
A Generic Halfedge Mesh Data Structure for .Net

Alexander Kolliopoulos

November 13, 2005

Introduction and Motivation

Polygonal meshes are used extensively in computer graphics. A polygonal mesh represents a shape, usually
in 3D, by using a set of points, thevertices, connected byedges. Edges form the boundaries offaces. A mesh
is convenient to work with because it explicitly represents the surface thatone is working with—vertices,
edges, and faces are discreetly enumerated and may be manipulated directly.

Meshes are often stored by simply keeping a list of points with a list of faces,where each face is a list of
vertices, and each vertex of a face is an index into the list of points. While thisis simple to implement and
manage, many common operations are slow and awkward. It is common to iterate over the neighbors of a
mesh element—for example, to compute smooth contours in non-photorealistic rendering, it is necessary to
examine faces adjacent to a face to trace contour chains. Another problem is that this mesh representation
does not explicitly represent edges. For polyhedral contour rendering, it is necessary to iterate over all edges
in a mesh. It is not immediately clear how one would do this without visiting the edgesof every face, which
means that each edge of a closed manifold mesh would be visited twice.

halfedge

edge

vertex

face

Figure 1: The elements of a
halfedge mesh data structure.

An elegant solution to these problems is the halfedge mesh data structure.
This represents connectivity directly by means of ahalfedge. Each edge is
made up of two halfedges, one pointing to each vertex of the edge. Each
of the halfedges also has a reference to an adjacent face, the next halfedge
adjacent to this face, and the previous halfedge. A vertex or face only needs
a reference to a single halfedge to find all adjacent halfedges in its neighbor-
hood. Finding all faces adjacent to a face is efficient—starting at the face’s
halfedge, the first adjacent face is that on the opposite halfedge. Then, we
only need simple lists for the faces, edges, and vertices, and halfedges.We
move to the next halfedge, and its opposite halfedge has a reference to the
second adjacent face. This process may be continued until we have returned
to the starting halfedge.

While all connectivity information of the mesh is available, it can be
awkward to traverse the data structure. This can be alleviated by providing
iterators and methods that hide much of the internal design of the data struc-
ture. OpenMesh is a library that provides such an abstraction for C++ [1].
This presents the user with classes corresponding to all the basic mesh ele-
ments with a number of iterators. An attractive feature of this library is its
use of C++ templates to parameterize the data that is associated with each
element, calledtraits. A user can, say, add curvature information to vertices
in the mesh type definition, and this adds curvature data members to every

1



vertex of a mesh. Once a user is familiar with the concepts, this library provides a very powerful interface
to querying mesh topology.

When I finished my masters thesis in non-photorealistic rendering, it became clear to me that the C++
design of my project had just about reached its breaking point. The C# 2.0betas offered a compelling
development framework, but this would require a completely new mesh data structure, as none existed that
satisfied the needs of my work. Hence, I decided to implement a generic halfedge mesh data structure in C#
2.0 with features similar to those of OpenMesh.

Design and Implementation

The .Net design guidelines suggest a number of coding practices to assistin keeping an external interface
simple and consistent, ranging from naming of types to error handling with exceptions [3]. Where it makes
sense, these guidelines are followed, but instances where the guidelinesare too limiting or awkward for the
design of such a complex data structure are noted.

The library is based on an extensible mesh topology class that does not explicitly implement any geo-
metric data types or methods. Using the generics feature of C# 2.0, this class parameterizes traits for each
of the four mesh elements—edge, face, halfedge, and vertex. This immediately presents a problem: due
to the extensive use of references, each of the element types must be aware of all the traits of the mesh.
The alternative is to cast element types to some base type and back, which would be exposed to a user in
a very unsatisfactory fashion. However, it is also troubling to consider declaring and using types such as
Halfedge<EdgeTraits, FaceTraits, HalfedgeTraits, VertexTraits>, since very simple operations,
such as instantiating a new halfedge object, become an unreadable mess of generic type specifiers. Each
of the classes—edge, face, halfedge, vertex, and mesh—could have their names shortened with theusing
keyword, but this would require five lines that must be kept consistent atthe top of every source code file
for every type of mesh being used. A solution is to fold all the mesh element types into the main mesh class
as public nested classes. While the .Net guidelines discourage the use of public nested classes, in this case
it is a much more elegant solution than the alternative. Not only does this reflect the fact that an edge is an
element that belongs to a mesh, rather than being a class at the same level as the base mesh class, but it also
allows us to use a single alias with C#’susing statement—only at the top of a file would one need to declare
using MeshType = Mesh<EdgeTraits, FaceTraits, HalfedgeTraits, VertexTraits>;. Then, a user
can simply use types such asMeshType.Edge, MeshType.Face, and so on.

For the generic topology class to be of much use in graphics, traits must be defined on at least some
of its elements. At the very least, a user is likely to require vertex positions, which are not provided at
the topological level, as this allows a greater degree of customization. A trait exposes itself as a single
public data member on each mesh element. Here again, it is necessary to breakfrom the .Net guidelines
that strongly discourage public instance fields. It would seem that a publicproperty would trivially offer the
same capabilities, however, this approach introduces its own difficulties. Inthe case of using a value type
trait, accessing its corresponding property would copy the entire data structure to a new memory location,
which is usually unnecessary. Even worse, it is impossible to assign a valueto a single property or field
of the trait, since a copy of the trait is being accessed rather than the trait itself. This means a user has to
make a copy of the trait, change the one item in question, and replace the entiretrait. Use of a public field
eliminates such problems without introducing any complications. As an example, suppose the vertex trait
is a Vector3 structure. To change the sign of the Z value of a vertex using a property would require the
following code:

2



MeshType.Vertex v = GetVertexFromSomeMethod();
Vector3 position = v.Traits;
position.Z *= -1;
v.Traits = position;

Using a public field instead of a property for the vertex trait, this code simplifiesto the following:

MeshType.Vertex v = GetVertexFromSomeMethod();
v.Traits.Z *= -1;

While a trait can be as simple as an integer or a vector structure, in practice it ishelpful to wrap traits
in their own structures so that they will have identifiable names and new traits can be added later without
breaking existing code. It is much clearer to accessv.Traits.Position than simplyv.Traits. One of
the drawbacks to this design is apparent when a mesh element doesn’t require a trait. The solution is to
define an empty structure and use it as the trait type:struct NullTraits { }. This can incur a one or
more byte overhead for each traitless element, even though it contains no data. While it may not be elegant,
it isn’t a significant waste of memory considering each mesh element will typically require tens of bytes for
references to other mesh elements and bookkeeping information.

Traits provide a simple way to associate data with features of a mesh, but the real strength of a halfedge
mesh structure is the ability to locally traverse a mesh quickly and easily. In addition to providing direct
access to halfedge links, a number of iterators allow users to quickly queryelement neighborhoods. Unlike
C++ iterators, C# 2.0 provides coroutines so that iterator implementation is veryconcise and clear, while the
user needs never directly create or manage an iterator object. To call aVisit function on each face adjacent
to a vertex, one only needs the codeforeach (MeshType.Face f in vertex.Faces) { Visit(f); },
which uses theFaces property of a vertex object, hiding the iterator implementation.

There are often times when it is useful to have some data attached to a type of mesh element for only
a short period of time during program execution. For example, to calculate normals on vertices, it is useful
to calculate normals on faces first; but once the vertex normal calculation is complete, the face normals are
no longer necessary. Rather than defining these face normals in the facetraits and living with the memory
penalty when the trait is not needed, OpenMesh provides classes that allow one to add and remove data from
mesh elements at runtime, which they call properties. To avoid confusion with C# properties, we use the
termdynamic traits. In the base mesh class, dynamic traits are implemented as nested classes, onefor each
type of mesh element. A dynamic trait class takes a single generic type parameterthat defines the type of
data to associate with its mesh element. It initializes an array of the trait type to the appropriate size, so it
is only valid for elements currently in the mesh. A dynamic trait is accessed by passing the item for which
the value is required to an indexer. For example, a face trait is accessed by face.Traits.Member while a
dynamic trait is accessed byfaceDynamicTrait[face]. When a user is finished with a dynamic trait, it can
be set to null, so the memory it occupies will be freed the next time the garbage collector examines it.

With the generic topological halfedge mesh class and its element classes in place, it is only a matter
of defining trait structures to produce a fully functional 3D mesh class. Infact, one can inherit from the
topological class directly to hide the details of the trait definitions and associatealgorithms with class meth-
ods. ATriMesh class has been implemented with members based on the Sharp3D.Math library to handle
vectors [2], and it restricts instances to have triangular faces since someof its algorithms require this. Com-
plex operations, such as reading a mesh from a file or computing principle curvatures, are implemented as
methods. Furthermore, the traits are almost completely hidden away (“almost” hidden because the compiler
will sometimes generate messages that show the full definition of the base class), but otherwise, a user need
not even be aware of the generic base class. Mesh elements have simple names likeTriMesh.Face and
TriMesh.Vertex, and all the nested classes and methods of the base class are defined forfree in the derived
class.

3



Tests and Tools

The base mesh class alone is made up of 12 nested classes in addition to a number of new exception types,
and many of the nested classes are closely tied in behavior. TheTriMesh class introduces a number of
algorithms on top of this library. With the large number of interdependent components, small changes to
one can have non-obvious effects in other places. To a degree, the refactoring capabilities of Visual Studio
2005 have helped prevent problems early on [5]. A small number of tests have been written so far to test
some of the basic behaviors and the more complicated parts of the library. These tests are written for NUnit,
which takes advantage of C# attributes to simplify test design and execution [7]. While many more tests
need to be written to reflect the scale of the library, the current collection helps give one confidence in some
of the more complicated methods.

Following the .Net coding style guidelines ensures code consistency and sometimes helps prevent mis-
takes in judgment, but it is inevitable to occasionally overlook some good programming practices. FxCop
is an exceptional tool to help find possible problems with design and performance that a programmer might
miss or forget [4]. The tool analyzes compiled code, for which it indicateswarnings according to a library
of rules. The rules range from checking that members are cased correctly to ensuring arguments to public
methods are validated before being used. Although many warnings are raised due to the atypical design of
the library, those that correspond to conscious design decisions can beexcluded by the user, and the others
can be dealt with case by case.

This library would be of little use to most other developers without good documentation, as there are a
number of particular features that diverge from the design of standardclass libraries. All publicly exposed
members already have C# XML comments in place; this can be easily checked since warnings can be en-
abled in the compiler for public members that lack documentation. Unfortunately,tools for turning these
comments into a more useful form of documentation are currently lacking. NDoc is a great tool for gener-
ating human-readable documentation from XML comments, but it still does not support C# 2.0 [6]. When a
tool does become ready to support the new documentation features of C# 2.0, the library will be completely
ready though.

Results and Conclusion

Features of C# 2.0 have greatly reduced the amount of time spent managing memory and debugging com-
pared to what I am used to, while the various free tools for testing and checking code have been greatly
helpful. In the future, profiling tools that support C# 2.0 might be useful for optimizing performance as
well. A coverage tool could also help ensure that as much code as possibleis being tested.

Interestingly, OpenMesh has recently abandoned support for their implementation of traits in favor of
only what roughly corresponds to dynamic traits. This simplifies extending a base mesh type—all nonessen-
tial data members exist in objects separate from the mesh itself. All of the generic type parameters could be
removed from the mesh class if this approach were taken in the C# implementation,and users would need
only learn one method of accessing data on mesh elements. However, this comes at the cost of a level of
indirection when accessing traits, since they must be accessed by passinga mesh element to another object
rather than being bound to the element itself. It would also complicate classes deriving from the topology
class—all dynamic traits would be exposed as members of the mesh class, rather than hidden only where
they are needed as members of the mesh elements. For these reasons, the current design of the library seems
satisfactory and will remain as it is.

The library is currently being used in a number of programs within my personal research projects and
will be made available online under an open source license soon. The use of generic programming for this

4



data structure has proven to be flexible enough for my research. As the project matures, hopefully others
might find it useful as well.

References

[1] Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. OpenMesh – A Generic and
Efficient Polygon Mesh Data Structure. InOpenSG Symposium, 2002.http://www.openmesh.org/.

[2] Eran Kampf. Sharp3D.Math.http://www.ekampf.com/Sharp3D.Math/.

[3] Microsoft Corporation. Design Guidelines for Class Library Developers.
http://msdn.microsoft.com/library/default.asp?

url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp.

[4] Microsoft Corporation. FxCop.http://www.gotdotnet.com/team/fxcop/.

[5] Microsoft Corporation. Microsoft Visual Studio.http://msdn.microsoft.com/vstudio/.

[6] The NDoc Team. NDoc.http://ndoc.sourceforge.net/.

[7] The NUnit Team. NUnit.http://www.nunit.org/.

5


