUUYFaSjqWakH0sCOWKkhyaXud+bEqloJG70LCZDDkNBA4qhNpJv2x6HeoyC9C7zU3pym/l21a2533AWSb0gVVCg7dsf3ijCCSdCYwaVGiga4kgEwxRiDqXOKl4MQyISjoikIkzDCJl0RmZEey2EJp4kDN5XvESRGOKJWU4hV2rGUeYc5fHUvJeL/3qIZ7/nQaKDi2FKRZxoIrA5MV6QMEdHTt6GM6KSYM1mhkAsqabYwWMoIdamM1NFff7xRdI9rdUbtcb1WbXZKkopgwNwCI5BHZyDJrgCbdABGEzBI3gCz9aD9WK9Wm8/qyWruNkHf2C9fwFIRJd2</latexit>q8, 9

<latexit sha1_base64="iRDIhko69/GrgHHYI5p3a4Ddd1k=">AAAB93icbVC7TsMwFHXKq5RXgZElokJiqhKECmNVFsYi0Ydoqsp2ndSqH5HtIKIof8EKbIiVv4G/wYEM0HKmc8+5Vzr3oJhRbTzv06msrK6tb1Q3a1vbO7t79f2DvpaJwqSHJZNqiKAmjArSM9QwMowVgRwxMkDzq8If3BOlqRS3Jo3JmMNI0JBiaKx0F3BoZijM4nxSb3hN7xvuMvFL0gAlupP6RzCVOOFEGMyg1iNNIyxFOM4g5lCZvBbEMCIi4YgoKqIsksimsjIjJuggNA8UYfChFiSaxBDP7XIGudYpR7l7UgTTi14h/ushnv+eR4kJL8cZFXFiiMD2xHphwlwj3aIFd0oVwYallkCsqKHYxTOoIDa2K1uFv/j4MumfNf1Ws3Vz3mh3ylKq4Agcg1PggwvQBtegC3oAAwEewRN4dlLnxXl13n5WK055cwj+wHn/AjhwlLI=</latexit>p

We model our optimization

on the case of constant acceler-

ation, to encourage the curves

to spread out as uniformly as

possible. The surfaces satis-

fying this ideal property are

those with constant Gaussian

curvature, so the optimization procedure should encourage the

curves to behave as if they were on a constant curvature surface.

On such surfaces, we expect the total Gaussian curvature in the

wedges between curves to be equal, where wedges are defined as

Δ𝑖, 𝑗 = [p, . . . , q𝑖, 𝑗 , q𝑖+1, 𝑗 , . . . , p] (see inset) where each point is con-

nected by a geodesic to the next point in the sequence and 𝑖 indices

are modulo𝑚. Rather than directly integrating the curvature within

this loop, which is difficult to do on an implicitly defined surface, we

will instead use holonomy, which is defined as the amount of rota-

tion induced by parallel transport along a closed loop on the surface,

and equivalently the total Gaussian curvature contained in that loop

on the surface. This way, we can convert an integration problem

into a parallel transport problem, which we are well-equipped to

solve. Since we want to find in-plane rotations, we represent the

rotations by angles 𝜃𝑖, 𝑗 in each Tq𝑖,𝑗M and solve for these angles.

(More precisely, we are now measuring the holonomy of a slightly

modified Δ𝑖, 𝑗 where infinitesimally small geodesics are extended

from each q𝑖, 𝑗 after rotating each geodesic tangent vector by 𝜃𝑖, 𝑗 ,

though with a slight abuse of notation we will refer to both the

infinitesimally extended wedge and the original wedge by Δ𝑖, 𝑗 , as
we are exclusively concerned with the infinitesimally extended ver-

sion.) Denoting the holonomy in a wedge by 𝑅(Δ𝑖, 𝑗 ), we smooth

out the wedge holonomies by minimizing a Dirichlet-like energy to

obtain rotations 𝚯𝑗 = [𝜃0, 𝑗 , 𝜃1, 𝑗 , . . . , 𝜃𝑚−1, 𝑗 ]:

𝚯
∗
𝑗 = min

𝚯𝑗

∑︁
𝑖

𝑅(Δ𝑖, 𝑗 )2 +
1

𝜅
∥𝚯𝑗 ∥2 . (4)

We measure total wedge holonomy by decomposing the wedge

loop into strips 𝑆𝑖,𝑘 = [q𝑖,𝑘−1, q𝑖,𝑘 , q𝑖+1,𝑘 , q𝑖+1,𝑘−1, q𝑖,𝑘−1] (see inset),
where each point is connected by a geodesic just like in the definition

of Δ𝑖, 𝑗 , and then adding the holonomies of these strips. Starting at

q𝑖,𝑘−1, our goal is to transport t𝑖,𝑘−1 around 𝑆𝑖,𝑘 . and to simplify the

result, we will set each t𝑝,𝑞 to have an angle of 0 in its corresponding

tangent space. By construction, transporting along the geodesic from

q𝑖,𝑘−1 to q𝑖,𝑘 does not change the angle, and the same is true from

q𝑖+1,𝑘 to q𝑖+1,𝑘−1, so the main challenge is transporting from q𝑖,𝑘 to

q𝑖+1,𝑘 (q𝑖+1,𝑘−1 to q𝑖,𝑘−1 is similar). When the distance between q𝑖,𝑘
and q𝑖+1,𝑘 is small, we can approximately transport vectors from

Tq𝑖,𝑘M to Tq𝑖+1,𝑘M using the smallest rotation that aligns 𝑇q𝑖,𝑘M
with𝑇q𝑖+1,𝑘M, in the same manner by which we transported tangent

vectors along short geodesic segments during tracing. Then, we can

find the change in angle (induced by a change of basis between

tangent spaces) by measuring the angle between the transported

t𝑖,𝑘 (denoted t̂𝑖,𝑘 ) and t𝑖+1,𝑘 in Tq𝑖,𝑘M, which is just the signed

angle from t𝑖+1,𝑘 to t̂𝑖,𝑘 in R3. When 𝜃𝑖,𝑘 = 𝜃𝑖+1,𝑘 = 0 (i.e., before

smoothing), we denote this angle by 𝜙𝑖,𝑘 (and all such angles at

step 𝑘 by Φ𝑘 ), so in the general non-zero case, we have an angle

of 𝜃𝑖,𝑘 + 𝜙𝑖,𝑘 − 𝜃𝑖+1,𝑘 (Fig. 5). The change in angle from q𝑖+1,𝑘−1 to
q𝑖,𝑘−1 has a similar expression but negated since we travel in the

opposite direction with respect to the indices; thus we have

𝑅(𝑆𝑖,𝑘 ) = (𝜃𝑖,𝑘 + 𝜙𝑖,𝑘 − 𝜃𝑖+1,𝑘 ) − (𝜃𝑖,𝑘−1 + 𝜙𝑖,𝑘−1 − 𝜃𝑖+1,𝑘−1) . (5)

Since we do not wish to rotate the initial tangent vectors t𝑖,0 and
they are all in 𝑇pM, we have 𝜃𝑖,0 = 0 and 𝜙𝑖,0 = − 2𝜋

𝑚 .

When we sum up the 𝑅(𝑆𝑖,𝑘 ), the 𝜃𝑖,𝑘 + 𝜙𝑖,𝑘 − 𝜃𝑖+1,𝑘 terms cancel

out when 1 ≤ 𝑘 < 𝑗 , which gives

𝑅(Δ𝑖, 𝑗 ) =
𝑗∑︁

𝑘=1

𝑅(𝑆𝑖,𝑘 ) = 𝜃𝑖, 𝑗 + 𝜙𝑖, 𝑗 − 𝜃𝑖+1, 𝑗 +
2𝜋

𝑚
. (6)

Surprisingly, this expression does not directly depend on the angles

obtained from previous steps, but in fact the change in angle terms

Φ𝑗 implicitly encode this information, because they are derived

from the tangent directions that were obtained from the previous

step’s smoothing angles Θ𝑗−1; in turn, Θ𝑗−1 depends on the previ-

ous step’s Φ𝑗−1, which depend on Θ𝑗−2, and so on. Unrolling the

dependency chain reveals that Φ𝑗 contains information from all

previous holonomy smoothing steps.

With the definition of𝑅(Δ𝑖, 𝑗 ), we can now see that Eq. 4 resembles

a 1D Dirichlet problem with periodic boundary conditions, which

can be solved with a circulant tridiagonal linear system. The linear

system contains a null space and can be poorly conditioned, so we

also include a regularization term
1

𝜅 ∥𝚯𝑗 ∥2 to mitigate these issues,

where 𝜅 is a tuneable parameter which we typically set to 10
3
in our

experiments. Using the 𝚯𝑗 from solving Eq. 4 to rotate the tangent

vectors after each tracing step, we largely eliminate artifacts caused

by variations in curvature on the surface (Fig. 4, right).

One potential alternative is to instead smooth the outermost

strip holonomies 𝑅(𝑆𝑖, 𝑗 ) instead of wedge holonomies 𝑅(Δ𝑖, 𝑗 ) to
more directly smooth out the accelerations at the points on 𝜓 𝑗 ;

unfortunately, as we show in Appendix A, this scheme produces

undesirably large rotations.
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Fig. 5. An illustration of measuring the change in angle as t𝑖,𝑘 is transported
from Tq𝑖,𝑘M to Tq𝑖+1,𝑘M (represented as t̂𝑖,𝑘 in the latter space). Solid
arrows represent tangent vectors before holonomy smoothing, and dashed
arrows represent tangent vectors after holonomy smoothing. All angles are
measured clockwise.
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Fig. 6. Using the same torus example from Fig. 2, the map 𝑞p (𝑟, 𝜃 ) , (𝑟, 𝜃 ) ∈
TpM, is evaluated by first evaluating the isolines Ψ at 𝜃 and 𝜃 + 𝜋 , inter-
polating those results to form a radial curve 𝛾𝜃 passing through p, and
evaluating this curve at 𝑟 .

3.4 Map Interpolation
After tracing out the points, the next step is to interpolate these

points to form a continuous map from the planar disc 𝐷𝑅 ⊂ TpM
(𝑅 = 𝑛ℎ) to the surface: 𝑞p : 𝐷𝑅 →M. Each input point x = (𝑥,𝑦) ∈
𝐷𝑅 can be expressed in polar coordinates (𝑟, 𝜃 ), where 𝑟 ∈ [0, 𝑅], and
from there, we evaluate the surface as a spline in polar coordinates.

First, we interpolate the isolines Ψ using periodic cubic splines as

functions of angle. We then evaluate all these splines at 𝜃 and 𝜃 + 𝜋
(i.e., the opposite angle) to get 2𝑛 + 1 unique points that sample two

opposite radial curves connected at the map origin, which we can

connect using a natural cubic spline 𝛾𝜃 and evaluate at 𝑟 .

3.5 Logarithmic Map
Along with the forward map 𝑞p, it is also useful to have the inverse

𝑞−1p (which we will call the logarithmic map even though 𝑞p is not

exactly an exponential map). Finding the exact inverse of the spline

surface defined in Section 3.4 would require solving a non-linear

optimization problem, so we instead mesh the spline by uniformly

sampling several points in 𝐷𝑅 , Delaunay triangulating those points,

and pushing those points (and their connectivity) through 𝑞p; with

this mesh, we can evaluate 𝑞−1p via closest point queries on the mesh

with a small maximum radius (we use 10
−2

). The point sampling can

be improved by, e.g., drawing more samples from high-curvature

portions of the map, but at a high enough resolution this basic

scheme is sufficient for our applications. For all examples in the

paper, we sample 10000 points on the interior of 𝐷𝑅 , and use 8𝑚

uniformly sampled points on 𝜕𝐷𝑅 for the Delaunay triangulation

boundary. Optionally, to obtain a closer fit to the true surface, the

spline-evaluated samples can be projected onto the zero isosurface,

though this incurs an additional performance cost proportional to

the number of samples, and we did not find it necessary for the

results in the paper.

4 EVALUATION AND RESULTS

4.1 Implementation
We implemented our code primarily in Python using the PyTorch

library [Paszke et al. 2019] to have a framework for automatic differ-

entiation, which we used to compute gradients of implicit functions

and interface with trained neural implicits. We used a simple feature

grid architecture for the neural implicits used in the paper, based

on the NGLOD architecture [Takikawa et al. 2021] with a single

128
3
feature grid, and an MLP with two 128-unit hidden layers and

softplus activations. Point cloud implicits were obtained using a Log-

SumExp smooth distance function [Madan and Levin 2022]. Also,

we used JIT compilation for analytic implicits and signed distance

functions to speed up their evaluation. To have comparable parame-

ters across all experiments, we isotropically rescaled every object

to fit within the cube [−1, 1]3 (Table 1).

4.2 Performance
Asymptotically, each component of a single tracing step (projection,

substepping, tridiagonal linear system solving) takes 𝑂 (𝑚) time to

advance the integration front from𝜓 𝑗 to𝜓 𝑗+1, so tracing 𝑛 steps is

overall𝑂 (𝑚𝑛). Fitting the surface also takes𝑂 (𝑚𝑛) time to build all

of the 𝑛 isoline splines, and𝑂 (𝑛) time to evaluate the surface spline

at a point (mainly to build 𝛾𝜃 ). One key advantage of our approach

is that the performance is output-sensitive; in other words, it does

not strongly depend on the complexity or size of the underlying

surface (though in some cases like triangle mesh distance, each

implicit distance query is𝑂 (log𝑁 ) where 𝑁 is the number of mesh

triangles). For example, mesh-based heat methods [Herholz and

Alexa 2019; Sharp et al. 2019] are slightly superlinear in 𝑁 from

solving sparse matrices, but if𝑚𝑛 ≪ 𝑁 , this is much worse than

𝑂 (𝑚𝑛). Although the method of Herholz and Alexa [2019] provides

fast local solves using only a small output-sensitive subset of vertex

values, it still requires a global prefactorization that is superlinear

and dependent on 𝑁 [Herholz et al. 2017]. In Table 2, we show a

timing breakdown of the examples in Fig. 1, which are representative

of the types of implicit functions we used throughout the paper. All

timings were recorded on a 2020 MacBook Pro with anM1 processor.

From these results, we see that none of the examples took more than

1.5s to complete, and the primary bottleneck is tracing, particularly

root finding in each substep (line 8 of Alg. 1). Furthermore, by also

looking at the parameters in Table 1 we observe that the terrain

point cloud map took roughly twice as long to trace as the brain

mesh map, despite the former having 400 times as many vertices

as the latter, which confirms the output-sensitive nature of our

algorithm. Meshing the log map takes hundreds of milliseconds for

every example, though this is because we evaluate the surface at

over 10000 points to build the mesh, so this can easily be reduced

if a coarser mesh is acceptable. Furthermore, it is apparent that

overall performance is proportional to the amount of time required

to evaluate the implicit 𝑓 and its gradient. Overall, these results are

sufficient for interactive applications, even on the LiDAR terrain
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Table 1. Parameter listings of all the results in the paper, where𝑚 is the number of radial curves, 𝑛 is the number of steps, and ℎ is the step size. The “Size”
column lists the number of points in a point cloud, or the number of vertices in a mesh.

Surface Fig. Type Size 𝑚 𝑛 ℎ Smoothing Enabled?
Saddle 10 Analytic Implicit — 50 10 1.0 × 10−2 Yes

Armadillo 8 Neural Implicit — 50 20 5.0 × 10−3 Yes+No

Cone 14 SDF — 50 12 1.0 × 10−2 No

Bunny (coarse) 12 (top right) Mesh 3,485 20 20 2.5 × 10−2 Yes

Bunny (fine) 12 (bottom right) Mesh 13,934 20 20 2.5 × 10−2 Yes

Toy 1 SDF — 50 30 1.0 × 10−2 Yes

Flute 1 Analytic Implicit — 50 12 5.0 × 10−3 Yes

Brain 1 Mesh 73,820 50 10, 15, 20 5.0 × 10−3 Yes

Owl 1 Neural Implicit — 50 5, 10 1.0 × 10−2 Yes

Terrain 1 Point Cloud 29,474,037 50 10 1.0 × 10−2 Yes

Star Torus 15 SDF — 50 40 1.0 × 10−2 Yes

Shellfish 13 (left) Neural Implicit — 50 15 1.0 × 10−2 Yes

Einstein 13 (middle) Neural Implicit — 50 20 5.0 × 10−3 Yes

Metratron 13 (right) Neural Implicit — 50 15 1.0 × 10−2 Yes

Pothole 4 SDF — 50 20 1.0 × 10−2 Yes+No

Spot 9 Mesh 2,930 50 20 1.0 × 10−2 Yes

Shark 16 Mesh 10,054 50 20 1.0 × 10−2 Yes

Table 2. Timing breakdown for maps generated on the surfaces in Fig. 1, with an in-depth breakdown for radial tracing. Times are given in milliseconds. The
root finding (“Root”), projected step (“Proj.”), and frame rotation (“Frame Rot.”) operations are done during each tracing substep, and smoothing is done after a
full tracing step. Times are averaged over all maps on each surface, except for the brain and owl surfaces, where timings for the largest map are reported
instead.

Surface Type 𝑛 Avg. # Substeps Avg. Root Avg. Proj Avg. Frame Rot. Avg. Smoothing Tracing Fitting Meshing
Toy SDF 30 2.000 5.287 0.5509 0.5982 0.6699 414.3 2.336 196.0

Flute Analytic Implicit 12 2.417 10.85 2.219 1.304 0.7731 427.3 2.006 165.1

Brain Mesh 20 2.900 14.66 0.8845 1.419 0.6537 502.5 2.005 158.3

Owl Neural Implicit 10 2.800 14.75 1.089 1.294 0.7760 492.4 2.058 172.0

Terrain Point Cloud 10 2.733 34.16 3.403 3.069 0.7709 1137 1.977 165.1

point cloud with over 29 million points, and suggest that speeding

up the computation of 𝑓 and a faster root finding method can further

improve performance.

4.3 Parameter Analysis
The parameter𝑚 (number of traced radial curves), 𝑛 (number of

steps taken), and ℎ (step size) are the main quantities used to affect

the accuracy of the parameterizations. To demonstrate the effect of

these parameters on a simple case with a known analytic solution,

we ran our method on a unit sphere (with no substepping and

no holonomy smoothing) using a range of values for each of these

parameters (where𝑛ℎ, the total radius of the map in tangent space, is

always 1) and computed the average 𝐿2 error of our output from the

analytic exponential map, at 2000 samples inside the parameterized

disc in tangent space and 500 points along the boundary of the

disc (Fig. 7). Overall, we observe that both adding more steps (and

correspondingly smaller step sizes) and more radial curves can

improve the results, but after enough steps/radial curves, adding

more steps/radial curves does not seem to improve the results. In

particular, increasing𝑚 from 5 to 50 significantly reduces the error,

though there is little difference between using 50 or 500 radial

curves; as such, we use𝑚 = 50 for most of the results in the paper.

Furthermore, we see that the error levels out under refinement of

ℎ, but at different points when using 5 radial curves (10 steps) and

50/500 radial curves (100 steps). To further investigate the source of

the error, we also plotted the error from our traced points along a

single radial curve for each step size (since this is on a sphere, there

is little difference between each individual radial curve). This error

curve follows a very similar trend to the larger𝑚 error curves which

decrease and eventually level out around 10
−5
, which suggests that

once there are sufficiently many traced radial curves, the primary

source of error is the tracing rather than the spline interpolation.

Since the error in the traced points accumulates over more steps,

there is a tradeoff between accumulating larger per-step error over

fewer steps, and accumulating smaller per-step error over more

steps, which causes the error to level out under refinement. Despite

the lack of error reduction beyond 10
−5
, this is quite small, and as

demonstrated in the examples throughout the paper, does not cause

practical issues.
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Error Parameter Analysis
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Fig. 7. On an exponential map of the sphere, the mean error of our method
compared to the analytical solution generally decreases as we increase the
number of steps/decrease step size, but this eventually levels out for maps
with more steps. More radial curves can reduce the error, but does not
provide any additional benefit between 50 and 500 radial curves. The error
along the traced radial points closely matches the overall map error.

Holonomy smoothing strongly influences the output, and is con-

trolled by a regularization parameter 𝜅. In Fig. 8, we examine the

effect of 𝜅; as it decreases, the effect of the smoothing is diminished,

and in the limit as 𝜅 → 0, the smoothing is completely skipped.

We built a local parameterization for a neural implicit represent-

ing the Stanford armadillo, around a point near a small indent in

the forearm created by isosurface noise. With large 𝜅 (i.e., strong

smoothing), we see that the map has low distortion away from the

origin, and although there is some distortion near the pothole itself,

this distortion largely disappears as the map expands. Meanwhile,

as 𝜅 decreases, the map’s quality degrades; some regions fold over

each other (seen through colormap discontinuities), while other

regions significantly stretch away from the origin. As a result, we

exclusively use 𝜅 = 10
3
everywhere else in the paper. However, in

large map regions, holonomy smoothing can produce an undesir-

able shearing effect on the radial curves, where some curves end up

becoming nearly parallel, an effect which primarily happens around

large surface protrusions (Fig. 9).

Another parameter that can be controlled is the smoothing radius

𝜖 , used for computing smoothed gradients ∇̃𝑓 (x) in the ball 𝐵x,𝜖 . We

used a Monte Carlo estimate of this smoothed gradient, by setting

𝜖 = 10
−4

and averaging 10 samples from 𝐵x,𝜖 . The variance of this
estimate can affect the substepping procedure and produce different

results across executions with the same input parameters, but we

did not experience this in any of our experiments. Nevertheless, we

note that the accuracy of this estimate can be increased by adding

more samples and/or reducing the smoothing radius.

4.4 Comparisons
Compared to prior local parameterization methods, our method

can extract significantly more information out of implicit surfaces.

Rather than simply sampling the surface for points, and using near-

est neighbor information to, e.g., build graphs or Laplacians, we

generate the samples we need through tracing, while also being able

to evaluate the generated map on other surface points. However,

our method does not provide precise control over the size of the

resulting parameterization beyond integration parameters, which

makes it difficult to directly compare to “log map-based” methods in

prior work which require such information as input. That said, our

generated maps can still be evaluated on isolated surface samples

after the maps have been expanded from a given surface origin,

which forms the basis of our comparison methodology against prior

work. More specifically, to compare our method to prior work, we

generated a local parameterization around a saddle point with 500

traced samples, and rejection sampled the same number of surface

points from a 3-dimensional ball around the map origin in R3 such
that all the points are contained in our map. Then, we evaluated

the log map of our method on those sample points, and also pro-

vided those points as input to both versions of discrete exponential

maps (DEM) [Schmidt 2013; Schmidt et al. 2006] and the vector heat

method [Sharp et al. 2019]. We used our own implementation for

the DEMmethods and the authors’ released code for the vector heat

method on point clouds
1
, which uses intrinsic Delaunay triangula-

tions to build more numerically robust Laplacians. For each map, we

built a mesh connecting the samples by using the connectivity from

the Delaunay triangulation computed in tangent space. As seen in

Fig. 10, all other methods produce high distortion away from the

origin, and the vector heat method struggles throughout the entire

map. It is worth noting that these struggles are exacerbated by the

naïve point sampling method, which tends to produce clusters of

points that can be prevented by more sophisticated blue noise sam-

pling techniques [De Goes et al. 2012; Witkin and Heckbert 1994];

nevertheless, our method produces low distortion throughout the

map despite the sample quality, since we do not depend on them

for generating the parameterization.

We also used the same point surface point→ log map setup to

quantitatively investigate the distortion of our method’s output

compared to prior work. More specifically, we used a dataset of over

100 surfaces collected by Myles et al. [2014], and for each surface

sampled 10 surface points as map origins, to obtain a set of over

1000 surface regions over which to build local parameterizations.

For half of these local surface regions, we sampled 500 surface points

within a geodesic radius of 0.1 of the origin, and for the other half

we sampled 1000 points within a geodesic radius of 0.2. These points

were then evaluated through the log map of each method used in

Fig. 10 and triangulated in tangent space to obtain connectivity

for the sample points in R3. We used the area-weighted average

symmetric Dirichlet energy [Smith and Schaefer 2015] and least-

squares conformal map (LSCM) energy [Lévy et al. 2002] to measure

the degree to which the resulting parameterized meshes represent

isometries and conformal maps, respectively.

The results of this experiment are provided as histograms in

Fig. 11. Across all methods, the symmetric Dirichlet distributions

look quite similar, with the majority of maps exhibiting low distor-

tion near the global minimum of 4, and a tail of maps with higher

1
https://github.com/nmwsharp/potpourri3d
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Fig. 8. As we decrease 𝜅 , the effect of the smoothing is diminished. Near an indent in this neural implicit armadillo’s arm (top right inset), decreasing 𝜅
exchanges distortion near the indent (which diminishes away from the indent) for foldovers in the map. Furthermore, decreasing 𝜅 can also affect regions
farther away from the problematic indent, by inducing stretching (bottom left inset) and foldovers (bottom right inset) near the boundary of the map.

Fig. 9. In the presence of particularly large surface features, holonomy
smoothing produces large rotations and shears the integration front, caus-
ing curves to be near-parallel and overlap; the resulting map is also distorted.
On this mesh of the log map, the symmetric Dirichlet energy [Smith and
Schaefer 2015] is 6.52, and the least squares conformal map (LSCM) en-
ergy [Lévy et al. 2002] is 0.987, both higher than the averages shown in
Fig. 11.

distortion. However, our method (right) produces the largest frac-

tion of low-distortion maps compared to the other tested methods,

with over 900 of the maps contained in the lowest histogram bin,

and as a result has a much “thinner” tail than the other methods.

The DEM methods in particular (left, middle left) have nearly half

of their outputs outside of the lowest bin. On the other hand, the

LSCM distributions vary significantly across the different methods:

DEM methods exhibit a mode near the right side of the distribution

near 1, the vector heat method (middle right) has a much narrower

distribution but with a lower mode near 10
−1
, and our method has

a much wider variance but a mode of 10
−3
, orders of magnitude

lower than the other methods. We can see one such example of a

high LSCM energy in Fig. 9, where the map has an LSCM energy of

nearly 1. Overall, we see that the combination of geodesic tracing,

substepping, and holonomy smoothing produces near-isometric and

near-conformal maps in most cases, which quantitatively affirms

Fig. 10, but can produce non-conformal results when holonomy

smoothing shears regions with large variations in curvature, as seen

in Fig. 9.

Since we trace points along the surface, another interesting prop-

erty of our method on triangle meshes in particular is that our result

quality is independent of the underlying triangulation. In Fig. 12 we

compare our method to both DEMmethods, the vector heat method,

and another heat-based method [Herholz and Alexa 2019], for which

we used our own implementation, taking care to use intrinsic De-

launay operators from libigl [Jacobson et al. 2018] (though our

implementation does not use the accelerated solve, since a public

implementation of the specialized prefactorization data structure is

unavailable). For this experiment, we computed the 10-ring of an

origin vertex (i.e., all vertices at most 10 edges away from the origin)

on a coarse Stanford bunny mesh with 3500 vertices, and used these

as the evaluation points for all methods. The DEM methods only

used these points and their derived connectivity from the mesh,

while we used the entire mesh to define the required operators for

the heat methods (since we would change the boundary conditions

if we only used the local patch). Our method does not build a map

from pre-selected discrete points (aside from the map origin), so to

make a best-effort comparison we ran our method so that the result-

ing map both contained the same 10-ring and used a comparable

point budget (400 traced samples vs. 453 vertices in the 10-ring — see

Table 1 for the parameters we used). The original mesh connectivity

was used to connect the 10-ring evaluation points into a continuous

patch for all methods. We see that our method produces by far the

least distortion in the map, and just like in Fig. 10, the DEMmethods

exhibit distortion far away from the origin, while the heat-based

methods struggle throughout the map, since the triangulation is

not of a high enough quality to produce well-conditioned opera-

tors. After one level of Loop subdivision (which produces a mesh
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[Sharp et al. 2019][Schmidt et al. 2006] [Schmidt 2013] Ours

Fig. 10. On a point set rejection sampled from a saddle surface, the original discrete exp map [Schmidt et al. 2006] (left) exhibits shearing artifacts away
from the origin in the center. The more recent version [Schmidt 2013] (middle left) with more accurate geodesics exhibits even more severe shearing. The
vector heat method [Sharp et al. 2019] (middle right) is strongly influenced by the non-uniform point distribution and has distortion throughout the map.
Our method (right) is the only one to exhibit low distortion everywhere, due to our lack of dependence on the sample points. The maps represent point sets
connected via tangent space Delaunay triangulation, and the insets show the input samples and their Delaunay edges.
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Fig. 11. Across a dataset of surfaces, map positions, and map sizes, almost all of the maps produced by our method have near-minimum symmetric Dirichlet
energy, whereas a significant fraction of the maps produced by other methods have higher energy. (top). Our method also produces maps with orders-of-
magnitude lower median LSCM energy compared to other methods, though with more variance (bottom). All histograms are plotted on a log scale on the
x-axis.

with roughly 14000 vertices), we ran the same experiment on the

20-ring to cover the same region on the surface (now containing

1720 vertices), and did not change the parameters in our method

(though we should clarify that the underlying surface is now the

subdivided mesh and not the original mesh). Now we see that our

method produces virtually the same result as before, the heat-based

methods perform much better with very little distortion, and the

DEM methods improve but still exhibit artifacts at the boundary of

the map. However, these other methods only achieve this quality

with 4 times the number of points that we need to achieve similar

quality, and cannot achieve this at all on a coarser mesh.

4.5 Applications
4.5.1 Local Texturing. A variety of examples of texturing different

representation types is provided in Fig. 1. We show several decals on

each surface, where each decal is represented by a meshed version

of the spline surface, and can see that none of the resulting images

are distorted, while still conforming to the original surface. The

terrain point cloud, owl neural implicit, and brain mesh all have

challenging geometry with surface bumps, ridges, and divets that

make parameterization more difficult. By placing maps in small re-

gions, however, even regions like the owl’s plumage and the heavily

folded surface of the brain can be textured.

To further illustrate map quality on highly detailed surfaces and

high-genus surfaces, we show some more maps on neural implicits
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Ours[Herholz and Alexa 2019][Sharp et al. 2019][Schmidt 2013][Schmidt et al. 2006]

Base

1 Loop
Subdivision Iter.

Fig. 12. On a coarse bunny mesh (top), a local parameterization generated by our method (right) avoids the severe artifacts near the boundary of the map
(left, centre left) and angular distortion near the origin (centre, centre right) seen by other methods. All methods improve after one level of Loop subdivision
(bottom), but the DEM-based methods still possess boundary artifacts (left, centre left). Please zoom in to see map details.

Fig. 13. We obtain high-quality maps on a variety of neural implicit surfaces
(rendered as meshes reconstructed with marching cubes), even in the pres-
ence of noisy reconstruction artifacts and fine ground truth details. The local
maps reveal surface bumps and folds that the marching cubes-reconstructed
surface mesh does not capture at its configured resolution.

in Fig. 13. All three surfaces are bumpy from reconstruction error,

but due to holonomy smoothing, our method is largely able to

ignore the effects of both reconstruction noise and ground truth

high-frequency features (e.g., the bridge of the Einstein bust’s nose)

on the radial path trajectories, and produce low-distortion maps

that still conform to the underlying surfaces.

4.5.2 Multi-Valued LogarithmicMaps. Unlike other methods, which

compute maps by assigning texture coordinates to surface points,

our method operates in the opposite direction and instead traces

Shortest Radius Gift Wrapping

Fig. 14. Although local geodesics can fold over, by computing the map from
tangent space rather than from the embedding space, we can obtain a multi-
valued log map, which we can use to find the globally shortest paths (left)
and “gift wrap” the map around a cone tip (right).

out surface paths corresponding to radial lines in tangent space.

This allows us to support multi-valued logarithmic maps as well,

which can encode all the local geodesics that pass through a point

on the surface (and smoothing could be disabled in such cases). As

a proof of concept, we show some preliminary visualization results

that take advantage of this property, by compositing multi-valued

log map values in a sphere tracer. Compositing is done by taking

all ray intersections with the log map and sorting the intersections

(near the closest ray intersection to the underlying surface) based

on user specification. The shortest radius mode reproduces global

geodesics by taking the point with the smallest radius (reproducing

the seam we would expect with global geodesics). Alternatively, we

can “gift wrap” the map by taking the value with the smallest phase,

which, to our knowledge, is not an effect that can be produced by

other methods (Fig. 14).
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Fig. 15. Using local parameterizations, we can draw 𝜅-curves directly on an
isosurface (blue) by placing constraint points on the surface (orange) and
optimizing control points in tangent coordinates. Solving in the ambient
space with the same constraint points leads to intersections with the surface
(green). The inset shows a translucent view of the curves, where the regions
of the ambient curve that cut inside the surface are shown in red.

4.5.3 Curve Drawing on Surfaces. It is also useful to be able to

“connect” nearby parameterizations by composing the inverse of

one with the forward evaluation of another (i.e.,𝑞p2◦𝑞−1p1 ), to convert
surface points between different local coordinate systems, which

we illustrate by lifting the 2𝐷 𝜅-curves [Yan et al. 2017] algorithm

onto surfaces using our method. With local parameterizations we

can solve for the curve’s control points in tangent coordinates, and

evaluate each curve segment in a separate local map, enforcing that

all points lie on the surface by construction. For details on how this

is done, please see Appendix B. We show our results in Fig. 15; the

curve produced with our method exactly conforms to the surface,

while attempting the same process directly in R3 results in the curve
cutting through the surface.

5 LIMITATIONS, FUTURE WORK AND CONCLUSION
The primary technical limitation of our method is that our maps are

restricted to discs in tangent space, which also restricts their maxi-

mum radii. Unlike “log map-based” methods on meshes [Herholz

and Alexa 2019; Sharp et al. 2019], which assign tangent coordinates

to each vertex and indirectly create a star around the origin in tan-

gent space, our method restricts the geometry of the domain and

thus cannot expand into large maps across complex surfaces with-

out intersecting or rapidly separating (adjacent) geodesics, which

lead to a poorly interpolated spline surface. Even holonomy smooth-

ing cannot entirely ameliorate this issue, particularly around large

protrusions on the surface, because it will try to emulate a surface

of constant Gaussian curvature that will eventually cause adjacent

geodesics to run nearly parallel with each other (Fig. 9). However,

even prior work such as the vector heat method struggles in these

challenging scenarios; a challenging example from Fig. 11 is shown

in Fig. 16 where both our method and the vector heat method pro-

duce distorted results. The parallel transport assumption along the

current integration front𝜓 𝑗 used in holonomy smoothing can also

degrade in accuracy as the geodesics separate over several tracing

iterations, though this can be remedied by tracing more geodesics to

reduce the inter-geodesic separation distances. Thus, a method that

Ours
SD=7.252

LSCM=1.189

[Sharp et al. 2019]
SD=496.6

LSCM=2.763

Fig. 16. A challenging example from the dataset of Myles et al. [2014] where
our method’s log map triangulated from surface samples exhibits high
distortion (right), with shearing near the shark’s dorsal fin, and wrapping
around itself near the tail (unlike Fig. 14 which used a custom renderer,
the Blender renderer used here does not support map-aware compositing).
However, when the vector heat method [Sharp et al. 2019] (left) is applied
to the same set of sample points, it also struggles to reproduce the dorsal
fin, though it produces an injective map. The two distortion metrics from
Fig. 11 are given as well, where “SD” represents symmetric Dirichlet energy,
and “LSCM” represents LSCM energy.

can separate varying angular density between radial geodesics, vary-

ing termination steps for each geodesic, and an interpolationmethod

that can accurately stitch such geodesics together, is required for a

fully robust “exp map-based” solution to the local parameterization

problem, though our much simpler approach already produces excel-

lent results on many complex surfaces and previously unsupported

geometric representations.

There are many more applications of local parameterizations be-

yond the ones we showed in this paper. For example, conducting

simulation algorithms on surfaces, such as fluid simulation, particle

dynamics, and even algorithms for more esoteric phenomena like

ice crystal growth [Kim and Lin 2003], are a few examples that can

be more easily unlocked by high-quality local parameterizations.

Another application is in running generative models such as dif-

fusion models [Song et al. 2020] and normalizing flows [Kobyzev

et al. 2020] on surfaces. Although there has been some work on

generalizing the latter to surfaces [Lou et al. 2020], it is restricted to

surfaces where analytic exponential maps are known, which greatly

limits its applicability. More broadly in computer graphics, surface-

based algorithms are often relegated to cases where the surface

is explicitly provided, such as with triangle meshes, but with the

emergence of new neural geometric representations like neural im-

plicits, neural radiance fields [Mildenhall et al. 2021], and Gaussian

splats [Kerbl et al. 2023], their adoption in wider applications is

limited by the need to design tailored algorithms for each represen-

tation. We therefore believe that general-purpose algorithms like

ours are an important step towards making more geometry widely

usable.
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A INSTABILITY OF STRIP HOLONOMY
Here we show that smoothing the holonomy of the outermost strips

𝑆𝑖, 𝑗 is unstable, or more precisely, we show that strip holonomy

smoothing produces undesirably large rotation angles. The strip

holonomy is given by

𝑅(𝑆𝑖, 𝑗 ) = (𝜃𝑖, 𝑗 + 𝜙𝑖, 𝑗 − 𝜃𝑖+1, 𝑗 ) − (𝜃𝑖, 𝑗−1 + 𝜙𝑖, 𝑗−1 − 𝜃𝑖+1, 𝑗−1), (7)
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and the smoothing optimization is

𝚯
∗
𝑗 = min

𝚯𝑗

∑︁
𝑖

𝑅(𝑆𝑖, 𝑗 )2 +
1

𝜅
∥𝚯𝑗 ∥2 . (8)

The solution to Eq. 8 is given by the linear system(
L + 1

𝜅
I
)
𝚯𝑗 = 𝚽𝑗 − 𝚽𝑗−1 − L𝚯𝑗−1, (9)

where L is the 1D (positive-semidefinite) Laplacian, I is the identity
matrix, and 𝚽𝑗 is defined coordinate-wise by (𝚽𝑗 )𝑖 = (𝜙𝑖−1, 𝑗 −𝜙𝑖, 𝑗 ).
However, we typically want

1

𝜅 to be small for smoothing to be

effective, so we will drop the
1

𝜅 I term. Since 𝚽0 = 𝚯0 = 0, we have
L𝚯1 = 𝚽1, and then L𝚯2 = 𝚽2 − 2𝚽1, L𝚯3 = 𝚽3 − (2𝚽2 − 2𝚽1), and
in general

L𝚯𝑗 = 𝚽𝑗 − 2
𝑗−1∑︁
𝑘=1

(−1) 𝑗−𝑘−1𝚽𝑘 . (10)

Since L−1 has eigenvalues≫ 1, and the upper bound of the right-

hand side of Eq. 10, ∥𝚽𝑗 ∥ + 2
∑𝑗−1
𝑘=1
∥𝚽𝑘 ∥, grows in magnitude as 𝑗

increases, the upper bound of ∥𝚯𝑗 ∥ also grows in magnitude as 𝑗

increases. Although this is not a tight bound, from Eq. 6, we can

interpret 𝚽𝑗 as the difference in wedge holonomy between adjacent

Δ𝑖, 𝑗 before smoothing, and since the total (absolute) curvature con-

tained in

⋃
𝑖 Δ𝑖, 𝑗 increases as 𝑗 increases, we can expect adjacent

wedge holonomies to diverge and the norm of holonomy differences

to increase with 𝑗 , with the exception of constant curvature surfaces

where (𝚽𝑗 )𝑖 = 0. As such, ∥𝚯𝑗 ∥ generally increases with 𝑗 , which

matches what we observed in practice, and thus strip holonomy

smoothing is unsuitable for a procedure that is primarily intended

to make small adjustments to radial paths.

In contrast, the solution to wedge holonomy smoothing in Eq. 4

drops the alternating summation:(
L + 1

𝜅
I
)
𝚯𝑗 = 𝚽𝑗 . (11)

As such, its behaviour is much more benign and only depends on

𝚽𝑗 rather than an alternating sum of previous 𝚽𝑘 .

B CURVE DRAWING ON SURFACES
To elaborate on our 𝜅-curves implementation on surfaces, we re-

placed the global step of the 𝜅-curves local-global solver with 10

iterations of a Gauss-Seidel solver, where every iteration solves for

the 𝑐1 control points in sequence (using the notation from Yan et al.

[2017]). Each 𝑐1 is associated with a local map and its corresponding

origin p𝑘 , so they are initialized to be 0 in Tp𝑘M at the start of the

solve. For the solve to work, each 𝑐1 must also be covered by the

adjacent local maps along the curve, and stay within those maps

throughout the solve. Although we do not try to ensure that the

optimization stays within the parameterized tangent disc for each

map, we find that in practice we never encountered solver issues

if an interactive user is careful to place each high-curvature con-

straint point (the p𝑘 ) in regions that overlap the previous point in

the sequence, as well as the very first point when closing the curve.
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