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Figure 1: A bounding volume hierarchy is shown through a 3D viewport (left) coordinated with a zoomable treemap (top right) to
display spatial information combined with tree structure. Nodes highlighted in the treemap (yellow outline) cause their corresponding
geometry to be highlighted in the viewport (yellow triangles). Ray intersection queries can also be displayed by clicking on the pixels
in a pixel grid (bottom right), and a projection of the selected pixel (outlined) is shown in the viewport as well, behind the bunny’s
ears in this case. The visited subtrees (i.e., groups of mesh triangles) are highlighted in both the treemap and viewport, showing
their positions in space and the tree, as well as their relative traversal order via a sequential blue colormap and text labels on the
treemap. The triangle representing the closest intersection with the ray, and its containing node, is outlined in both views (circled for
clarity). Note that the displayed treemap is zoomed in to a subtree of the entire BVH, and the mesh is rotated from its initial position.

ABSTRACT

Bounding volume hierarchies (BVHs) are one of the most common
spatial data structures in computer graphics. Visualizing ray intersec-
tions in these data structures is challenging due to the large number
of queries in typical image rendering workloads, the spatial clutter
induced by superimposing the tree in a 3D viewport, and the strong
tendency of these queries to visit several tree leaves, all of which add
a very high dimensionality to the data being visualized. We present
a new technique for visualizing ray intersection traversals on BVHs
over triangle meshes. Unlike previous approaches which display ag-
gregate traversal costs using a heatmap over the rendered image, we
display detailed traversal information about individual queries, using
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a 3D view of the mesh, a treemap of the BVH, and synchronized
highlighting between the two views, along with a pixel grid to select
a ray intersection query to view. We demonstrate how this technique
elucidates traversal dynamics and tree construction properties, which
makes it possible to easily spot algorithmic improvements in these
two categories.
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1 INTRODUCTION

One of the most popular spatial data structures in computer graphics
is the bounding volume hierarchy (BVH). BVHs are trees which
partition a set of geometry (e.g., triangles, tetrahedra, line segments)
into a hierarchy of smaller and smaller groups based on their spatial
position. This organization speeds up spatial queries like ray inter-
sections and closest point queries, which can quickly identify and
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Figure 2: Demonstration of interactive features in our visual approach. Starting at the root of the BVH (left), clicking on the darker node that is
traversed during the selected query zooms into that subtree (middle). The region of the mesh that is highlighted in blue is now smaller, representing
the descendant of the current subtree which participated in the query. The rectangle at the top of the treemap represents the root of the subtree,
as shown by its highlighting behaviour (right), and clicking on it zooms back out to the root view.

skip parts of the tree that do not contain important query candidates.
BVHs are so crucial to ray tracing in particular that dedicated hard-
ware now exists for traversing BVHs [16], and researchers are still
trying to improve BVH build and query times [20, 21].

However, traversal dynamics, and the effect of tree building on
traversal, are not well understood by non-experts. Researchers use
their intuition and aggregate trends over a large corpus of queries
to motivate and justify their methods. This process could be made
much easier by visualizing individual queries, where the effects
of algorithmic changes are immediately apparent. We propose a
visualization technique where query traces (i.e., tree nodes visited
during the traversal) are simultaneously shown in a 3D viewport
displaying the geometry and a treemap representing the BVH. The
separation between spatial and structural information prevents clut-
ter, and the viewport and treemap are coordinated through color
so that the correspondences between the two views are visually
clear. To demonstrate the effectiveness of this visualization, we walk
through two use cases for analyzing ray intersection queries using
the tool. The use cases showcase how a user can identify algorithmic
improvements in both tree construction and tree traversal.

2 BACKGROUND AND RELATED WORK

BVHs were first proposed by Clark [5] as a way to speed up and
enable a variety of applications, from level-of-detail rendering to
hidden surface removal in rasterization. The basic idea is that, as
opposed to spatial subdivision data structures like quadtrees/octrees
and kd-trees, BVHs are an object subdivison data structure — they
partition the set of geometry rather than the spatial domain. The
geometry contained in each group is aggregated into a bounding
volume, which, as the name suggests, encloses all of its associated
geometry. There are many types of volumes that can be used, but the
simplest one (and the one we use in this paper) is the axis-aligned
bounding box, which can be completely defined by two opposite
corners of the box (the “minimum” and “maximum” corners). BVHs
can be constructed in many ways, based on the branching factor, leaf
node size, and split criteria. In particular, modern algorithms prefer
wide BVHs [21] and fairly sophisticated split criteria that attempt
to minimize the estimated traversal cost [1, 14]. To keep this work
simple, we start with simple BVH building and traversal algorithms
(described in Sec. 4) with a naı̈ve splitting method and a branching
factor of 2 (i.e., a binary tree), but the visualization technique is
agnostic to these design decisions, and we later motivate and explore
more sophisticated building and traversal algorithms in Sec. 4.

Despite the extensive work on BVHs, their performance is mostly
evaluated in a restricted, static manner. The most common way to

report BVH performance results is through direct timing measure-
ments or memory usage in a table [1, 6, 19, 20]. This information is
very effective for conveying performance improvements but is tied
to specific processors and operating systems, and on its own cannot
explain performance differences. In contrast, we provide higher-
level information that is both system-independent and elucidates the
algorithmic behaviour that drives performance. Some papers use
visualization techniques as well — for example, Ylitie et al. [21]
use a heatmap of the rendered image to show per-pixel traversal
performance. Our method is strictly more informative, since we
show a heatmap-like view of the image as well as the associated
traversal for each pixel. Liu et al. [13] use a pie chart to show a
work breakdown of the average ray intersection query, such as leaf
and internal node accesses that are also performed by rays from
neighbouring pixels. We show internal node accesses by coloring
them in zoomed-out views of the BVH and displaying their range of
leaf access order indices. Our visualization also supports viewing
query similarity by switching between adjacent pixel query views.

In contrast, very few prior works appear to show dynamic query
visualizations. The ray tracing visualization tooklit, rtVTK [8],
shows a superimposed BVH within a scene, but the main focus of
the tool is on rendering algorithms, so it primarily visualizes ray
paths in a 3D viewport rather than intersection queries.

Treemaps are a very popular technique for visualizing all kinds of
tree data. First introduced by Johnson and Schneiderman [9], they
compactly display entire trees using the size and position of tiles rep-
resenting tree nodes, and are used in modern visualization systems
for a wide variety of applications, from news recommenders [12] to
scientific data visualization [10] and machine learning dataset ex-
ploration [2]. The layout algorithm was improved to avoid long and
skinny rectangles [4], and we use this improved algorithm in our vi-
sualization. Techniques such as highlighting and distortion [18] can
display search results, but prior work only seems to discuss search
queries in a regime where one leaf node needs to be visited. BVH
queries, on the other hand, typically visit multiple leaves during a
search, and our visualization displays these visited leaves.

Mayerová [15] developed a system to view BVHs with icicle
plots [11], using coordinated highlighting with a 3D viewport of
the scene as well as tree and node statistics to understand the tree
structure. However, their system views the entire tree at once and
does not visualize queries; in contrast, our system supports both
coordinated highlighting and dynamic treemap zooming to avoid
overwhelming the user with information. Icicle plots create more
empty space than treemaps but make the tree structure more explicit,
making zoomable icicle plots a viable alternative to treemaps, though



we do not explore them in this work.

3 METHOD

The goal of our visualization approach is to show individual BVH
traversal traces, as opposed to aggregate performance over the entire
query dataset. In order to do so, the entire tree structure must be
clearly shown in such a way that abstract relations between nodes are
clear (e.g., siblings, parents, children), as well as geometric relations
between nodes (e.g., which nodes are nearby in 3D space). A simple
approach is to show the entire tree in the same 3D viewport used
to display the geometry, using bounding boxes with transparency
so all nodes can be seen simultaneously. Unfortunately, this creates
significant clutter in the viewport due to the large number of nodes
which can partially overlap or even fully contain other nodes. Fur-
thermore, it is difficult to elucidate abstract tree relationships like
sibling-sibling from these bounding boxes.

A compelling alternative to a 3D view of the BVH is to simply
display the tree in its abstract form using treemaps [9]. This ad-
dresses all the issues with the 3D view, because the node tiles do not
overlap by definition, and the tree structure can be shown through tile
positions and interactively “zooming” in and out of internal nodes.
For example, in Fig. 1, there is a vertical padding line going from the
root node to the bottom of the treemap that separates the descendants
on each side; the nodes on the same side must be contained in the
same subtree, and recursively identifying padding lines in this way
allows users to deduce siblings and subtrees. However, this approach
loses the spatial information derived from the viewport, making it
difficult to understand why queries behave a particular way.

Neither a 3D viewport nor a treemap convey sufficient information
on their own, but the information they do convey is complementary.
Thus, we can obtain the best of both worlds by displaying both views
simultaneously, and using coordinated highlighting to display the
relationships between the two views. As shown in Fig. 1, hovering
the mouse over a treemap node will highlight both that node and
the corresponding viewport triangle(s) in yellow, which shows the
correspondence between the two views on demand. In order to show
the BVHs of large meshes, the treemap supports zooming in and out
(Fig. 2): clicking on an internal node will zoom into that subtree
and map it to the “root” node at the top of the treemap; clicking
on that “root” node at the top of the treemap will zoom out. To
display more nodes in a single view and reduce the amount of time
spent zooming into leaves, we display 3 levels of the tree at a time,
where the displayed nodes are obtained by traversing 3 levels down
from the current root, which produces at most 8 nodes (fewer nodes
are obtained if leaves are encountered less than 3 levels below the
current root). The size of each treemap node is proportional to the
sum of triangle areas contained in that node.

3.1 Ray Intersection Query Traces
Building upon the basic coordinated visualization established earlier,
we developed a way to visualize query traces. The rest of this
section will focus on ray intersection queries but it is worth noting
that most of the techniques used here can also be used to visualize
other queries, such as closest point queries.

Briefly, ray intersection queries work by intersecting the ray with
the root BVH node’s bounding box, and if it intersects, recursively
intersecting with its child nodes or contained triangles if it is an in-
ternal node or leaf, respectively. This intersection method is already
much faster than a brute force loop over all mesh triangles, but it
can be sped up even further by carefully selecting the traversal order
of sibling nodes, as we will demonstrate in Sec. 4.

A pixel grid is used to select which query to visualize (shown in
the bottom right of Fig. 1), which aligns well with the most common
use case of ray intersections in ray tracing, where rays start from a
camera and are directed towards various points on an image plane in
order to generate an image. To aid users in selecting salient queries,

each pixel is colored based on whether or not its ray intersects the
geometry, as well as the cost of the ray intersection query measured
in terms of the number of leaves visited during the traversal. The
former is encoded using hue (this implementation uses green for hits
and orange for misses), and the latter is encoded using a sequential
(luminance-based) colormap. These two variables remain orthogonal
in the encoding, so there are two sequential colormaps used in the
pixel grid. To more precisely quantify the number of leaves visited,
two color bars are shown below the pixel grid, corresponding to hits
and misses, and hovering over a pixel displays the exact number of
leaf visits and whether the ray hit or missed the mesh.

Once a pixel (and its corresponding ray intersection query) have
been selected, the query is displayed on the treemap and in the
viewport, and a projection of the selected pixel is also shown in
the viewport (see Fig. 1). Treemap nodes corresponding to sub-
trees or leaves visited during the traversal are highlighted using a
blue sequential colormap based on traversal order, and triangles
corresponding to those nodes are also colored the same way. For
additional precision, each treemap node is also labelled with the
range of leaves contained in the node that are visited by the query,
indexed by traversal order (node colors are determined by the lower
bound of these index ranges). The traversals we examine in this
paper are depth-first, so we are guaranteed to get a contiguous range
in each node. To aid in interactive zooming, treemap nodes can still
be highlighted by hovering.

4 IMPLEMENTATION AND EVALUATION

This visualization was implemented in JavaScript, using D3.js for
the treemap and pixel grid [3], and P5.js for viewport rendering [7].

We show how the tool highlights improvement in query perfor-
mance and tree quality by comparing visualizations on a truck mesh
before and after a series of algorithmic changes used in more so-
phisticated BVHs (Fig. 3). The truck’s long and skinny triangles
dramatically benefit from the algorithmic changes.

First, we implemented an optimization for the traversal algorithm.
The base implementation only checks ray-bounding box intersection
to determine whether or not a subtree should be traversed, but this
leads to cases where the traversal visits the back of the mesh relative
to the ray (e.g., the far side of the front windshield in Fig. 3, left),
or where the traversal visits expensive subtrees that do not contain
the intersecting triangle (the light blue group at the back of the
truck, circled). We can skip many subtrees by performing an ordered
“front-to-back” traversal (see, e.g., [17]), where subtrees closer to
the ray origin are traversed first, and farther subtrees are skipped
if we can guarantee that nothing in their bounding boxes is closer
than the closest intersection recorded so far. This leads to nearly a
25% improvement in worst-case hit performance from roughly 1200
leaves visited to 900, as can be seen in the upper end of the hit color
bar of Fig. 3, middle. Furthermore, in the selected query, the subtree
representing the back of the truck is no longer traversed — rather
than naı̈vely visiting it first, the traversal defers visiting that subtree
until it has enough information to safely skip that region.

However, the traversal is still not as efficient as we would like, for
several reasons. The selected ray intersection query is still unable
to skip the group at the far side of the front windshield that we
identified earlier, and the windshield subtrees are visited first despite
the intersection result being on the roof of the truck. These problems
all have the same underlying cause: the triangles of sibling nodes
are “entangled” in such a way that their subtree boxes significantly
overlap, making it impossible for even our improved traversal to
safely skip many subtrees. Thus, the problem lies in the tree struc-
ture itself, so we implemented a more sophisticated tree building
algorithm using a cost model called the surface area heuristic [14].
Unlike the base implementation, which constructs trees by recur-
sively partitioning geometry based on centroid positions relative to
the “midpoint” plane along the longest bounding box axis (i.e., the
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Figure 3: Two use cases showing how our visualization clearly highlights improvements from the base implementation (left), to an ordered traversal
algorithm (middle), and a surface area heuristic-based tree builder (right). The same query is selected in all three versions, and the mesh view
is shown as an inset for each treemap/pixel grid. The base implementation visits over one thousand leaves for the selected query; adding the
ordered traversal reduces the selected query and maximum query cost, but still visits several hundred leaves; adding the surface area heuristic
significantly reduces the selected query cost down to 6 leaves, as well as the maximum query cost.

plane normal to the longest axis that passes through the center of
the box), we instead select an axis and (normal) splitting plane that
minimizes the expected traversal cost of a random ray. The proba-
bilistic model driving this cost function comes from the observation
that, for uniformly distributed rays far away from a convex object
(in this case, the mesh’s bounding box), the probability of a ray
intersection is proportional to the object’s surface area (hence the
name “surface area heuristic”). The optimization procedure is based
on the one described by Pharr et al. [17], where the splitting plane
can be selected from a discrete set of equally spaced positions within
the box. Implementing this on top of the traversal optimization
described earlier (Fig. 3, right), we see a dramatic improvement in
query performance. The near side of the truck doors are one subtree,
and only that subtree is traversed all the way to its leaves. As a result,
the traversal only visits 6 leaves, compared to the hundreds it needed
to visit with just the ordered traversal. Worst-case visited leaves
improved significantly as well, going from roughly 900 to 25 (for
missed rays). It is important to note that the surface area heuristic
is based on rays from any direction, not just rays coming from a
fixed camera position and a limited range of ray directions. Thus,
the especially dramatic results shown here are not representative
of these trees’ performance on any set of ray intersection queries;
some may only exhibit mild improvements or even slight degrada-
tions compared to the base tree builder. Nevertheless, analyzing
performance over several viewing directions and camera positions
is beyond the scope of the paper, and this example was chosen to
emphasize the visualization’s reflection of each change.

5 DISCUSSION AND FUTURE WORK

We presented a new technique for visualizing bounding volume hier-
archies by combining a 3D geometric view with an abstract treemap,

with coordinated interactions between the two, and a pixel grid to
select a ray intersection query to view. Through this view, users can
see the hierarchical and spatial relationships between tree nodes in
separate but coordinated views, which thereby makes it easier to
identify slow queries and diagnose inefficiencies in tree building
and tree traversal algorithms. Through use cases for improving ray
intersection performance, we can see the effect of efficient BVH
algorithms used in practice.

There are also some limitations to our work in its current form,
with interesting avenues for future work. It is currently not possible
to easily view the distribution of work aggregated over the entire
image (e.g., through a histogram); users can only do this by visually
“grouping” pixels with similar colors, which is difficult since they
may be far apart in the grid. It is also difficult to see the height/depth
of individual tree nodes, though it can be deduced through zooming
interactions. Also, the pixel grid is small, and clicking on individual
pixels does not scale to high-resolution images rendered in practice;
a scrubbing interface to select a small window of the full image
to show in the pixel grid is one possible solution. Nevertheless,
this visualization elucidates many important characteristics of BVH
traversals that are typically hidden in very high-dimensional query
traces or obscured by aggregated performance statistics, and we
hope this work makes it easier for students, industry practitioners,
and researchers to understand BVH query performance.
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