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Abstract—Many humanoids robots like ASIMO are built to
potentially perform more than one type of task. However, the
need to maintain a consistent physical appearance of the robot
restricts the installation of additional sensors or appendages
that would alter its visual identity. Limited battery power
for free-moving locomotive robots places temporal and spacial
complexity limits on the algorithms we can deploy on the robot.
With these conditions in mind, we have developed a distributed
robot architecture that combines onboard functionality with
external system modules to perform tasks involving interaction
with the environment. An information model called the Cogni-
tive Map organizes output produced by multiple perceptual
modules and presents a common abstraction interface for
other modules to access the information. For the planning
and generation of motion on the robot, the Task Matrix
embodies a task abstraction model that maps a high level
task description into its primitive motions realizable on the
robot. Our architecture supports different control paradigms
and information models that can be tailored for specific tasks.
We demonstrate environmental tasks we implemented with our
system, such as pointing at moving objects and pushing an
object around a table in simulation and on the actual ASIMO
robot.

I. Introduction
When designing robots to perform a particular task,

roboticists often have the freedom to choose the con-
figuration of the robot to be suitable to the task. This
includes the selection of body shape, manipulators, sen-
sors, actuators, degrees of freedom and software. With this
approach, a highly specialized and capable robot can be
created to maximize the chances of successfully performing
the task. Representative examples of this approach are
the RiSE climbing robotic platform [1] with its hexapedal
feet equipped with compliant microspines, origami-folding
robots [2] and the use of compliant graspers to adapt to
different object shapes [3].

In contrast, humanoid robots are designed to emulate
human morphology and are therefore not built with only
a single task in mind. Consequently, the constraints of
humanoid robots can restrict solutions for task implemen-
tation due to limited placement of sensors and degrees

of freedom in order to maintain the basic human body
shape and aesthetic appearance. Specializing the robot’s
manipulators for one particular task may deem it unusable
for many other tasks.

In the case of Honda Motor Company’s ASIMO [4], the
robot also serves as an ambassador to the company, and
must maintain a recognizable and consistent appearance
at all times. For researchers working with ASIMO, this
requirement warrants careful consideration on the choice
of sensors, and limits the use of external appendages that
detract from the original robot design.

There are also technical limitations that can occur
when altering robots. Many humanoid robots have an
internal model of their mass distribution that is utilized
for balancing algorithms. Substantial alteration of link
properties may introduce mass perturbations that can
affect operational performance. Details of the wiring or
construction of a robot may not be available, creating a
technical barrier to the insertion of new devices to the
robot’s existing hardware infrastructure. For untethered
humanoid robots, the power consumption limits of the
robot’s batteries prevent the fastest CPU and GPU
configurations from being installed on the robot.

This paper describes several solutions that we have
developed to allow us to research and implement com-
plex tasks on ASIMO without altering its mechanical
configuration or changing its sensing capabilities. These
same methods can be easily applied to other humanoid
robots. We restrict ourselves to the original configuration
of the year 2000 ASIMO model [4]: 26 degrees of freedom,
0.5kg/hand grasping force, 6-axis foot area sensors in
the feet and gyroscope and acceleration sensors in the
torso. In particular, we discuss approaches we pursued in
organizing environmental state, localizing the robot, and
commanding motion to perform complex tasks with an
established humanoid robot whose hardware and software
cannot be significantly altered.



A. Robot Independence

ASIMO has a collection of different sensors and motion
control software whose processing was originally limited
to reside onboard the robot only. Usually, it is convenient
for researchers to independently develop their algorithms
using external computers and sensors. However, they are
often later confronted with the difficult task of reimple-
menting their software to adapt to the different hardware
and operating systems on the robot. To minimize the
changes to their own software, we developed robot inde-
pendent strategies for control and accessing perceptual
information. This strategy also minimizes the need to
rewrite software when migrating to new robot models in
the future. In the Player system for mobile robots [5],
abstraction is used to provide a common logical interface
to different hardware sensors and actuators. Similarly,
we use abstraction when transferring information from
sensors and sending desired joint angle motion commands
to ASIMO. A common motion command interface hides
the details of our robot’s low-level control. Similarly,
standardized interfaces for sensors and the information
they provide allows our researchers to experiment with
different implementations of vision modules or sensor
modalities. We employ a blackboard architecture [6] to
provide a mechanism to share and transform information
between different modules (Figure 1).

B. Distributed Systems

For an autonomous humanoid robot, untethered from
an external power source, the energy needs for actuators,
sensors and processing boards must be supplied by on-
board batteries. This constraint limits the time and space
complexity of algorithms that can be run directly on the
robot. Like many other robot architectures [7], [8], we
designed a distributed system to offload the processing of
sensor information, path planning with collision avoidance
and other computationally expensive tasks from the robot.
This method allows us to extend the capabilities of the
robot, but requires new mechanisms for communication
between all modules in the system. In Section II, we ad-
dress the problem of information sharing in our distributed
system.

Distributed systems allow many time-consuming func-
tions to be computed in parallel. For example, we can si-
multaneously perform large searches for valid motion plans
while executing other motions on the robot and extracting
features from sensory data from another machine. For our
researchers, switching to the distributed system in many
cases no longer required them to migrate their software to
a new hardware environment. Instead, they would add a
single routine to their existing program’s execution loop
to periodically send their output to the networked data
channel.

C. System Overview
Our distributed system (Figure 1) consists of several

high level components responsible for internal and en-
vironmental state management and task execution. The
Cognitive Map represents a blackboard system that pro-
vides a common workspace to share information between
these modules. Through the Cognitive Map, perceptual
modules that extract useful features from raw sensor data
can deposit their information to maintain both external
environmental state and internal robot state.

For robot motion, the Task Matrix decomposes a high
level, parameterized motion command into a set of sequen-
tial and/or concurrent task programs that can be robustly
executed on the actual robot. An abstract motion interface
lies between the internal control code of the robot and the
task programs of the Task Matrix. Other modules external
to the robot can perform high level activities ranging from
deliberative planning tasks like pushing objects on a table
to more reactive pointing and gazing at moving objects
in the environment (see Section V).

Section II describes several communication mechanisms
we created to share environmental or robot state infor-
mation between modules, while Section III explains how
environmental information is used to allow the robot to
carry out meaningful tasks on objects in the environment.
In Section IV, methods for creating motion on our robot
are explained. Section V presents two scenarios using
combinations of the methods presented and Section VI
concludes with discussion.

II. State Information Management
A key function for high level tasks is the ability to

process sensor information to estimate the state of the
environment. On ASIMO, sensor information is captured
but the choice of algorithms for estimating world state is
restricted due to limited computational resources. Further-
more, modern advanced GPU techniques for accelerating
video processing are currently off limits to the robot’s
internal computers. The resulting inaccurate or infrequent
state estimates would make it very difficult for the robot
to robustly execute high level tasks. The distributed model
allows us to use GPU techniques to process video images
at a high frequency for radial distortion correction and
homography transformations of planar surfaces (Figure
2). The video streams can be captured onboard the robot
and redistributed to external modules through networked
communication. Perceptual modules then take the raw
video stream and perform image processing operations to
obtain useful features or information such as object pose.
In our applications, we use video streams to compute the
pose of objects in the robot’s work environment. Sensors
can be located both on the robot and situated in the
external environment and can be of different modalities:
time-of-flight depths sensors, cameras, motion capture
systems and the robot’s own onboard gyro sensors and
joint encoders.
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Fig. 1. System overview: Major components of our distributed system

A. Cognitive Map

We define the Cognitive Map as an information space
that represents the robot’s understanding of both its
internal state (eg., pose information, current goals) and
its external environment, such as where objects are in
the world with respect to its body. All information is
collected in the centralized Cognitive Map for redistribu-
tion to other modules that are connected to it. Modules
can publish information and selective receive events or
data samples based on a publish-subscribe model. For
example, an object recognition module could subscribe
for object detection events that appear within a region
of interest in the robot’s workspace. Similarly, an object
tracker can publish current position estimates to a stream
in the Cognitive Map that all subscribers can access.
Modules produce information about the state of the world
(e.g. perceptual modules), consume information to make
decisions or create changes to the world (e.g., motor task
modules), and utilize existing knowledge to generate new
state information that can be stored back in the Cognitive
Map (e.g., localization modules).

Since the Cognitive Map provides a common space for
perceptual modules to deposit their measurements and
estimates of state, details of the actual sensor hardware
or state estimation algorithms are hidden within the mod-
ules. We have used this abstraction to substitute different
vision algorithms to compare their relative performance in
the same usage situations. We have also used the Cognitive
Map to combine the information of different perceptual
modules to get a more complete picture of the entire
environment (see Section III).

The key element of information in the Cognitive Map
are generic objects, which like object-oriented classes, can

be subclassed to include any degree of custom information.
All generic objects have a common set of information like
pose information, uncertainty measures for state variables,
identification labels and coordinate systems (if applicable).
However, knowledge of the type of object may be useful for
modules wanting to do object-specific tasks. For example,
a physical object can be annotated with its graspable
regions. A key concept of our Cognitive Map is that
it is not just a passive repository for information. The
Cognitive Map is built on the Psyclone “whiteboard”
system [9] which combines the shared information concepts
of the blackboard architecture with data streams that
can be shared, have their data samples timestamped
for synchronization, and data content transformed (eg.,
coordinate conversion) or selectively screened while being
transmitted between modules. However, rather than have
a predetermined set of screening criteria residing in the
Cognitive Map, individual modules are free to provide
their own customized filtering criteria written in the
Lua scripting language [10] for tailored notification and
delivery of data samples that are of interest to the module.
For example, a module that plans pushing of objects on a
table may only want to receive information about objects
when they appear on the table.

B. DIODE

One disadvantage of the Cognitive Map is that all
information must be passed through it. It acts as a
switchboard for routing streamed information to different
modules and generating events based on state changes in
the Cognitive Map. This can result in additional overhead
as information is streamed into the map from producer
modules, processed, then streamed out to the consumer



modules. In some applications, a dedicated data channel
is preferred between a perceptual module and the user
of that perceptual data. For example, a motor task that
causes the robot to track and physically point at an object
requires minimal lag time between the pose detection of
the object and the communication of that information
to an inverse kinematics module that points the hand
at the object. For this reason, the DIODE (DIstributed
Operation via Discrete Events) communication infrastruc-
ture provides a faster direct connection between modules
that bypasses the Cognitive Map while being capable of
restoring communication when the connection is lost.

III. Robot localization and object pose recovery

The current configuration of ASIMO has two cameras
installed in the head for vision. Since the physical appear-
ance of ASIMO’s head must not be altered to maintain
consistent recognizability of the robot, this constraint
limits the installation of extra sensors in the head because
of the tight space constraints within the helmet. To
maximize the flexibility of the vision system, different
cameras were used for each camera eye. The dual cameras
led to strategies that attempt to reconstruct pose from
a single camera to avoid inter-camera calibration. To get
around the potential ambiguity of 3-D reconstruction from
a single 2-D image projection, we depended on a priori
information about the physical dimensions of objects or
markers in the scene at a cost of restricting the generality
of our object pose reconstruction. Another requirement
was that the algorithms work at a fast enough frame
rate in order for the motor commands to have access to
the most recent state estimates. We built an augmented
reality system using ARToolkitPlus [11] to extract the
pose of selected objects in our scene as required by
the task. Our main objective was to provide adequate
sensing to demonstrate several high level manipulation
tasks with selected objects, rather than performing pose
determination for many different kinds of objects.

Although our system can support external cameras, we
decided to attempt all sensing with onboard cameras only
so that the robot must actuate its body to keep items of
interest in view. Since we are interested in manipulation
tasks, we decided to focus on tasks that involve objects
on a table. Using our augmented reality system and
the knowledge of the table’s dimensions, we can recover
the pose of the table with respect to the camera and
consequently use ASIMO’s internal knowledge of its joint
configurations to perform the necessary transformations
to localize the robot with respect to the table for manip-
ulation. Due to drift that occurs as ASIMO walks around
the table, the robot periodically needs to glance at the
table to relocalize itself and remove the accumulated drift
error.

We have used the knowledge that objects are placed on
the table to reconstruct wine flute locations from a single
view without the need to place markers on the container.

Fig. 2. Left: The cup detector can recover a wine flute’s position
on a table from a single view by using extracted table coordinates to
compute a homography to remove perspective effects (inset). Right:
This information is passed on to the robot for task execution. In
this case, we send the arm trajectory motions using RoboTalk to a
dynamic simulation of the robot to point at the detected wine flute.

The choice of the wine flute object was made because
ASIMO’s hands can only grasp items of less than 5cm in
diameter. The thin stem of the wine flute allows it to be
easily graspable with ASIMO’s limited manual dexterity.
Having the table pose and hence the coordinates of the
corners of the table allows us to compute a homography
[12] from the perspective view to a simulated overhead
orthographic view. From this image, cups and wine flutes
have a circular base accompanied by two straight edges
corresponding to the sides of the container (Figure 2).
Using a circular hough transform [13], the circular bases
can be detected and the distance between the two lines
connected to the base is used to determine if the detected
container is a wine flute (narrow stem) or a can. The cup
can then be located in the 2-D coordinate space of the
table and subsequently transformed into 3-D coordinates
since we know already know the table’s pose. Using the
recovered pose of the table and objects on it, there is
enough information to attempt manipulation tasks on
these objects. We implemented a pushing manipulation
mode (see Section IV-C) and are currently working on
implementing grasping for the wine flute object.

IV. Task Motion Generation
Several paradigms currently exist for controlling motion

on robotic platforms. The traditional sense-plan-act (SPA)
approach represents a flow of information from sensors,
to environment state reconstruction, to planning and
execution of the motion plan. Brooks later introduced
the subsumption architecture which allowed tight coupling
between action responses and sensor outputs, without
the need for an internal environment state or advanced
planning [14]. In either case, proponents of each control
architecture have provided examples where one method
would excel over the other. Recognizing this fact, re-
search groups independently developed hybrid solutions,
known as 3T (3-Tier) architectures, that combined a
low-level reactive feedback layer with a slow deliberative
planner via an intermediate sequencing mechanism that
communicated between the two layers [15]. Our approach
has been to development system components that can



support any of these three approaches. Mainly, the ar-
chitectural implementation can be isolated within one or
more modules that connect to the Cognitive Map. This
allows a robot to dynamically switch control architectures
depending on the task mode it is in. For example, our
robot can perform typical sense-plan-act motion programs
like pushing objects around a table (Figure 3) or a reactive
task by tracking moving objects by continuously pointing
and following the object with its hand (Figure 2).

A. RoboTalk Motion Interface

In ASIMO, different parts of the robot’s body are con-
trolled by various subsystems. To provide an easy means
for researchers to command motions on the robot without
learning the details of each subsystem, the creation of a
consistent motion interface allowed the robot’s degrees of
freedom to be set with a simple desired joint angle vector
instead of accessing multiple subsystems with different
parameters. At the lowest level, the control algorithms
that move the various degrees of freedom for the robot
reside onboard, including the walking controller which
allows positioning of individual footsteps while maintain-
ing balance. We have developed a motion interface called
RoboTalk [16] to provide a common set of API calls to
instigate motion on the robot by sending desired joint
angle positions, task space constraints (for example, end
effector conditions), or high level destination targets in
stage coordinates (for the walking subsystem).

A driver module implements the native motion com-
mands for ASIMO as described in the RoboTalk inter-
face. In RoboTalk, a server resides on the robot that
handles motion command requests from connected clients.
These commands are sent over a TCP/IP socket stream
connection and can arrive nonuniformly to the server.
Consequently, RoboTalk supports specification of timing
information and buffering to ensure a smooth motion
trajectories of desired joint angles are delivered to the
robot’s low-level PID controllers. We have used this
abstraction interface to also implement a driver for a dy-
namic simulation of ASIMO to allow testing in simulation
before experimenting on the real robot (Figure 1). All
modules using the RoboTalk interface do not have to be
changed as the robot can transparently be exchanged with
the simulator.

B. The Task Matrix

For higher level specification of motion, a module
called the Task Matrix [17] provides a mapping appa-
ratus from high level parameterized task commands (eg.,
PointAt(wine flute), Reach(box)) to low-level RoboTalk
motion commands. A common skill set of robot-dependent
primitives are implemented using the RoboTalk API to
perform reliable, repetitive behaviors. For example, in the
Reach task, motion planning is used to find collision-free
trajectories for the robot. The Task Matrix queries the
Cognitive Map (Section II-A) to convert symbolic object

labels to actual 3-D positions and orientations relative to
the robot’s own coordinate system. Currently, geometry
is obtained by matching prebuilt 3-D models with known
object labels. However, geometric information can also be
potentially obtained through a reconstruction module via
the Cognitive Map. The combination of 3-D coordinate
information and geometry allows operations, such as col-
lision avoidance in motion planning and inverse kinematics
for end-effector positioning, needed for successful task
execution. We implemented tasks like pointing (Figure
2), reaching and body gestures within the Task Matrix
framework.

C. Manipulation Tasks

As we eventually wish to demonstrate interesting tasks
that affect change in an environment, it is mandatory
to provide manipulation tasks for ASIMO. Unfortunately,
the hands of ASIMO were not originally designed for
general manipulation, being constrained to grab objects
less than 5 cm in diameter and weighing less than 0.5 kg.
The hand only has one degree of freedom, ranging from
fully open to fully closed without individual control of the
fingers or any touch sensors in the hand. This necessitated
a strict reliance on vision sensors to locate the object
to be manipulated. With these restrictions in mind, we
developed motion modules for pushing and are currently
developing grasping of limited objects in order to expand
the modes of manipulation.

The pushing manipulation was chosen to expand the
size and weight of objects that can be manipulated by
ASIMO when pick and place grasping operations are not
feasible. We define a push task that attempts to push an
object to a specified region on the table. Objects can be
pushed around a table, while avoiding collision with the
table and non-manipulated objects resting on the table.
Since the reach of ASIMO’s arms are limited, ASIMO must
engage different modes of motion to complete the task.
Three distinct modalities were identified and incorporated
into a novel multi-modal motion planner [18]: walking,
reaching to the object and executing the push. Each
modality operates in a constrained region of configuration
space. By restricting ourselves to these distinct modalities,
motion plans can be generated at an order of magnitude
faster than traditional random path planning on the full
configuration space of the robot.

V. Results

We have used the Cognitive Map to provide live
environmental estimates of the table and block objects
for our multi-modal push planner (Figure 3). Augmented
reality-based vision modules were created that stream the
table and object poses through the Cognitive Map to the
push module. The push module can dynamically define
criteria to only report the position of objects that are
within the area of the table top. Once the plan is created,
its progress is monitored as it selects the appropriate



 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

Fig. 3. ASIMO can decide between walking, reaching and pushing
modalities to move an object around a table. Top) The robot
reconstructs environment from information stored in the Cognitive
Map from perceptual modules and can plan in the reconstructed
virtual world. Bottom) Once a satisfactory plan has been found, it
can be executed on the real robot.

controller for each modality. The controllers use RoboTalk
to stream desired joint trajectories to ASIMO to perform
the motions.

The second example uses the wine flute detector de-
scribed in Section III to reconstruct the wine glass pose on
a table. A visualization module connects to the Cognitive
Map to allow the robot operator to review the robot’s
estimate of the state. This technique can help operators
troubleshoot inconsistencies in the robot’s perception
model. Once the wine flute location is identified, the Task
Matrix uses this information to activate its pointing task
to simultaneously aim different body parts at the wine
glass location (Figure 2). The head tracks the object
with its cameras, while one arm points at the object and
the other arm aims at the same object with a camera
mounted on its forearm. In this example, the actual robot
is substituted for a dynamic simulator without needing
to change any of the other system modules due to the
abstraction of the RoboTalk motion interface.

VI. Conclusion and Discussion

The use of a well-known humanoid robot like ASIMO
for research purposes can be a challenging task because
the hardware and software configurations are limited by
the need to maintain a consistent physical appearance
and by computational and storage capacity. By placing
functionality in external modules of a distributed system,
we are able to go beyond the computational restrictions
of the robot. The Cognitive Map and DIODE mechanisms

provide the necessary communication infrastructure to
share information between modules and coordinate system
activity. The limitations of this approach are the delays of
transmission that can occur in networked communication.
We have noticed this problem occasionally when sending
motion commands to the robot, producing a small pause
between the sending of a motion sequence and the actual
motion appearing on the robot. The solution to this
problem will ultimately involve a combination of using
faster networking technology and selective transfer of the
implementation of key parts of the motion trajectory
generation to the robot, where a tighter control loop
resides.

Abstraction is used to facilitate the interoperation of
perceptual modules, the Cognitive Map and the Task
Matrix. For example, sensor data is processed to produce
environmental state estimates which are collected in the
Cognitive Map for the Task Matrix to access without
concern of the source of that information. It is only
through the interaction of these components were we able
to execute complex manipulation and planning tasks like
pushing objects around a large table using multiple modal-
ities of motion such as walking, reaching and pushing.

Our approach allows different kinds of control archi-
tectures to be tested. Currently, we have implemented
tasks that follow the sense-plan-act paradigm as well
as more reactive activities such as continuously pointing
at a moving object. By focusing on the development
of useful modules that can be used in multiple control
paradigms, we are following a strategy for autonomous
robots that allows dynamic changes in its control structure
and information model that match the needs of the
current task to be performed. For example, the robot can
selectively activate the required vision modules it needs
to complete the task. This would allow a robot to switch
between many modes of behavior in a natural, seamless
manner.
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