

DGP-TR-2004-002
July 21, 2004

Interaction and Visualization Techniques for
Very Large Scale High Resolution Displays

Anastasia Bezerianos, Ravin Balakrishnan

Interaction and Visualization Techniques for Very Large
Scale High Resolution Displays

Anastasia Bezerianos, Ravin Balakrishnan
Department of Computer Science

University of Toronto
anab | ravin @dgp.toronto.edu

www.dgp.toronto.edu

ABSTRACT
Interaction at close proximity with wall sized interactive
displays presents interesting interface challenges in that not
all parts of the display are easily visible or reachable by a
user without significant physical movement. We address
this challenge by developing interaction and visualization
techniques for bridging distances and organizing content to
facilitate easy access to all displayed information. These
include techniques for bringing proxies of further-away
parts of the screen toward the user for viewing and
interaction; portal widgets that support visualization of, and
interaction with, alternate views of portions of the virtual
canvas; and transient storage of items in unused portions of
the screen. Interaction with proxy items in the relevant
widget areas is either mediated by, or functionally identical
to, direct interaction with the original items on the main
virtual canvas, allowing for seamless transitions between
the two for a fluid overall user experience.

Keywords: large displays, interaction techniques, distance
reaching, alternative views

INTRODUCTION
Interaction with large format displays have long been of
interest to the research community, with much of the early
research focusing on single whiteboard sized displays [15,
16]. More recently, the rapidly decreasing cost of projectors
have spurred research in the construction of much larger
wall sized displays by tiling multiple projectors to form a
single virtual image [1, 7, 17]. These multi-projector large
displays are particularly interesting from an interaction
perspective in that the high resolution provided by the tiling
of multiple projectors enables users to view high quality
imagery even when they are up-close to the display. In
contrast, single projector systems at that scale would not be
suitable for up-close interaction as the image would appear
too pixelated. With a few notable exceptions [2, 9, 21],
much of the research in this area has focused on the issues
surrounding hardware and projector registration [1, 7, 17]

and rendering over clusters [10]. If we are to use these
displays in the highly interactive manner for which they are
well suited, we need to address the interaction challenges
that arise due to their ability to display vast quantities of
data over a very large spatial canvas.
Unlike interaction on a desktop or even a small whiteboard
sized display where almost all displayed items are within
arms reach of the user, data on wall sized displays often
reside farther away, or in an unreachable location (e.g.,
higher than the user can reach). From a visualization
perspective, it can be difficult for a user to view all parts of
the screen at equal clarity, since some of the display will
appear in the user’s peripheral vision. As a result, if
existing user interfaces are mapped onto displays of this
scale for up-close interaction, they would at the very least
require the user to walk around the display to accomplish
even simple tasks, or they may be unusable altogether
when, for example, the user can’t reach the top of the
display to operate an application’s menu bar. Admittedly,
one could always operate such a display from afar, using a
mouse and a keyboard, but we believe that such an
approach does not fully leverage the potential benefits that
can accrue with up-close direct interaction.
In this paper, we explore the design space of very large
scale interaction, and present the design and
implementation of a set of interaction and visualization
techniques that attempt to address some of the challenges.
Although the design of our techniques is driven by our
focus on direct up-close interaction with high resolution
wall sized displays (), the techniques could also be
beneficial for smaller or lower resolution systems.

Figure 1

Figure 1. High resolution large scale interaction.

1 of 10

RELATED WORK
Tivoli [16] is one of the first applications developed for a
whiteboard sized display. The main focus was on content
structuring for meeting tasks, but it does identify potential
problems arising from directly applying existing interfaces
to larger displays. Flatland [15] is another application for
whiteboard displays that concentrates on content
management, but presents ways to create free space and
overlap data in a flipchart metaphor.
Swaminathan and Sato [22] discuss various configurations
for creating large displays and identify problems that arise
due to scale, including pointer movement and control
challenges over large distances. They propose using a
dollhouse metaphor, where a small scale model of the
display and its contents is used to specify pointer
movement in the large display. Guimbretière et al [9], in
addition to techniques for content creation and placement,
introduce ZoomScapes which are regions of the screen with
different zoom levels. Objects crossing ZoomScapes are
scaled correspondingly around the center of movement of
the user in a continuous manner. Baudisch et al [3] present
focus plus context screens, where users can perform
detailed tasks on a small high resolution screen, while at
the same time visualizing contextual peripheral information
via a surrounding large low resolution screen. Streitz et al
[21] describe techniques for connecting multiple displays
together and moving objects between them.
There has also been significant research in the area of
reaching across distances in large interaction surfaces. The
pick-and-drop [18] and take-and-put [8] techniques provide
ways of moving content from one location of a screen to
another or to a different screen entirely. The shuffle [8] and
flick [25] techniques provide ways of sending content
quickly to a remote location, covering a specified distance
or reaching the edge of the interactive surface respectively,
while the throwing technique [8] is similar but user
configurable. The drag-and-pop and drag-and-pick [2]
techniques allow the user to move an icon or cursor
towards potential targets at the far reaches of the screen via
proxies that are brought close to the current cursor position.
More recently, several papers have described interesting
techniques that allow users to define alternative views of
work areas. Scalable Fabric [20] enhances existing window
managers by using an area around the main focus of the
user to scale down windows and create user defined task
related groups. Selection of a task group in this area brings
it into focus, replacing the previous group occupying the
main screen. WinCuts [23] augments window managers by
allowing users to acquire and interact with alternative
views of arbitrary regions of existing windows.
In short, our survey revealed significant research in the area
of large display interaction, with much of it focusing on
relatively small whiteboard sized large displays. Our work,
which focuses on up close interaction with much larger and
higher resolution displays, builds upon much of this
previous work in interesting ways.

SYSTEM HARDWARE and SOFTWARE
Our interface is prototyped on a back projection screen
tiled with 18 projectors at 1024x768 resolution in a 6x3
tiling (). The screen is 16’ wide and 6’ high, with
resolution of 6144x2304 pixels. The projectors were driven
by a cluster of 18 workstations. Software was written in
C++ with Chromium (http://chromium.sourceforge.net)
providing graphics rendering over the cluster. Our
techniques are designed for use with a touch sensitive
display, with finger tapping providing a single button event.
However, our screen is not yet touch enabled, so as a
temporary measure we currently use a handheld wireless
single button tracker whose position in absolute coordinates
across the screen is tracked using a camera-based Vicon
motion tracking system (http://www.vicon.com). Although
our tracker could provide 6-dof position and orientation for
the handheld tracker in 3D space, we restricted all our
techniques to only 2-dof x,y screen coordinate positions
operable with a single button since our ultimate goal is for
these techniques to be as widely applicable as possible on
standard touch enabled displays.

Figure 1

INTERACTION and VISUALIZATION TECHNIQUES
Overview
We present six techniques as a first step in dealing with the
transition from manipulating information on desktop scale
displays to very large wall-sized displays. Our techniques
are designed to address fundamental issues in space
management and remote access for interaction at this scale.
We assume a use scenario where a single user is working
up close to the display, using a touch enabled screen (or a
suitable replacement as in our prototype), without easy
access to keyboards or other input devices for command
input. To support this usage style, our prototype uses
context sensitive marking menus [11] that popup at the
user’s input location for all command input. Our system has
one global marking menu for selecting between techniques,
and additional context specific marking menus attached to
objects and interaction widgets. We animate all transitions
in our interface in order to assist the user in maintaining
context as they move from one operation to the next.
Vacuum Tool
The Vacuum tool enables quick access to items on areas of
the screen that are either difficult or impossible to reach by
bringing them to the user for viewing and manipulation.
Inspired by the drag-and-pop technique [2], the tool acts as
a “vacuum cleaner”, bringing towards it items that reside
inside an arc of influence centred about the widget and
spanning the canvas.
Widget Design and Base Functionality
In designing the vacuum tool, we made two important
design choices. First, we opted to allow the user to
interactively control the parameters of the tool, including
its position on the screen, the angle of the arc, and its start
and end extents. Second, if the user moves the tool around,
the effect of the tool is dynamically updated with items
moving into the arc being brought toward the tool, and
items leaving the arc removed from the tool’s control.

2 of 10

http://chromium.sourceforge.net/
http://www.vicon.com/

In our current implementation, the Vacuum tool is designed
as a circular knob, with three selectable parts ().
The entire tool can be moved on screen by clicking and
dragging on the pin icon at its centre. This pin icon appears
often in many of our widget designs, employing a
“pinning” metaphor as a consistent indicator that the widget
can be repositioned. Around the center a coloured arc is
drawn, defining the vacuum’s area of influence. The angle
of the arc can be changed by simply clicking and dragging
on it. A small white wedge at one edge of the arc allows the
user to change the start extent of the arc. The actual area of
influence of the vacuum tool on the rest of the screen is
represented by a semitransparent overlay that sweeps out
from the tool’s centre.

Layout of Vacuumed Items
An important aspect of the design of the vacuum tool is in
the representation of the vacuumed items when they are
close to the tool’s centre. The vacuum tool can collect
many items from a large area of the screen, but must
display copies of the items within the much smaller region
near the tool’s centre. For even a moderate number of
items, it is impossible to display these copies at full size
near the tool’s centre without significant overlap in layout.
We thus explored two different ways to layout the
vacuumed copies around the tool .

Figure 2

Figure 2. Vacuum widget. The user can click and drag on:
the pin icon to reposition the widget, the start wedge to

change the start extent of the arc, and the angle control to
change the arc’s angle of influence.

In the first layout, called the stacking vacuum (&
), copies of the vacuumed items are stacked in full

size, one on top of another with a slight offset, near the
tool’s centre. Items are stacked in the order in which they
are vacuumed (i.e., beginning with items closest to the
starting extent of the tool’s arc of influence). This layout
has the advantage of preserving the original size of the
items, enabling easy perception of the copies. However,
manipulation of the copies is hindered by the overlapping
objects. Items have to be first selected and brought to the
front, before interaction can take place. Note that we
deliberately offset the items slightly in the stack in order to
allow users to select items deep in the stack.

Figure 3
Figure 4

arc of influence

angle control

pin icon

start wedge

In the second layout, called the scaling vacuum (&
), copies of the vacuumed items are scaled down in

size and displayed around the tool’s centre, preserving the
relative spatial relationships of items to one another. A
semitransparent line connects the centers of the copies to
the centre of the original items. This line virtually passes
through the center of the tool as well, so all three points are
aligned. This property of the scaling vacuum allows for the
copied items to be selected with cursor movements that are
identical in direction, but smaller in magnitude, to the
movement required for selecting the original item. The
advantage of the scaling over the stacking vacuum is that
no additional overlap is introduced between vacuumed
items, apart from overlap present in the original items’
layout. The disadvantage is that the copies are significantly
smaller, and thus harder to perceive and interact with in
detail without first clicking on them to expand their size.

Figure 5
Apart from displaying and controlling the tool itself, we
also need to represent the results of its effect on the virtual
canvas as it pulls items inside the arc of influence toward
the tool centre and thus the user. We initially experimented
with simply displacing the vacuumed items entirely from
their original locations on the canvas to the tool’s centre.
However, we found this to be disorienting and instead took
the approach of bringing a copy of the vacuumed items to
the tool. As items enter the vacuum’s influence, we animate
the movement of a copy towards the tool’s centre, while a
ghost image of the item remains at its original position.
When an item leaves the vacuum’s influence, the reverse
animation takes place. This approach allows the user to
maintain a sense of overall context of where everything is
on screen, while being able to interact with vacuumed items
at closer proximity.

Figure 6

In large scale displays it is important for the user to be able
to keep track of state changes and for the canvas to be
resistant to changes not initiated by the user. As such, when
the vacuum tool is dismissed (in our prototype
implementation, the tool is invoked and dismissed through
the system wide marking menu), all copies of vacuumed
items are faded away and the actual items reactivated in the
positions they held prior to the vacuum tool’s use. We do,
however, allow the user to click on the vacuumed copies to
keep them around as shortcuts after the vacuum tool is
dismissed. These shortcuts are then grouped for future use.
In general, the space reorganization and transformation
caused by the vacuum tool is valid only for the duration of
the tool’s current invocation, unless the user performs an
explicit action with the copied item(s).

Discussion and Refinements
The stacking vacuum breaks down when the number and
size of the vacuumed items is large. We could improve this
by scaling down the stacked items, but this too has its
limits. While crowding is less severe in the scaling vacuum,
it too can get difficult to navigate as the space around the
tool’s centre gets populated with numerous copies of items.
Two refinements could alleviate these problems. A
semantic sensitive vacuum that only vacuums items with
certain characteristics (e.g., user interface elements) could
reduce the object space significantly. A spiral vacuum is
another alternative where a virtual knob would limit the
outward extents of the arc of influence. As the knob is
turned, the extents are changed, with the metaphor being
one of the vacuum spiralling out from the tool’s centre.

3 of 10

The idea of an arc of influence is also present in the
drag-and-pop technique [2]. However, in that technique the
angle of influence is fixed and the technique’s behaviour
different from our vacuum tool in that items of interest are
brought to the user as she initiates a drag action towards a
remote item. In contrast, the vacuum tool supports
persistent vacuuming, and is intended to be used more as a
tool that is invoked and used for a short period, rather than
the very transient nature of the drag-and-pop technique.
Furthermore, the vacuum tool can enable the vacuuming of
any type of item, and subsequent viewing and manipulation
of the vacuumed copies, whereas the drag-and-pop
technique is designed specifically for drag and drop actions
into desktop icons and as such does not have to be too
concerned with the layout issues we addressed in our work.
In a sense, the vacuum tool can be thought of as a
generalized superset of the drag-and-pop technique.

Figure 3. Close-up of stacking vacuum. As the arc is

increased to include the window item (left image), a copy of
the item is brought to the tool’s centre (right image). The arc
is colored red to differentiate it from the blue colored arc of

the scaling vacuum. Motion blur in right image illustrates the
animated transition that occurs during the item’s movement.

Edge Reaching Tool
It is very likely that many existing applications will be run
on large scale displays, with little change to their interface
design. As noted in [16], when applications designed for
desktop scale displays are run full screen on even
moderately sized large displays such as whiteboards, the
typical arrangement of user interface elements on the
borders of the application window can pose major usability
problems. On very large scale displays, the user may
simply not be able to reach the top of the screen to access
the menu and tool bars, may not want to walk all the way to
either vertical edge to access tool palettes typically found at
those locations, and may find it rather inconvenient to have
to bend down to reach the icons at the bottom of the screen.

Figure 4. Full screen view of stacking vacuum. Black arrows
added to illustrate relationships between original items and
stacked vacuumed items, and are not part of the interface.

While the vacuum tool can enable easy reaching of items
on the edges of the screen, its design was as a general
purpose tool for access to selectable parts of the screen.
Given the special and extensive use of edge regions by
many applications, we have designed an edge reaching tool
specifically suited to accessing edges of the screen.

Figure 5. Close-up of scaling vacuum. As the arc is
increased to include the window item (left image), a copy of

the item is scaled down and brought to the tool’s centre.
(right image). Motion blur in right image illustrates the

animated transition that occurs during the item’s movement. The edge reaching tool divides the screen into a grid. For
our 16’ x 6’ display, we have found a 3x2 grid to be
appropriate for this tool. The tool acts as an interactive
thumbnail of this grid. When the user clicks on parts of the
thumbnail grid, scaled down copies of items within that
section of the large screen slide down to surround the tool
(). These are scaled down to a predefined size, but
the user can adjust the scale by pulling at the yellow bands
that represent the edges of the screen. We could also
restrict selections to items within the edge of the regions
(i.e., yellow bands), making it a true edge-reaching tool. If
semantic selections are enabled, then only the appropriate
items (e.g., user interface elements) are brought to the tool.

Figure 7

Both the vacuum and edge reaching tools are similar in that
they create shortcuts of items for the user. The edge
reaching tool and scaling vacuum preserve the layout of the
region of the screen brought to the tool, allowing
particularly easy access to items in familiar screen layouts.
The stacking vacuum however is more exploratory in

Figure 6. Full screen view of scaling vacuum. Black arrows
added to illustrate relationships between original items and
scaled vacuumed items, and are not part of the interface.

4 of 10

nature. The stacking of items tends to facilitate attending to
it peripherally until something attracts the user’s attention.
Although the edge reaching and scaling vacuum tools
appear to be applicable in similar situations, the vacuum is
more flexible in allowing fine tuning of the area of interest.
However, although the edge reaching tool statically
predefines areas of interest, multiple discontinuous areas
can be active at a time (), a feature the vacuum
supports only if multiple instances of the tool are created.

Figure 8

Figure 8. Full screen view of the edge reaching tool, with two
regions selected. Black arrows are for illustration only.

original object

widget selector
 area screen corner

object proxy
widget proxy
 area

Figure 7. Using the edge reaching tool. (a) An area on the

widget is selected. (b) Corresponding screen area is scaled
down, with animated transition, into a proxy surrounding the
tool. Items in the proxy can be used just like the originals.

Canvas Portals
In any display, portions of an effectively infinitely large
virtual canvas can be invisible to the user depending on
which part of the canvas is depicted on the screen at any
given time. In large scale displays, this problem is
somewhat mitigated in that a larger part of the virtual
canvas can be shown on the display at any one time.
However, the trade-off here is that some of this larger
display is not easily visible when the user is up close to the
screen. To explore solutions to this problem, we have
developed Canvas Portals, which are widgets that provide
alternate interactive views of the canvas (). Figure 9

Figure 9

Figure 9

Figure 9. Canvas portal. (top) Contents of canvas portal
correspond to a specified focal area on the virtual canvas.

(bottom) Close-up of canvas portal showing components of
thumbnail used for repositioning the focal point, as well as

the pin icon used for repositioning the portal itself.

A canvas portal can be repositioned on the canvas by
clicking and dragging on its pin icon (). The scale
factor is adjusted via a FastSlider [13] invoked from the
canvas portal’s marking menu. The scaling transformation
is always centered around the portal’s focal point. We
provide two ways of altering the focal point. The most
direct and precise method is to click directly on the desired
location on the canvas, after first selecting the “change
focal point” item from the canvas portal’s marking menu.
This method, however, can be rather inconvenient if the
desired focal point is on parts of the screen that are difficult
to reach, or impossible to achieve if the point of interest is
on parts of the virtual canvas that is currently not being
displayed on screen. As such, we provide a second
technique where the focal point is selected at a coarser
granularity through a thumbnail representation of the entire
virtual canvas (). This thumbnail is attached to the
top left corner of the canvas portal, and shows an iconic
representation of the focal area as well as the position of
the portal itself on the larger canvas. The user simply drags
the icon representing the focal area around the thumbnail to
reposition the focal point. As the drag occurs, context is
provided by highlighting the corresponding region on the
main canvas with a semi-transparent overlay. This
approximate way of changing the focal point has the
advantage that the user can interact close to the canvas
portal without having to move around the screen. It also
allows the user to reach areas at the screen’s extremities or
areas of the virtual canvas not visible on screen.
While the positioning, focusing, and scaling functionality
of the canvas portal builds upon previous work [6], we
have designed significant additional functionality, as
discussed in the following subsections.

canvas portal
canvas portal focal area

pin icon

thumbnail

focal area

canvas portal's position Widget Design and Base Functionality
The basic functionality of a canvas portal is that of a magic
lens [6] to a sub area of the virtual canvas. It appears as a
window-like widget on screen, and has three user
controllable parameters: the focal point of the portal on the
canvas, the scale factor of the portal which controls how
much of the canvas around the focal point is mapped to the
portal, and the position of the portal itself on the canvas.

5 of 10

Interaction within Canvas Portals
Interaction inside the portal is equivalent to interaction on
the entire screen. Every event occurring in the portal is
transformed to the main canvas coordinate system. Thus
the user can operate on a zoomed-out canvas portal to
organize material on the main canvas, drag over large
distances by increasing the control gain in the canvas
portal, or get an overview of parts of the main canvas at a
glance. Using a zoomed-in canvas portal the user can
manipulate in detail an object that may appear small on the
virtual canvas. The user can also focus the portal at remote
areas where she might want to send events, for example in
a full-screen application she can position the focal area of a
canvas portal at a remote tool pallet.
Canvas Portals to Main Canvas Attachment
In our application we allow the user to pan the entire virtual
canvas across the display screen. We therefore allow the
user to “pin” a canvas portal to a particular area of the
canvas, as opposed to an area of the screen. Thus, even if
the virtual canvas is panned, the view of the canvas portal
persists. For example, if the user focuses and pins a canvas
portal on a group of windows, the canvas portal remains
focused on the group as the virtual canvas is panned.
Unlike WinCuts [23], canvas portals are not attached to
specific windows or parts of them. This has the
disadvantage that when a window is hidden behind others
on the canvas it is similarly hidden in the canvas portal.
Transitioning between Canvas Portals and Main Canvas
Unlike regular magic lenses, canvas portals support the
passing of objects back and forth between the portal, the
main canvas, and other portals (). If a user is
moving an object on the main canvas and the center of
movement (cursor pointer) crosses a canvas portal border,
the object gets transitioned into the portal and continues its
movement inside that canvas portal’s coordinate system.
The inverse also holds. The center of movement of the user
is thus the center of translation and scaling of the item, as it
is in ZoomScapes [9] and ScalableFabric [20]. When parts
of a moving item cross a CanvasPortal boundary, a
translucent rendering of these parts is cast on the other side
of the border, indicating that the movement can be
extended outside the current working reference frame,
which may be the main canvas or a canvas portal. The
seamless transitioning of items between a canvas portal and
the main canvas allow for quick rearrangement of items in
and out of the portals, without always requiring a
refocusing of the portal as in a regular magic lens. It can
also enable interesting usage scenarios, particularly when
multiple canvas portals are active simultaneously. For
example, after interacting in detail with an object in a
zoomed-in canvas portal, the user can push it into a second
zoomed-out canvas portal that acts as a temporary space for
working items without cluttering their main working area.

Figure 10

Figure 10. Transitioning items between canvas portals and
main canvas. (a-c) are close-up views of canvas portals in

corresponding overview images in (d-f). (a & d) An object is
selected in the portal and moved beyond the top right corner

of the portal. (b & e) Centre of object crosses the portal
boundary, and object is displayed with the viewing

transformations of the main canvas, and is moved from its
original location on the main canvas to the new location. (c &

f) Object is completely out of the portal.

If a user working inside a canvas portal realizes that the
portal’s view is one that they would like transferred to the
entire display screen, a selection from the portal’s marking
menu will warp the entire screen’s view to match that of

the canvas portal, centered at canvas portal’s location. In
this way, the canvas portal can act as way to specify
viewpoint transformations for the entire screen.
Grouping of Multiple Canvas Portals
We currently provide grouping of multiple canvas portals
into a stacked (a) or side-by-side layout (

b). Switching between the canvas portals in a stacked
group can be achieved by either touching one of the
constituent portals, which brings that portal to the top with
an animated flipping transition; or by expanding the stack
into the side-by-side layout where a new portal is selected
by simply clicking on it.

Figure 11 Figure
11

Figure 11. Grouping of multiple canvas portals. (a) Stacked
layout. (b). Side-by-side layout. Clicking on any of the portals

brings it to the top in the stacked layout.

a) b) c)

d) e) f)

a) b)

Discussion and Refinements
With canvas portals the user is given the option of adjusting
the input gain as desired to facilitate selection. Thus remote
targets, or targets of small size, can be easily selected using
zoomed-out or zoomed-in canvas portals respectively.
In our system we assume that our screen is touch sensitive
and that all interaction occurs up close to the screen.
However, when interacting with large scale high resolution
displays, it is quite possible that users may at times want to
interact from slightly further away, perhaps using different
input modalities. While moving away from the screen will
allow users to get a better overview of the screen without
requiring widgets specifically designed for providing such
overviews, the functionality provided by canvas portals can
still be useful. For example, having additional views in
canvas portals could allow for less or faster context
switching when moving between tasks within an

6 of 10

application or between different applications. Also, canvas
portals can provide detail and overall views of the virtual
canvas simultaneously, which is useful at any scale of
interaction. Finally, the benefit of being able to group items
and move them seamlessly across different scales and
views is also realizable even when interacting at a distance.
Having multiple canvas portals active can lead to difficulty
in distinguishing which canvas portal corresponds to which
focal area on the virtual canvas. To mitigate this, each time
a transition occurs (in the canvas portal stack or when a
portal is moved, etc) we display a connecting line between
the canvas portal and its focus area. Nevertheless, as the
number of portals increases, several of them may point at
similar areas of the virtual canvas, making it difficult to tell
these portals apart. In future versions, we intend to explore
labelling the portals and having a tabbed layout of labels
similar to that available in some desktop window managers.
Window Portals
Window portals are a variant of canvas portals that provide
quick access to, and switching between, application
windows on a large scale display (). The main
overview region of the window portal is functionally
equivalent to a canvas portal with a focal area covering the
entire virtual canvas (i.e., it acts as a zoomed-out view of
the entire canvas). When a user clicks on an item in the
overview region, the item is expanded and displayed as an
active object next to the overview region, and is marked
with a red border to indicate its special status. The user can
interact in detail with the selected object or select a new
one. As the user selects different objects over time, a
thumbnail representation of all previously selected objects
is displayed in a timeline over the currently displayed
object. Clicking on thumbnails in the timeline will turn the
associated object into the currently active one. Thus, while
the overview region of the window portal acts as a spatial
locator of objects on the main canvas, the timeline region
acts as a temporal locator for recently used objects.

Figure 12

Figure 12. Window portals. (left) Window portal in the main
canvas. (right) Close-up showing the overview region used
as a spatial locator, the temporal locator timeline display,
and the selected object. Red borders around the selected

object in all views helps maintain context.

Discussion and Refinements
On the Windows desktop the ALT-TAB key combination is
used for alternating between windows. Given a display
without keyboard, window portals provide similar spatial
and temporal switching between active windows. Thus, we
believe that it is applicable not only to large displays, but to
smaller displays that lack an easily accessible keyboard,
such as tabletPCs in a slate configuration, or whiteboard
sized displays. Note that if we enable semantic filtering of
items in the overview region of the window portal, we can
restrict the display to for example only user interface
widgets. Thus, we could create on-the-fly palettes of
interface widgets that could be moved around the screen
and operate multiple applications from a single locale.
Given that the window portal consists of a zoomed out
view of the screen, issues relating to selecting and
distinguishing between small targets arise. While semantic
filtering can limit the selection space, the potential number
of items (overlapping or not) can still be large and it does

not address the issue of small targets to select from.
Allowing dynamic zooming, or expanding targets [12],
could be one potential solution worth investigating.
Overlapping windows on the canvas can also be
problematic in window portals, as in any other multi
window management system. Solutions to date include tabs
and peeling [5], and multiblending [4]. We have
implemented an alternate approach that “fans-out” a group
of overlapping windows when a user clicks on any member
of the group, in a manner similar to the widgets presented
in [14, 24]. Items can be selected from this fanned-out
display, or the group collapsed again. By default, we treat
overlapping objects as a group. This enables not only the
fan-out operation, but also permits moving of the entire
group as a whole within the window portal. This grouping
feature is currently implemented across all our widgets.

selected object

spatial overview locator

temporal locator

window portal

Division Bands
The vacuum tool, edge reaching tool, canvas portals, and
window portals all provide alternative ways to view and
access data while essentially preserving the overall view
and layout of the main virtual canvas. Division bands
() also provide alternate views of the virtual
canvas, but unlike the previous tools, they temporarily
disrupt the overall view of the virtual canvas. They act
much like a cutting tool that virtually slices up the canvas
along specified vertical and horizontal boundaries, and
allow the cut portions to be dragged around to quickly
reveal more or less of certain parts of the virtual canvas.

Figure 13

Figure 13. Single division band. (a-b) A new vertical band is
created at the location of the marking menu. (c) Pulling the

band to the left reveals more of the canvas on the right.

a) b) c)

7 of 10

Using the global marking menu, the user specifies the cut
position (the menu’s invocation point) and the direction
(direction of the mark used in the menu selection). We
deliberately placed the cut down, right, left, and up
commands in menu locations that would require selection
marks in the corresponding directions, to facilitate a fluid
combined specification of command and parameter. Once
the cut position and direction is specified, a vertical or
horizontal (depending on the specified direction) rod
widget appears on screen. Based on the specified cut
direction, one of the cut pieces of the canvas gets attached
to the rod and a division band is thus created. For example,
if the user specified “cut-right”, a vertical rod appears with
the right side of the canvas attached to the rod. This
division band (i.e., the rod) is now attached to the user’s
pointer and can be moved around. If the user drags the
division band left-right on screen, the attached portion of
the canvas is expanded or shrunk, depending on the
direction of movement. A quick flick-and-release motion of
the pointer dismisses the division band. If the user releases
the band without the flicking motion, then the division band
remains on screen for subsequent reselection. Thus, users
can use division bands to quickly drag a part of the screen
towards them for viewing and/or manipulation. The ability
to quickly dismiss the band with a flicking gesture allows
for very transient quick views of remote portions of the
screen, much like pulling on a spring loaded window-blind.

Discussion and Refinements
The quick creation and dismissal feature of division bands
makes them well suited for fast glancing actions at remote
content, or parts of the virtual canvas not currently on
screen. The pinning option enables them to also be used as
persistent shortcuts to remote areas of the screen or as
virtual desktops in a similar way to the flipcharts in
Flatland [15].
Similar to canvas portals, our implementation allows
objects to be moved between the main canvas and portions
of the canvas attached to division bands.
When first created, division bands have the same zoom
factor as the regular canvas, but this can be changed via an
onscreen widget, allowing for the creation of a form of
ZoomScapes [9]. We can have different bands each with
their own zoom factors, allowing users to move items back
and forth between different bands for different visualization
effects. For example, objects can be stored in zoomed-out
bands to save space, or brought into zoomed-in bands for
detailed inspection.
A potential problem is the visual effect of virtually cutting
up of the canvas. We believe this is not an issue for single
user interaction, since the cutting originates from the user’s
own actions and is unlikely to cause confusion. However, if
multiple users interact with the display simultaneously,
division bands could prove to be confusing.
The Well Multiple division bands of different orientations and

directions can be positioned on the screen ().
Multiple pinned division bands of different orientations and
directions are presented in a fixed ordering. Horizontal
ones are placed on top of vertical bands since they are more
likely to be followed by a permanent pinning action since
we have found that they are most useful for creating new
space on screen by dragging unused portions of the virtual
canvas into view from the top or the bottom. In contrast,
vertical bands tend to be used in a more transient manner.

As observed by Guimbretière et al [9], even with very large
displays users can still run out of space, and our experience
corroborates this observation. However, we also observed
that not all parts of the large display are viewed or used
equally frequently. In particular, on our 6’ high display, a
user interacting at close proximity to the screen tends to
focus on a region ranging roughly from waist level to just
above eye level. As such, the lower part of the screen tends
to be underutilized. When the lower part was used, it
typically served as a place for storing objects users wanted
to move out of the way. However, given that all users could
do was to drag items in and out of this space, its usage was
often sub-optimal and somewhat haphazard. As such, we
felt that it would be useful to develop an explicit
mechanism, called the Well (), which allows for
optimal and efficient use of this space for storage, and
subsequent retrieval, of any onscreen object.

Figure 14

Figure 14. Multiple division bands. (a) An existing band is
present. User invokes a menu to create a second band with
same direction and orientation as existing one. (b) Second

band is created and attached to cursor. As new band moves,
its attached canvas covers the first band. (c) Second band is
released and both bands are visible. (d,e) A third, horizontal,

band is created. (f) Band is dragged downwards to reveal
content previous hidden at the top of the virtual canvas.

a)

f)

b)

d) e)

c)

Figure 15

Objects are sent to the Well via a command invoked from
its contextual marking menu. The object gets “dropped”
vertically into the Well, and is positioned at the front of all
other objects at that same vertical position. The other
objects are moved further back in depth in the Well’s 3D
perspective rendering, thus providing a cue as to how
recently objects were placed in the Well. The 3D
perspective view allows for objects to be overlapped in
depth while retaining some level of visibility. If the user
needs to retrieve an object from the Well, she can select the
object and restore it to its original location on screen using
the “restore” command from the object’s contextual

8 of 10

marking menu. Alternatively, the object can simply be
dragged onto any other location on screen. The entire Well
can be cleared, and all stored objects restored to their
original locations on screen, via a single command. The
Well can be activated/deactivated at the user’s discretion.
The Well provides similar base functionality as the taskbar
in the Windows desktop in that objects can be minimized
and subsequently returned to their original locations. It
differs from the taskbar in that the minimized objects are
displayed as miniatures of their original representations,
rather than as text labels or icons. This enables the user to
quickly recognize the objects with a quick glance, even
from afar. Furthermore, the Well displays objects sorted
according to recency, providing more context to the user.
The DataMountain by Robertson et al. [19] similarly used a
3D perspective layout to organize items on a desktop
display. Unlike the DataMountain, which was intended to
be a sophisticated document management interface, the
Well is used only as a temporary storage facility that works
in concert with the rest of the display canvas. We also
deliberately did not require users to explicitly sort or
arrange objects in the Well, relying instead on an automatic
arrangement in an effort to reinforce its use as a transient
storage area with minimal operational overhead.

Figure 15. Well. Supports storage of items on the floor of the

display, in a 3D perspective view. (a) “send to well”
command invoked on an object. (b) Object moves to Well in

an animated transition. (c) Object is displayed in front,
pushing existing objects in the Well backwards in depth.

DISCUSSION and FUTURE WORK
Preliminary User Feedback
While we have not yet performed a detailed user evaluation
of our work, we have obtained very preliminary feedback
from four people who have explored using our techniques
for about an hour. Two were familiar with user interface
research, but the other two were naïve users. All users
found the vacuum and edge reaching tools useful, and they
understood their use and purpose almost immediately.
Users also quickly grasped the benefits of the canvas and
window portals, although given that we did not perform a
task oriented study we cannot ascertain as to when users
would choose to use them over the other techniques. Some
users did not immediately understand the purpose or
operation of the division bands, but after some explanation

they found the quick glancing and spring-loaded releasing
action quite useful and indicated that it helped refresh their
view of the state of the entire canvas. All users understood
the well technique, but did not show as much interest in it
compared to other techniques. From this very preliminary
feedback, it is clear that we need to improve the immediate
understandability and usability of the division bands.
Extensions to the Techniques
In both the scaling vacuum and the edge reaching tool,
changes in scale factor is globally applied to all selected
items. It would be interesting to explore ways of
performing semantic scaling, where different scale factors
are applied to different classes of data, under user control.
It would be interesting to combine the flexibility of the
vacuum tool with the edge reaching tool’s ability to deal
with discrete angles. One could imagine a configurable
vacuum where the extents of the vacuum are determined
not by a simple arc but by an arbitrary region that can be
defined by the user by sketching the desired region or by
dragging on handles on a default region.
Similarly, we could allow users to change canvas portals to
use shapes other than the default rectangle. For example,
more free-form shapes could be useful for selecting groups
of items, or thin skinny rectangles could be useful for
capturing tool or menu bars. Division bands could also
potentially benefit from cuts beyond straight lines.
We have observed that horizontal division bands are used
mostly to facilitate managing working and storing spaces,
whereas vertical ones are most often used for quick
glancing actions or fast shortcuts and their life on the
canvas is more limited. While we have sorted the display of
multiple division bands based on this observation, we
intend to investigate patterns of use of the different
direction bands in more detail and create a sorting and
visualization mechanism better tailored to user behaviour.
The direct creation mechanism of division bands and their
ephemeral nature leads us to believe they can become
excellent snapshot mechanisms. They could be used to take
state snapshots of the screen and act as a form of history of
the virtual canvas. Visualization challenges of depicting
and navigating groups of such “history bands” related to
their spatial and temporal nature need to be solved.
Richer Information from Input Devices
Our work has focused on a usage scenario where the user
interacts up close to the display with a touch sensitive
screen capable of only two degree-of-freedom x-y input,
with one button event. Many of our techniques, however,
could be significantly extended if more sophisticated input
devices or finger/hand gestures are used instead. Even a
simple input enhancement, such as detecting finger hover
over the surface of the screen, could expand the interaction
vocabulary. For example, hover could be used to provide
transient magnification of small scaled items in the vacuum
or canvas portals. It could also help simplify the
interactions that currently require continuous
press-and-hold dragging actions, such as in division bands.

9 of 10

10 of 10

Supporting Multiple Users
Our research focused on single user techniques. The
affordances of wall sized displays, however, make it
inherently suitable for multi user interaction. While some
of our tools could be used as is by multiple users
simultaneously without interfering much with one another,
others such as division bands that affect large regions of the
screen have to be enhanced to support multiple users. This
is one area that clearly requires significant future research.
CONCLUSION
We have presented a set of techniques aimed at facilitating
direct up-close interaction with high resolution wall sized
large displays. Some of these techniques, such as the
vacuum and edge reaching tools, are tailored to reaching
remote content on the screen and can act as exploration
tools. Others, like the canvas portals, are mainly intended
for layout arrangement and context switching. Nevertheless
they can also be used for remote and fast reaching actions.
Window portals act as shortcuts to specific items on the
screen and can be viewed as a general window
management tool with applications beyond large scale
interaction. Division bands allow for space creation as well
as a quick way to look at off-screen or hard to view content
on the virtual canvas. Finally, the well technique allows for
temporary storage in relatively unused parts of the screen.
Overall, the ideas presented here can be viewed as building
blocks for applications tailored to large displays, or as
mechanisms for enhancing the usability of existing
applications when they are run on large displays.
ACKNOWLEDGEMENTS
We thank Michael Wu, Daniel Vogel, Joe Laszlo, John
Hancock, and members of the Dynamic Graphics Project
lab(www.dgp.toronto.edu) at the University of Toronto.
VIDEO
Is available at the UIST submission site
REFERENCES
1. Baar, J.v., Willwacher, T., Rao, S., & Raskar, R.

(2003). Seamless multi-projector display on curved
screens. Eurographics Workshop on Virtual
Environments (EGVE). p. 281-286.

2. Baudisch, P., et al. (2003). Drag-and-pop and
drag-and-pick: Techniques for accessing remote screen
content on touch- and pen-operated systems.
Proceedings of Interact. p. 57-64.

3. Baudisch, P., Good, N., & Stewart, P. (2001). Focus
plus context screens: combining display technology
with visualization techniques. ACM UIST. p. 431-440.

4. Baudisch, P., & Gutwin, C. (2004). Multiblending:
displaying overlapping windows simultaneously
without the drawbacks of alpha blending. To appear in
ACM CHI.

5. Beaudouin-Lafon, M. (2001). Novel interaction
techniques for overlapping windows. ACM UIST. p.
152-154.

6. Bier, E., et al. (1993). Toolglass and Magic Lenses: The
see-through interface. ACM SIGGRAPH. p. 73-80.

7. Funkhouser, T., & Li, K. (2000). Onto the Wall: Large
Displays. IEEE CG&A. 20(4).

8. Geibler, J. (1998). Shuffle, throw or take it! working
efficiently with an interactive wall. Extended Abstracts
of ACM CHI Conference.

9. Guimbretière, F., Stone, M., & Winograd, T. (2001).
Fluid interaction with high-resolution wall-size
displays. ACM UIST. p. 21-30.

10. Humphreys, G., et al. (2001). WireGL: A scalable
graphics systemfor clusters. ACM SIGGRAPH. p.
129-140.

11. Kurtenbach, G., & Buxton, W. (1994). User learning
and performance with marking menus. ACM CHI. p.
258-264.

12. McGuffin, M., & Balakrishnan, R. (2002). Acquisition
of expanding targets. ACM CHI. p. 57-64.

13. McGuffin, M., Burtnyk, N., & Kurtenbach, G. (2002).
FaST Sliders: Integrating marking menus and the
adjustment of continuous values. Graphics Interface. p.
35-42.

14. McGuffin, M., Tancau, L., & Balakrishnan, R. (2003).
Using deformations for browsing volumetric data.
Proceedings of IEEE Visualization. p. 401-408.

15. Mynatt, E., Igarashi, T., Edwards, W., & LaMarca, A.
(1999). Flatland: New dimensions in office
whiteboards. ACM CHI. p. 346-353.

16. Pederson, E., McCall, K., Moran, T., & Halasz, F.
(1993). Tivoli: An electronic whiteboard for informal
workgroup meetings. ACM CHI. p. 391-398.

17. Raskar, R., Baar, J.v., & Chai, J. (2002). A low-cost
projector mosaic with fast registration. Asian
Conference on Computer Vision (ACCV).

18. Rekimoto, J. (1997). Pick and drop: A direct
manipulation technique for multiple computer
environments. ACM UIST. p. 31-39.

19. Robertson, G., et al. (1998). Data mountain: Using
spatial memory for document management. ACM UIST.
p. 153-162.

20. Robertson, G., et al. (2004). Scalable fabric: A flexible
representation for task management. To appear in ACM
CHI.

21. Streitz, N., et al. (1999). i-LAND: an interactive
landscape for creativity and innovation. ACM CHI. p.
120-127.

22. Swaminathan, K., & Sato, S. (1997). Interaction design
for large displays. Interactions. 4(1). p. 15-24.

23. Tan, D., Meyers, B., & Czerwinski, M. (2004).
Wincuts: Manipulating arbitrary window regions for
more effective use of screen space. To appear in ACM
CHI.

24. Vernier, F., Lesh, N., & Shen, C. (2002). Visualization
techniques for circular tabletop interfaces. Advanced
Visual Interfaces.

25. Wu, M., & Balakrishnan, R. (2003). Multi-finger and
whole hand gestural interaction techniques for
multi-user tabletop displays. ACM UIST. p. 193-202.

http://www.dgp.toronto.edu/

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	INTERACTION and VISUALIZATION TECHNIQUES
	
	Widget Design and Base Functionality
	Layout of Vacuumed Items
	Discussion and Refinements
	Widget Design and Base Functionality
	Interaction within Canvas Portals
	Canvas Portals to Main Canvas Attachment
	Transitioning between Canvas Portals and Main Canvas
	Grouping of Multiple Canvas Portals
	Discussion and Refinements
	Discussion and Refinements

	DISCUSSION and FUTURE WORK
	Preliminary User Feedback
	Extensions to the Techniques
	Richer Information from Input Devices
	Supporting Multiple Users

	CONCLUSION
	ACKNOWLEDGEMENTS
	VIDEO
	REFERENCES

