View Dependent Modeling

Alexander Kolliopoulos

December 8, 2005

I ntroduction

There has been considerable interest in sketch based mesh modelirdjtangg fTom the simple, intuitive
interface of Teddy [1], to the more recent techniques to preserve @esailexisting mesh while modifying
it with sketched strokes [2]. These approaches apply to editing a singlethedss consistent in all views,
but it is often the case in 2D animation that a character will have a drasticdiyetit shape depending on
the angle at which it is viewed.

View dependent geometry seeks to provide a solution to animating 3D charagte meshes that
should deform depending on the viewing angle [3]. With view dependemingtry, a single mesh is repre-
sented by several sets of vertex positions specified at different vieaeh view corresponds to a point on a
sphere, and the mesh vertex positions are interpolated from three keythiatfform a triangle containing
the current view on the surface of the sphere.

This project seeks to combine the idea of view dependent geometry witthdkated mesh editing to
create an interface for producing 3D characters that might behavematreally for producing animation
that mimics 2D styles. Specifically, focus is given to the problem of resolvirlgpte) perhaps inconsistent,
strokes drawn by a user to deform a mesh from several views. Armagipto view dependent geometry
that does not require adequate coverage and spacing of key vielss teacribed.

I nterface

Figure 1: The mesh is deformed to match a stroke drawn by the user.

When the user starts the program, a base mesh is loaded, and the usen isogitrol of a pencil. The
base mesh is currently a sphere with about 4,000 vertices, but there isgnttat limits the initial mesh
shape. The pencil allows the user to draw a stroke on a plane paralleh@iag plane which is used to



deform the mesh. The pencil wobbles slightly as the user moves it to givelg feeling to the interface.
A shadow is projected onto the drawing plane to indicate whether or not théspeaking contact with
the surface. Note, also, that the pen wobble is decreased when aistbaieg drawn, to suggest physical
contact. Other tools are available by clicking buttons to activate them, but tinesntly have no function.

Aside from being parallel to the viewing plane, the drawing plane passesghrthe mesh. When a
stroke is drawn, a corresponding isocurve is found on the mesh, atidegeof the mesh are translated
along a vector determined by the nearest point of the isocurve on the Figahe(1).

When a user draws another stroke, a view dependent copy of the naslatied for that orientation of
the mesh relative to the camera (Figure 2). The deformation is applied to allextiséng views, but with
the original stroke for each view preventing large deformations neardascd that stroke on the mesh. The

algorithm is described in detail in the next section.

Figure 2: A second stroke creates a new view of the mesh.

I mplementation

To map a stroke to an isocurve on a mesh, first every possible candidetevisas found—these are the
curves on the surface of the mesh that intersect the drawing plane. dtevie with a point nearest to
the starting point of the stroke is then selected. This isocurve will be a contptgieand it needs to be
partitioned into two isocurves by breaking at the point nearest the endinggf the user’s stroke. From
these candidate isocurves, the final selection is made by choosing that wittiptsint closest to the stroke’s
midpoint. Figure 3 shows strokes with their corresponding isocurves andisa.

Figure 3: Strokes (blue) are mapped to the correct isocurve on the meeh (

To deform the mesh according to a stroke, a translation vector for eagtiespoint on the isocurve to
its corresponding point along the length of the stroke is calculated andisteaeh vertexy;, of the mesh

2



is considered independently. The distan€eto the nearest point on the isocurve is found, and the vertex

is then translated along that point’s vector, scaled'ty;) = eXp(_g?), wheres = 20%a, with o being a
constant variance, and being the stroke arclength. Hence, large strokes will affect a widéomexf the
mesh.

When a stroke is drawn in another view, that deformation is applied to all vignvs where it does not
conflict with an existing stroke. To determine whether strokes conflict, tistirex stroke is assigned an

influence value of; = I'(d;)X over each vertex;, wherey is some constant that controls how broad the
influence region should be. The scaling of the translatian of this view is then calculated &$—:;)I'(d;).

Figure 4: Strokes in nearby views are handled automatically.

The algorithm for determining the mesh vertex positions given a view allowsamper of views with
any spacing. Rather than interpolating the three surrounding views, &tedigum of all views is taken.
Let @ be a point on the unit sphere corresponding to the current viewingtatiem, andv; be the point

corresponding to a set of vertex positigns for view j. Then, the mesh vertex positions for viemmay
lo—ws[|/2)¢ . . " .
be computed agj Dj 2(1(1!1 A”ﬂ‘k/lf/)z)(, with ¢ controlling the sharpness of the transitions between views.
K W=
Hence, an artist need not be concerned with the coverage of viewsidiray the creation of new views
near existing ones. Figure 4 shows two strokes drawn from the saméativenwhich does not cause any

problems with the view dependent mesh calculation strategy described here.

Conclusions

The current system shows that there is some potential to this approdaiaf based modeling, but it needs
quite a bit of work to become very useful. For example, the mesh cannatsated through the drawing
plane, so modifications can only be made near vertices that may not be imenort position for editing.
Furthermore, the view dependent effects are not always ideal. One maje an edit on the left side of
the object, and find that the edit has no effect on the view from the rigét Hichight be helpful to have an
editing mode that allows strokes to be applied in the current view and the itppigsv.

There are place holders for two other tools—a red pencil and a teclpeicall he behavior of these tools
has not been implemented, but a potential use for the red pencil wouldab&tradke editor, allowing one to
move a stroke that was made perhaps much earlier in the modeling procestechhical pen is intended
to allow one to draw decals on the mesh. Beyond that an interesting applicaggpltse is allowing one
to draw contours that attempt to stay on a fixed length of the silhouette of a nilshmaintaining a shape
drawn by the user. This idea is explored in [4], but it is not clear howsbbuch a system can be made.

No attention has been given to the problem of creating very stretched adddaces, which can occur
since the base mesh is never resampled. This is complicated by the factthaegax must be represented



simultaneously in many views. Broader goals such as designing articulatexttdrs and animations within
the context of the interface described in this paper are further ardagioé work.

Figure 5: A view dependent mesh made with the program.

References

[1] Takeo lgarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Ted&ketching Interface for 3D Freeform
Design. INSGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, pages 409-416, New York, NY, USA, 1999. ACM Press/AddisorsiéjePub-
lishing Co.

[2] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel CohenA3ketch-Based Interface for Detail-
Preserving Mesh EditingACM Transactions on Graphics, 24(3):1142-1147, 2005.

[3] Paul Rademacher. View-Dependent GeometrySIBGRAPH '99: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques, pages 439-446. ACM Press/Addison-
Wesley Publishing Co., 1999.

[4] Roman Zenka and Pavel Slavik. New Dimension for SketcheS&CIoG ' 03: Proceedings of the 19th
Soring Conference on Computer Graphics, pages 157-163, New York, NY, USA, 2003. ACM Press.



