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Figure 1: Examples of various tree models produced by the same generating grammar, selected by different guiding curves.

ABSTRACT

Grammar-based procedural modelling on its own produces a larger
space of generated models than is artistically desirable. Probabilistic
sampling techniques can help search this result space for models that
best fit a set of constraints. We aim to provide a useful probabilistic
search function that can be run at interactive rates to enable the short
feedback loops artists require for incremental, exploratory design.
We present a constraint for use in Sequential Monte Carlo optimiza-
tion where artists draw curves to guide the generation of models.
The high-level structure of models can be intuitively specified by
our constraint framework, allowing for variation in low-level details
to be automatically filled in. We present a real-time model editor to
demonstrate the artistic utility of our method.

Keywords: Procedural modelling; interactive design.

Index Terms: Computing methodologies—Computer graphics—
Shape modeling; Theory of computation—Randomness, geometry
and discrete structures—Computational geometry

1 INTRODUCTION

Procedural modelling has been an essential tool in the 3D artist’s
toolbox for many years, used in applications such as games and
movies. It provides a way to add a level of detail and richness that
would be impractical to create by hand. It is used, for example, to
apply patterns at large scales to create whole landscapes, or on a
smaller scale to create varied individual plants and creatures.

Procedural generation from context-free grammars [2] is a con-
venient way to encode the structure of such patterns. While it can
produce great results, the challenge with grammar-based procedural
modelling is efficiently sampling the model space to produce a broad
range of interesting results while also excluding unfavourable results.
One possible solution is to modify the grammar itself to restrict the
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space of possible outputs; unfortunately, this is an extremely difficult
task, since small changes in the grammar can result in large and
unpredictable variations in produced models.

Rather than using opaque “bottom-up” constraints like context-
free grammars to specify recurrent details in the model, another
alternative is to provide loose “top-down” constraints on the model’s
general shape. These constraints, when formulated as a cost func-
tion, reframe the problem as a matter of searching the model space
for models with the lowest cost. Existing work uses probabilistic
inference and sampling techniques such as Stochastically Ordered
Sequential Monte Carlo (SOSMC) to find models that best match
such a cost function [13]. The constraints given in prior work intend
to give the artist control over the final form of a generated model
by specifying target volumes, target silhouettes, volumes to avoid,
or other similar controls. SOSMC performs these tasks well, but
it can take tens or hundreds of seconds to run, depending on the
cost function used, for it to produce good results. It can take several
seconds to collect one’s thoughts and resume a task after an interrup-
tion of this duration [10]; for an artist, this takes enough time that
one cannot experiment with tweaking values and observing results
incrementally. Instead, the artist is effectively encouraged to spend
upfront time imagining and thinking through potential results before
running SOSMC so that less time is spent waiting. By not assisting
in the imagining of results, the potential utility of SOSMC as an
artistic tool is restricted.

We believe immense artistic potential can be unlocked by short-
ening the amount of time it takes to run a search of model space and
produce a result. In doing so, an artist can work experimentally and
incrementally. The results of one round of search provide insight to
the artist, which they may use to make changes iteratively, creating
a feedback loop between the tool and the artist. Our work primarily
aims to do as much useful work as possible in under a second of
computation time to enable such a feedback loop.

In defining useful work, we look at what a useful cost func-
tion should be. Creating a target volume that is specific enough to
produce interesting results but not so specific to be prohibitively
time-consuming to model is a non-trivial problem. We believe that
artists get the most value out of procedural generation when they
have ideas of what the high-level structure should look like, but
want to offload the generation of the finer details to the computer.
Therefore, we aim to create constraints for SOSMC optimization
that allow the high-level structure to be specified in such a way that



models can be generated at interactive rates.
This paper describes a cost function for SOSMC based on user-

specified guiding curves that are followed by generated models of
individual, hierarchical objects. In Section 3, we formulate the cost
function, describe its parameters, and discuss how they can be used.
Using our cost function, models generated from guiding curves such
as the ones in Figure 1 are generated in under 200ms. This speed is
attained by accounting for general alignment with the curves instead
of the complete geometry of the model, which also simplifies the
heuristic. Section 4 describes the architecture and design tradeoffs
required to achieve this runtime and how we integrated it into a
user-facing tool. Finally, in Section 5, we examine models created
under this constraint and verify that guiding curves are at least as
effective at constraining generated models as a silhouette matching
cost function, which takes 45s to produce similar results.

2 RELATED WORK

2.1 Generating Functions
Perhaps the best-known framework for specifying procedurally gen-
erated shapes is the L-system [7]. An L-system is a type of formal
grammar where the output is a string, which starts from an axiom
and is then expanded and modified with rewrite rules. The resulting
string can then be read and interpreted as instructions for how to
construct a shape. L-system grammars have been used extensively
to generate detailed shapes such as plants [12] that have specifiable
high-level patterns, but that would be tedious to model in their en-
tirety by hand. Our work uses the versatility of generating grammars
as a starting point, upon which we aim to build useful artistic tools.

2.2 Probabilistic Inference
A program that generates procedural models can be seen as picking
a sample from a probability distribution, where the distribution is the
space of every model the program can generate. Framed in this way,
the prior of a model is found from its probability of being produced
by a generating grammar, and the likelihood function is determined
by a user-provided cost function, where the likelihood function is
higher for samples with lower cost [15]. Sampling methods can then
be used instead of more traditional optimization methods, which
struggle in the high-dimensional spaces of procedural models.

Past work has used generalizations of Markov Chain Monte
Carlo (MCMC) to demonstrate the capability of probabilistic in-
ference to successfully optimize the cost of generated models [15].
MCMC receives feedback after generating full models; Sequen-
tial Monte Carlo (SMC) sampling improves this by incrementally
gathering feedback on model quality as new evidence is collected
over time. However, SMC operates over “flat” execution traces;
Stochastically Ordered Sequential Monte Carlo (SOSMC) applies
it to hierarchically-defined procedural modelling by collecting evi-
dence in a randomized, breadth-first order. It has been proven that
SOSMC correctly samples the same posterior distribution regardless
of execution order, provided that the likelihood function is also inde-
pendent of execution order [13]. Our work uses the SOSMC method
to search a grammar’s model space.

2.3 Guiding Curves
Methods to draw vectors that guide procedural generation have
proven useful in prior work. For the domain-specific case of tree
generation, branch alignment with a vector field has been used as
a cost function [17]. Our method aims to generalize this flexibility
by making vector alignment the core framework through which
artists can search the space of generated models, and by providing
an intuitive way to specify a vector field.

We believe sketching is a convenient way of achieving this goal.
In the past, free-form sketches have been used to specify the cur-
vature parameters of L-systems [5]. Sketching provides a concrete,
visual way to constrain the abstract generating functions and get

interactive feedback from the output. We aim to bring these benefits
to generating grammars in general, not just ones with dominating
curvature parameters, so we use a sketch as an indirect way of
specifying a vector field.

3 APPROACH

3.1 Overview
Our method of controlling procedural generation begins with
a user-specified grammar defining how to grow models. We
then apply SOSMC to search the space of models produced by
the grammar for a model that minimizes a cost function. Like
in past work using MCMC sampling [15], we search for an
optimal derivation tree rather than an optimal string, as strings
can often be formed by multiple valid derivations. For a given
model x that SOSMC samples, we define the likelihood term
exp(−(COST(x)+HEURISTICSCALE ·HEURISTICCOST(x))).
The function COST(x), defined in Section 3.3, compares guiding
curves drawn by the user along with user-provided parameters to
the skeleton of x. The HEURISTICSCALE and HEURISTICCOST(x)
terms are defined in Section 3.4. The skeleton, which we define in
Section 3.2, is based only on the spatial hierarchy in the grammar,
ignoring concrete geometry. Our method operates under the
assumption that geometry is aligned with the skeleton, which allows
optimization to only look at the skeleton and still be useful.

3.2 Grammar Specification
Our method operates on a user-specified grammar that generates
models. This grammar is a probabilistic context-free grammar [4,14]
G = (N,T,R,S,P), where N is the set of non-terminal symbols, T is
the set of terminal symbols, R is the set of production rules, S is the
starting symbol, and P is the set of probabilities associated with the
production rules. When multiple production rules are available for a
given symbol, one is randomly selected using the probabilities in P.

In the interest of simplicity and fast generation, we defer expen-
sive geometry processing as much as possible. Many procedural
generation techniques initially generate a skeleton for a model and
then later grow the skeleton into a full model [3, 8]. In similar spirit,
we divide our procedural generation process into three phases: the
skeleton phase, the wrap-up phase, and the geometry phase. The
intention is to introduce a separation between the generation of the
underlying structure of a model (what we refer to as its “skeleton”)
and the concrete geometry that sits atop it. The distinction is made
by partitioning N into disjoint sets Ns, the skeleton symbols, and Np,
the post-skeleton symbols. Rather than explicitly creating skeletal
geometry, we instead create an implicit skeleton out of the affine
transformations produced by symbols in Ns.

Literature on FL-systems describes the uses of generic objects
as symbols [9]. We make use of this to attach data to terminals in
addition to their types, such as the entries in a matrix. A terminal
symbol in T is one of: [, ], an affine matrix A, or a piece of geometry
G. Each of these is interpreted as a geometric command when read
in order. The rendering system maintains an affine transformation
matrix M as it reads symbols in T one after the other. When an
affine transformation terminal A is encountered, M is multiplied on
the right by the affine matrix A. G is a geometry terminal, which
contains a set of material parameters and points in R3 specifying a
piece of geometry. When encountered, each point in G is multiplied
by the current value of M and is added to the scene. [ and ] are
the push and pop terminals. When [ is encountered, the current
value of M is copied and pushed to a stack of past transformations;
when ] is encountered, the last transformation is popped off of the
stack and replaces M. Symbols in Np are allowed to produce any
kind of terminal. Symbols in Ns can produce any terminal or non-
terminal except geometry terminals; it can only indirectly produce
geometry by first producing a symbol in Np. We refer to a bone
b as a substring of the grammar’s output that takes the form [A.∗],



where .∗ refers to any number of other terminals. We only operate
on well-formed strings, where all [ symbols are matched with a
corresponding ] in the .∗ region inside the bone. This construct
applies the transformation A to everything between the push and pop
terminals. In the discussion of our cost function, we refer to the bone
as being the parent of any other bones or geometry contained within
its push and pop commands. With these parent-child relationships
among bones, we construct a tree structure for generated models,
which we call skeletons, based on the string of terminals from the
grammar.

Figure 2: A model, shown with its skeleton overlaid above its geometry.

The initial skeleton phase is where SOSMC optimization takes
place. A defining characteristic of SOSMC is that it randomly selects
symbols in N to rewrite using a production rule. The skeleton phase
restricts the choice to symbols in Ns, deferring creation of concrete
geometry and freeing the optimization from looking at anything
other than general shape. The middle wrap-up phase exists because
an iteration limit is typically placed on the optimization process
for performance reasons. With such a limit imposed, there may be
non-terminal symbols in Ns left over at the end of the skeleton phase.
The wrap-up phase allows these rules to be rewritten into Np rules
before moving on to the final phase. This is specified with a special
set of production rules, Rw, used only during the wrap-up phase. In
the final phase, the geometry phase, all the remaining non-terminal
symbols should be in Np, where they are rewritten to completion
without any optimization.

3.3 Cost Function
The skeleton phase enables control of procedurally generated models
by having the user draw guiding curves. The curves serve two
functions: curve tangents are used to specify the growth direction
of generated shapes at any point in space, and curve positions help
constrain grown shapes to target regions. These two factors give
the ability to specify what grown shapes should look like without
over-constraining the results or limiting the scope of a generator’s
utility. The guiding curve control is implemented as a cost function
designed to be used with the SOSMC method.

Users provide multiple guiding Bézier curves, Γ, to shape the
generation of a model. For each guide g ∈ Γ provided, we define
CLOSEST(g, p) as the closest point on the Bézier curve to the pro-
vided point p, and DIR(g, p) as the normalized tangent of the curve
at point p.

For each bone b in the structure of a model, we define PARENT(b)
as the bone that b is attached to, if it exists, BASE(b) as the world-
space position of the point on b that was attached to its parent, or the
origin if there is no parent, and TIP(b) as the world-space position
of the end of b (which we define by convention to be the world-
space position of the bone coordinate space’s origin). Using these
definitions, the direction of a bone is TIP(b)−BASE(b).

With this, we define the cost function per skeleton bone b. First,
as shown in Figure 3a, a single guiding curve γ is chosen to affect
the cost of adding b by finding the closest curve to the base of b:

γ := argmin
g∈Γ

|BASE(b)−CLOSEST(g,BASE(b))| (1)

Cost is added based on the distance from b to γ:

DIST := |BASE(b)−CLOSEST(γ,BASE(b))| (2)

COSTd :=
2

∑
i=0

(γ.scale d[i])DISTi (3)

The γ.scale d[i] coefficients are user-defined.
Cost is also added based on how closely aligned b is to the tangent

at the closest point on γ , shown in Figure 3b. This is done by taking
the dot product of the tangent and the normalized direction vector to
b from its parent:

d̂bone :=− TIP(b)−BASE(b)
|TIP(b)−BASE(b)|

(4)

d̂guide := DIR(γ,CLOSEST(γ,BASE(b))) (5)

COSTa :=
(
d̂bone · d̂guide + γ.delta a

)
γ.scale a (6)

The cost coefficient γ.delta a and alignment offset γ.scale a
are both user-defined. γ.delta a must be in [−1,1] and represents
how aligned a new bone needs to be with the guiding curve’s tangent
for it to receive a negative cost and thus for there to be incentive to
add it. It affects the region of beneficial alignment shown in Figure
3b. With no offset, the unscaled alignment cost is the negative dot
product of the normalized direction of the bone and the normalized
direction of the guiding curve. Perfectly aligned bones have an
alignment cost of -1 (meaning this bone will lower the overall cost
of a model), bones perpendicular to the curve have a cost of 0, and
bones in the exact opposite direction have a cost of 1. When a
positive offset is introduced, the structure needs to be closer to being
perfectly aligned in order to receive a negative cost. The higher the
offset, the closer it must be to perfect alignment. A negative offset
means that alignment is more lenient and bones can be incentivized
even if they are facing away from the tangents of their guiding curves.
This can be useful if adding any new structure should be incentivized
over only adding well-aligned structure.

To compute utilization cost, each curve is divided into segments
of a pre-defined length. We define γ.segments(b) (or S for brevity)
to be range of segments between the closest point to BASE(b) and
the closest point to TIP(b), inclusive. Each s ∈ S gives the number
of bones which previously used that segment to calculate its cost, as
shown in Figure 3d. The overall cost decreases by an exponentially
decreasing factor of the number of utilizations of that segment:

COSTu :=−γ.scale u∑
s∈S

e−s (7)

γ.scale u is a positive user-defined constant, which makes the
COSTu negative. The final cost is then defined as:

COST := COSTd +COSTa +COSTu (8)

scale a, scale d, and scale u are picked to balance how se-
lective an ideal model should be with bone placement. Increas-
ing scale a relative to scale d and scale u favours well-aligned
bones regardless of where they are. Increasing scale u encourages
uniform growth along the curves. scale d limits the benefits from
the previous costs to bones close to the guides.

The cost of a whole model x is the sum of the costs for every bone
in its skeleton. Because addition is commutative, the alignment and



Figure 3: The steps to evaluate the cost function. (a) shows the
selection of a the closest guide and the measure used in the distance
cost; (b) shows the measure used in the alignment cost; (c) shows
the mapping of the bone tip onto the selected guide; (d) shows the
number of bones previously aligned with segments of the guide, used
to determine the utilization cost.

distance costs per bone are independent of execution order, as well
as the total utilization costs per bone segment. Therefore, the entire
COST(x) term of the likelihood function is independent of execution
order, as required by SOSMC.

3.4 Heuristic Cost

Since performance is a primary goal, it is beneficial to use more
SOSMC samples on unfinished models that are more likely to pro-
duce low-cost complete models. To better accomplish this, we
introduce a heuristic cost to try to predict the future cost of the
model when more non-terminal symbols have been expanded.

The alignment cost, COSTa, of the future model is estimated.
When a grammar is first created, for each non-terminal symbol
ns ∈ Ns in the grammar, a number of models Xns are generated using
ns as their starting symbol. When generating these models, M is
initially an identity matrix. We then define the “expected” vector
for ns, which is the average sampled direction vector over the set of
generated models Xns :

EXPECTED(ns) := ∑
x∈Xns

∑
b∈x

TIP(b)−BASE(b)
|Xns ||x|

(9)

This cost intentionally generates a single average direction so
that only one vector per non-terminal needs to be transformed into
local coordinate space to compute the heuristic cost of a model: if
it takes too long to compute, it becomes more useful to spend that
time sampling more models without any heuristic.

For a partially complete model x created by string Z, the heuristic
cost is defined as the sum of the alignment costs for the expected
vectors of each symbol Z[i] in Z that contains a non-terminal sym-
bol in Ns. The expected vectors are transformed from their initial
coordinate spaces into the coordinate space Mi defined by the affine
transformations, pushes, and pops that occur in the prefix of Z ending
at index i. We also use DIROi = DIR(γ,CLOSEST(γ,Mi[0,0,0]T ))

as shorthand to denote the tangent at the closest point on γ to the
origin in Mi in world space.

HEURISTICCOST(x) :=

∑
i : Z[i]∈Ns

(
− MiEXPECTED(Z[i])
|MiEXPECTED(Z[i])|

·DIROi + γ.delta a

)
γ.scale a

(10)

The heuristic cost is then multiplied by a scaling factor,
HEURISTICSCALE. This factor starts high and then ramps down to
zero in each successive generation. This is done to provide more
heuristic guidance initially, when there is the least information avail-
able. The number of samples per generation is additionally ramped
down in each successive generation under the assumption that there
will be less variance between the costs of samples in a generation
the further one goes in SOSMC and the more data is present.

The heuristic cost does not depend on the order in which symbols
are rewritten. Take two models x1 and x2 with identical derivation
trees but different orders of execution. Since the same number of
symbols are rewritten in each iteration of SOSMC, x1 and x2 are also
in the same generation. Models in the same generation use the same
value of HEURISTICSCALE, so because everything else about them
is the same as well, x1 and x2 have the same cost. Therefore, the
heuristic function preserves the independence between the likelihood
function and the model’s execution order, as required by SOSMC.

To demonstrate that the heuristic cost helps find lower cost sam-
ples given a time constraint, we compared the final costs of models
generated with different approaches. We used the same generating
grammar for trees (see Appendix A) and guiding curves for all sam-
ples. First, we generated models without using any heuristic. Then,
we generated models without any heuristic, but with successive gen-
eration sizes ramped down. Then, we compared the results with
both generation size ramping and heuristic cost enabled. We picked
the generation sizes so that generating a model using each method
takes at most 200ms, with ramping simply shifting the distribution
of samples in the optimization such that there are more in earlier
generations. The distributions of COST(x) for each final model x are
compared in Figure 4. Note that these cost values do not include a
heuristic cost, since they are cost values for complete models, which
have no non-terminal symbols and therefore have no heuristic cost.

The heuristic manages to find, in general, lower-cost final models
than are found without the heuristic, given the same time constraints,
when the guiding curves have stricter alignment offsets. However,
the less aligned one requires a model to be, the less important the
heuristic cost’s estimate is, so the heuristic becomes less useful with
greater emphasis on distance. In these cases, it is not worth using,
and may be turned off.

4 IMPLEMENTATION AND EDITOR

To demonstrate the utility of our system, we created a procedural
model editor that lets a user specify a generating grammar and draw
curves to explore the generator’s model space. We call our editor
“Calder” in honor of Alexander Calder, the American sculptor who
is known for using wire to construct three-dimensional abstract line
drawings of various objects. Our implementation and editor are open-
source at github.com/calder-gl/{calder, playground}.

4.1 Architecture
Our implementation aims to ensure minimal computation time.
For a given partially-generated model, it may spawn several more-
complete models in the next generation of SOSMC that share all the
same pieces except for the one new piece. Our model data structure
is therefore optimized to support efficient copy-and-add. A model is
a tree structure of bones, where each bone has a pointer to its parent
bone. A new bone can then be added in one sample without need-
ing to copy any of the pieces from the previous generation. When
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Figure 4: Comparison of final model cost distributions with and without
using heuristic costs in a time limit of 200ms. Top: alignment offsets
of 0.6 and 0.5 were used and displayed in red and blue, respectively.
500 models were used to create each distribution. Bottom: each
tree is the average of the four models closest to the mean from each
0.6-offset distribution.

rendering a final model, a reference to every piece is needed. This
is accomplished by creating a singly linked list of recently added
pieces, where the most recent is the head. Nodes are given a pointer
to the bone added before it in addition to the pointer to its parent
bone. A given model needs to hold a reference only to the most
recently added element to then be able to render itself in its entirety.

During rendering, a parent’s absolute transformation matrix must
be computed before a child’s, since the child represents its transfor-
mation in terms of its parent. We create a stack out of the list of
pieces in the model. We traverse the stack, maintaining a mapping
from piece to absolute transform for quick lookup when one of its
children is encountered. If we encounter a piece for which we need
a parent transformation that has not yet been computed, we leave
the child at the top of the stack, and then add its parent on top. The
same will apply to the parent recursively until a processed node or
the root is reached, creating an ordered dependency chain. Since
nodes added in this chain have not been computed yet, they must
not have been traversed yet, and must also occur later in the stack.
Since the child is left on the stack, it will then be processed after
its dependencies, so it will not need to be added to the stack again.
Thus, each node is seen at most twice in the stack, so we can use
child-to-parent pointers and still maintain O(n) runtime for n items.

While our optimization process is fast enough to enable iterative
design, it is not so fast that it can be done within a single frame and
maintain 30 frames per second. Our editor is also a web application,
where we must either use a single thread, or serialize data to pass
between a main thread and a worker thread. We opt to use one thread,
and do as much optimization as possible within a time budget. The
optimization task is resumed every frame until it is complete, at
which point the reference to the model being shown onscreen is

swapped out with the model resulting from the optimization. The
SOSMC algorithm is implemented in a JavaScript generator function.
This produces a coroutine that yields between each sample in each
generation, allowing it to check if its time budget has been exceeded
and if it needs to continue in the next frame.

Figure 5: Our procedural model editor. The left pane contains the
grammar in Appendix A. The right pane shows a generated model
and guiding curves the user has drawn. Parameters for the selected
guiding curve are shown below the 3D view.

4.2 User Interface
Our editor, shown in Figure 5, is split into two panes: a left pane
for specifying a generating grammar, and a right pane for drawing
guiding curves.

To specify a generating grammar, users write code in a domain-
specific language built on top of JavaScript. It provides ready-made
abstractions for specifying grammar rewrite rules for bones using
a defineWeighted(symbol, weight, generatingFunction)
syntax. A generating function allows the rule it defines to be written
in terms of other rules through a “spawn point” abstraction using the
addDetail(symbol, position) method. Positions are points in
3D space, referenced by named control points on bone primitives.
Bones can be attached to other bones using the stickTo(parent)
method, and can then be transformed using a standard set of geomet-
ric operations. To specify how to “finish up” skeleton-phase symbols
early, the wrapUp(symbol, generatingFunction) construct is
provided. Finally, grammar symbols that add geometry are specified
using thenComplete(symbols), or can be added implicitly from
another rule in a decorate(() => {...}) block. A full example
of the grammar used to generate the tree in Figure 9 is shown in
Appendix A.

Guiding curves can be drawn directly onscreen. Each drawn
curve gets converted to a single Bézier path to emphasize the fact
that guiding curves are meant to be coarse. Manipulating curves in
three dimensions becomes tedious when there are too many points
to control, so simpler curves also maintain ease of editing. Curves
can be clicked on directly to show their control points, which can
be dragged around in screen-space. The camera can be moved by
dragging, if one wants to change the plane upon which control points
are moved. When a curve is selected, controls appear below the 3D
viewport where cost function parameters for the curve can be edited.

5 DISCUSSION

5.1 Analysis
To analyze the efficacy of guiding curves at constraining model
shape, we needed a way to efficiently represent a model’s features,



often called a shape descriptor. Several shape descriptors in the
literature [6, 11, 16] are “global” in that they encapsulate the shape
of the entire model. Global shape descriptors usually try to group
models with similar shapes but different macro structures. In our
analysis, however, since we compare models created from the same
grammar, the shape descriptor distances will be constrained in their
range of possible values. We benefit from a shape descriptor that can
distinguish “local” features, such as branch positions along a tree
trunk, and provide a richer range of shape descriptor distances. Our
shape descriptor achieves this by leveraging the global D2 shape
descriptor [11], a histogram of distances between two random points
on the surface, but adjusted to add locality. Rather than computing
the D2 distribution across the entire model, we first subdivide the
model using a coarse voxel grid, and compute the D2 distribution
for each subdivision. The end result is a voxel grid of histograms,
which we will call the subdivided-D2 shape descriptor. This makes
the shape descriptor pose-dependent, which is acceptable for our
purposes, because artists designing with these sets of tools are in-
herently trying to create models relative to drawn guides and not
invariant to the viewing direction. To compare two shape descrip-
tors, we compute the Kolmogorov-Smirnov distance [1] between the
histograms at each voxel, and combine the results from all voxels
to form a set of Kolmogorov-Smirnov distances. From here, we
will call this set the subdivided-D2 distance of the two input models.
Properties of this set, such as its median, act as indicators of similar-
ity between the two input models. Figure 6 shows several examples
of model pairs with their median Kolmogorov-Smirnov distances to
demonstrate how it translates to visual difference.

Figure 6: Examples of Kolmogorov-Smirnov distances between pairs
of models sampled 100 times from the grammar in Appendix A. When
generating the models in each pair, both start from a common ances-
tor, and then diverge. The grammar mutation distance refers to the
number of sampling iterations after this divergence.

We tested the efficacy of guiding curves by computing the
subdivided-D2 distance of several pairs of models, and the results
are shown in Figure 7. In these box plots, we used the median as an
indicator of similarity between the models, and interquartile range
as an indicator of similarity variance across all the subdivisions.

We observe that, as expected, a model is very similar to itself.
The median Kolmogorov-Smirnov distance is not exactly 0 because

the shape descriptors are computed non-deterministically and have
slight variations between executions. Furthermore, we also see
that models created from the same guiding curves are more similar
than models created from different guiding curves, and are more
similar than models created without any guiding curves at all, which
suggests that guiding curves are effective at producing similar results.
Models created from different guiding curves are less similar than
models created without any guiding curves, which makes sense,
as the former pair of models were intended to be different from
each other, and we put no constraints on the latter pair. This further
supports guiding curves’ effectiveness.

Examining interquartile ranges, we see that the subdivided-D2
distance between a model and itself is small; since all corresponding
subdivisions are identical, this variance measures the noise in the
shape descriptor. We also see that the pairs of models created with
guiding curves all have smaller interquartile ranges than the pair
of models created without guiding curves. This provides more
evidence that guiding curves are effective in making intentionally-
similar models similar and intentionally-different models different;
the models that were created without such intention had the freedom
to be very similar in some subdivisions and very different in others.

Figure 7: A comparison of shape descriptor distances (shown as box
plots) for a variety of model pairs, generated using the grammar in
Appendix A.

For models created using guiding curves, we also generated simi-
lar models using a silhouette matching cost function [13] to compare
result similarity and the running time needed to achieve it. Models
created with guiding curves each took less than 200ms to create,
while models created with silhouette matching took roughly 45s
each, using a coarsely detailed, 100×100 pixel silhouette image. A
box plot comparison of Kolmogorov-Smirnov distances is shown
in Figure 8. Note that the median Kolmogorov-Smirnov distance is
smaller for the guiding curve comparison than the silhouette match-
ing comparison, suggesting that our method constrains the output
models more tightly than silhouette matching when providing coarse
structure for models. Although silhouettes provide a richer set of
constraining information than a small set of Bézier curves, they do
not distinguish between models that “mostly” fill the silhouette, and
make it slow to converge to the exact silhouette. Using a more de-
tailed silhouette to mitigate this problem requires significantly more
effort on the user’s part and works against the goal of providing only
a coarse structure, while comparable results can be achieved more
easily with the specification of a small number of guiding curves.

5.2 Limitations
Specifying target shapes with guiding curves is particularly well
suited for the sorts of objects that follow clear paths as they grow.
Plants in general work well because they have a clear underlying
structure. However, it is less intuitive to use guiding curves for areas
and volumes, as might be used to create indoor scenes. A volume



Figure 8: A comparison of subdivided-D2 distances for two models
created with the same guiding curves, and two models created with
the same silhouette. All models were created from the grammar in
Appendix A.

throughout which model growth should be encouraged cannot be
directly specified in our system. It can only be tediously approxi-
mated with many cross-hatched lines, with lenient alignment offsets
to prevent directional artifacts due to the cross-hatching pattern.

Alignment with guiding curves makes the most sense as a cost
function when generating grammars allow for a variety of bone
angles to be produced. If grammars can only generate fixed angles,
then it may be impossible for the grammar to produce results that
align well with the curves. For cases where, for example, growth
is restricted to cardinal axes, sketched curves are functional but
awkward.

There are cases where discontinuities in the alignment vector field
might become visible in models generated densely with geometry.
While this is less of an issue in models with a strong distance cost,
where bones prefer to stay out of these in-between regions, models
that emphasize alignment may produce artifacts.

This method is also not well suited for complex skeletal structures.
The more bones could potentially be added, the more iterations of
SOSMC sampling are required. To accommodate, our method makes
a clear separation between the skeleton of a model and the concrete
geometry placed upon this skeleton. The intention is to use skeleton
bones conservatively, with a high importance per bone, and then
geometry can “loosely” be applied on top without using probabilistic
sampling. Some applications, perhaps finely detailed fractal patterns,
may require a more detailed skeletal structure than our method is
optimized for. Models requiring this may yield results where more
deeply nested elements lack detail or accuracy because there were
not enough sampling opportunities in these regions.

Our method’s focus on uses that have a simpler skeleton makes it
well-suited for the generation of structures with clear macro patterns
and freedom in generating micro patterns. The micro patterns can
be left for the computer to fill in when geometry is placed on top
of the model skeleton. Plants again tend to work well under this
setup. It is more difficult to apply our method to patterns where
more detail is required in the macro structure and less detail in the
micro structure, as this shifts work from the geometry phase to the
skeleton optimization phase. We encountered friction of this sort
when attempting to guide the generation of cityscapes.

6 CONCLUSION

We presented a definition of model skeletons and a cost function that
operates on these skeletons to apply SOSMC sampling at interactive
rates. This enables artists to search the space of models produced
by their grammar to find results aligned with curves they draw. We
believe this method is a step towards making controlled procedural
modelling practical by allowing the control mechanism to be a part
of the feedback loop between artists and their tools.

There are enhancements to the cost function used in this work that
would be valuable for artists. Applications requiring control of areas
and volumes could receive better support. Future work could give
guiding curves finite, specifiable thickness over their lengths. With
a suitable user interface, this could provide a more intuitive way to

Figure 9: A tree, a cathedral, a Mondrian painting, and a modular
house using imported 3D models as building blocks in the grammar,
rendered in Blender after being generated and exported by the editor.

specify regions that uniformly encourage growth. Another extension
might include a target density to discourage too many bones from
being added in the same region.

Another direction for future work is to focus on the human-
computer interaction aspects of the procedural modelling workflow.
While this work assists in searching the model space of a grammar,
creating the grammar in the first place is still an art requiring a



fair amount of skill. When creating a grammar to use with guiding
curves, one must currently possess an intuition for many abstract
concepts. Relative coordinate spaces must be kept in mind when
specifying where to place bones, as well as the distribution of bones
that will be created when introducing random variation. In addi-
tion to visualizing the bones and geometry of a single generated
model, it would be useful to visualize the range in which bones
could potentially be spawned. Perhaps the editor pane could detect
which grammar rule is currently being edited and display visual
information in the 3D view corresponding to the changes actively
being made.

We hope that applications of the work presented help create new
and interesting computer-generated art.
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A TREE GRAMMAR

The code for the tree grammar used throughout the paper is provided
below.
// Load leaf.obj and leaf.mtl

const leaf = loadObj(’leaves’, ’leaves’);

// Load trunk.obj and trunk.mtl

const branch = loadObj(’trunk’, ’trunk’);

const bone = Armature.define((root) => {

root.createPoint(’base’, {x: 0, y: 0, z: 0});

root.createPoint(’mid’, {x: 0, y: 0.5, z: 0});

root.createPoint(’tip’, {x: 0, y: 1, z: 0});

root.createPoint(’handle’, {x: 1, y: 0, z: 0});

});

generator

// define == defineWeighted(., 1, .)

.define(’START’, Generator.replaceWith(’branch’))

.define(’branch’, (root) => {

const node = bone();

node.point(’base’).stickTo(root);

node.scale(Math.random() * 0.4 + 0.9);

node.hold(node.point(’tip’))

.rotate(Math.random() * 360)

.release();

node.hold(node.point(’handle’))

.rotate(Math.random() * 80)

.release();

node.scale(0.7);

// Add a post-skeleton phase rule

Generator.decorate(() => {

const trunk =

node.point(’mid’).attachModel(branch);

trunk.scale({ x: 0.2, y: 0.5, z: 0.2 });

});

Generator.addDetail({

component: ’branchOrLeaf’, at: node.point(’tip’)

});

})

.defineWeighted(

’branchOrLeaf’, 1, Generator.replaceWith(’leaf’))

.defineWeighted(’branchOrLeaf’, 4, (root) => {

// Add one required branch

Generator.addDetail({

component: ’branch’, at: root

});

// Add two optional branches

range(2).forEach(() => Generator.addDetail({

component: ’maybeBranch’, at: root

}));

})

.define(’leaf’, (root) => {

const leafBone = bone();

leafBone

.hold(leafBone.point(’base’))

.grab(leafBone.point(’tip’))

.pointAt({x: 0, y: 0, z: -20})

.release();

leafBone.createPoint(

’leafAnchor’, {x: 0.6, y: 0.2, z: 0.9});

leafBone.point(’leafAnchor’).attachModel(leaf);

leafBone.scale(Math.random() + 0.4);

leafBone.point(’base’).stickTo(root);

})

// maybe == define(., .).define(., () => {})

.maybe(’maybeBranch’, Generator.replaceWith(’branch’))

.wrapUpMany(

[’branch’, ’branchOrLeaf’, ’maybeBranch’],

Generator.replaceWith(’leaf’)

)

.thenComplete([’leaf’]);
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