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Abstract— Researchers and engineers have used primitive
actions to facilitate programming of tasks since the days of
Shakey [1]. Task-level programming, which requires the user to
specify only subgoals of a task to be accomplished, depends
on such a set of primitive task programs to perform these
subgoals. Past research in this area has used the commands from
robot programming languages as the vocabulary of primitive
tasks for robotic manipulators. We propose drawing from work
measurement systems to construct the vocabulary of primitive
task programs. We describe one such work measurement
system, present several primitive task programs for humanoid
robots inspired from this system, and show how these primitive
programs can be used to construct complex behaviors.

Index Terms— robot programming, task-level programming,
humanoid robots

I. INTRODUCTION

Roboticists have used primitive actions to facilitate pro-
gramming of tasks from the days of the mobile robot Shakey
[1]. Primitive actions allow users to program in the domain of
human semantics, rather than requiring programming in the
motor command space of the robot. Additionally, primitive
actions are used in imitation learning methods [2] and in
classification of observed human movement [3]. However, the
development of a standard vocabulary of primitive actions,
or primitive task programs, for humanoid robots has eluded
researchers.

This paper addresses the manual programming of hu-
manoid robots using such a vocabulary. Research into manual
programming of manipulator robots has tended to concentrate
on task-level programming [4], a method that operates by
specifying task subgoals to be accomplished rather than robot
commands to be performed. Task-level programming systems
tend to use either an ad hoc set of primitive actions or the
commands of a specific robot programming language (e.g.,
AML [5]). In contrast, we draw from research into human
occupational task performance to develop a library of robot-
independent primitive task programs for humanoids.

II. TASK-LEVEL PROGRAMMING

Task-level programming advanced the idea of decompos-
ing a goal into subtasks that can be resolved using primitive

actions. Much of the research into this area has focused
on planning. Specifically, such research has attempted to
circumvent the EXP-hard or PSPACE-complete complexity
of planning [6], ascertain how to ignore extraneous data in
constructing plans from observed task executions [7], [8], or
learning policies for executing tasks with performance criteria
[9]. Subsequently, research into “good” sets of primitive robot
actions has been relatively overlooked; researchers [4], [7]
tend to propose new primitives in an ad hoc manner. In
contrast, we propose a set of task primitives inspired by
research into human occupational tasks. Additionally, our
work focuses on robot-independent task-level programming.

It must be noted that the task primitives discussed here
share little with the concept of motor primitives [10], [11]
investigated elsewhere. Task primitives focus on the atomic
work elements necessary to accomplish a given task. In
contrast, motor primitives aim to find a lower dimensional
subspace of the thirty or more degrees-of-freedom employed
by most humanoid robots for the purpose of making learning
algorithms tractable.

III. WORK MEASUREMENT SYSTEMS

Work measurement systems are methods developed to
allow human observers to compute the mean time required to
perform a given occupational task. These systems function by
decomposing a task into primitive elements, each of which is
assigned some mean time for execution; work measurement
is proven at this decomposition. Consequently, these systems
are a cogent choice for inspiring the design of a primitive
task program vocabulary for humanoid robots.

The most prominent work measurement system is currently
the proprietary Motion-Time Measurement (MTM) system
[12]. MTM is available both in multiple primary variants
(MTM-1, MTM-2, MTM-3, and associated subvariants) and
additional versions that specialize in particular fields (e.g.,
clerical work, micro-miniature operations, metal work op-
erations, etc.). The primary variants of MTM differ in the
amount of detail that the system can capture.

This section describes the MTM-1 system [13], the first
version of MTM. The subsequent variants (MTM-2, MTM-
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3, etc.), were developed to ease the burden on the work
measurement observer at the expense of accuracy [14]; to
facilitate this goal, these systems combine the primitive
elements of MTM-1 into coarser elements. For example, the
reach, move, grasp, and release elements in MTM-1 are
merged into the MTM-2 tasks get and put; MTM-3 merges
these two elements into a single element, handle. We feel
that MTM-1 is the most suitable work measurement system
to exploit for the creation of a vocabulary of humanoid task
programs; more coarse vocabularies, such as those used in
MTM-2 and MTM-3 would lead to more complex primitive
actions.

MTM-1 elements are the result of frame-by-frame analysis
of video involving diverse areas of work [14]. Unfortu-
nately, the system can seem subjective and presumptive
in some ways. There are fuzzy boundaries between some
elements in MTM-1 (e.g., move and position, described
below). Some subcategories of elements (e.g., move to an
indefinite location) require intelligence on the part of the
observer. And, a few elements make certain assumptions
about the type of objects being handled; for example, the
grasp element supposes that the geometry of the object being
handled is roughly regular, or even cylindrical or spherical.
These apparently arbitrary decisions are likely a result of
the development of MTM-1 for work measurement, rather
than task classification. Subsequently, MTM-1 is used only
as inspiration, rather than as a canonical reference, for the
construction of the vocabulary of primitive task programs
introduced in this paper.

The remainder of this section describes the nine atomic
motion elements of the MTM-1 system: reach, move, turn
and apply pressure, grasp, position, release, disengage, eye
movements, and body, leg, and foot motions.

A. Reach

Reach is consistent with the standard definition of the
word, that of stretching the arm in order to touch or grasp
an object. The time units assigned to a particular case is
dependent upon the distance that the hand moves and whether
the dominant or secondary hand is used to perform the task.
Additionally, MTM-1 subcategorizes reaching into five cases,
listed below:

• reaching to an object in a fixed location, or to an object
in the other hand or on which the other hand rests

• reaching to a single object in a location which may vary
slightly from cycle to cycle

• reaching to an object jumbled with other objects in a
group so that search and select occur (see Figure 1a)

• reaching to a very small object or where accurate
grasping is required

• reaching to an indefinite location to get the hand out of
the way or in position for body balancing or the next
movement

B. Move

Move indicates that an object is moved with some im-
precision (contrast with position below). The timing of the
movement is modified by the distance that the object is
moved, as well as the weight of the object. MTM-1 divides
move into three subcategories:

• moving an object to the other hand or against a “stop”
• moving an object to an approximate or indefinite loca-

tion (see Figure 1b)
• moving an object to an exact location

C. Turn and apply pressure

Turn and apply pressure is a movement that describes
applying forces or torques to objects (see Figure 1c). The
MTM Manual. [13] defines turn as “the basic motion em-
ployed to rotate the hand about the long axis of the forearm”.
MTM-1 combines these somewhat dissimilar actions together
due to the prevalence of their simultaneous application. This
element’s timing is modified by the approximate quantity of
force applied and the degrees turned about the arm.

D. Grasp

The semantics of grasp, like reach, is consistent with the
accepted definition of the word. MTM-1 identifies five types
of grasps:

• the pick up grasp (further subcategorized by whether the
object is floating in space or lying close against a flat
surface and the size of the object)

• regrasping (i.e., grasping the object in a different man-
ner)

• transfer grasping (i.e., transferring the object to a differ-
ent hand)

• grasping among a jumbled collection of objects
• “contact”, “slide”, or “hook” grasping (indicates grasp-

ing with the finger tips, sliding the object along a sur-
face, or scooping the object into the hand, respectively)

E. Position

Position, as seen in Figure 1d, is used to indicate a more
refined movement than move; position is typically used in the
context of mating parts. The timing of the position element
is a function of the symmetry of the handled object (i.e.,
“symmetrical”, “semi-symmetrical”, or “non-symmetrical”),
and the difficulty of the object to handle (i.e., “easy” or
“difficulty”). These object characteristics are completely sub-
jective; the MTM manual [13] leaves the determination of
object symmetry and handling difficulty to the observer.
Additionally, position is subdivided into three categories,
based on the “class of fit”: “loose” (no pressure required),
“close” (light pressure required), and “exact” (heavy pressure
required).



F. Release

The release element is complementary to the grasp el-
ement; it consists of only two cases: a “normal” release
performed by opening the fingers as an independent motion
and a “contact release”.

G. Disengage

Disengage is complementary to position, indicating that
the operator is separating two objects. Similarly to posi-
tion, disengage is subdivided into three categories, based
on the “class of fit”: “loose” (very slight effort required,
the movement blends with the subsequent move), “close”
(normal effort required, the hand recoils slightly), and “tight”
(considerable effort required, the hand recoils markedly).
Also like position, the timing of the disengage movement is
dependent upon the handling difficulty of the object (either
“easy” or “difficult”).

H. Eye movements

Timing measurement for eye movements is also measured
by the MTM-1 system. This element considers both the “eye
travel time” (a function of the distance between points from
and to which the eye travels and perpendicular distance from
the eye to the line of travel) and the “eye focus time” (the time
required to focus upon an object). Note that head movement
is not considered.

I. Body, leg, and foot motions

MTM-1 groups several disparate motions in five subcate-
gories under the single element body, leg, and foot motions.
The individual motion times are determined by the distance
that the body, leg, or foot moves. The subcategories of this
element are: foot, leg, or foreleg motion; sidestep; bend,
stoop, kneel, or arise; sit; and walk.

IV. THE TASK MATRIX

The previous section inspired the development of our
vocabulary of humanoid task programs. The selection of the
set of primitive tasks is a critical step; however, significant
issues remain before these primitives can be implemented
programmatically on a humanoid robot and used for per-
forming arbitrary complex tasks. First, some mechanism
should be available for “porting” primitive task programs to
diverse humanoid robot platforms. Second, facilities must be
provided for executing primitive task programs concurrently
and sequentially.

The Task Matrix [15] is a viable framework for addressing
the above issues. The Task Matrix is a data structure com-
posed of a diverse collection: an assortment of heterogeneous,
robot-independent task programs, a set of sensory conditions
used for testing the state of the environment, and a specifica-
tion for robot-dependent skill modules. Additionally, the Task
Matrix enables the creation of complex task programs that
consist of primitive task programs (and even other complex

task programs) executing sequentially and concurrently; the
complex task programs are formulated using a simple state-
machine representation.

The Task Matrix is an ideal substrate for implementing
a vocabulary of primitive task programs. The task pro-
grams within the matrix are robot independent, allowing
for execution over a variety of humanoid robot platforms.
Robot independence promotes code reuse; the individual task
programs can be made more robust over time. The allowance
of sequential and concurrent execution of task programs
within the Task Matrix enables users to compose complex
behaviors from primitive task programs.

The remainder of this section discusses the interdependent,
components of the Task Matrix: conditions, skills, and task
programs. The section concludes with a description of the
connectivity between the various matrix constituents.

A. Conditions

A condition is a Boolean function of state (typically
percepts). Conditions are used both to determine whether a
task program is capable of executing (precondition) and to
determine whether a task program can continue executing
(incondition).

1) Postural: The Postural condition is satisfied if all
degrees-of-freedom for a specified kinematic chain of the
robot are equal (to within floating point tolerance) to pre-
determined values. These values are stored externally so that
porting to new robot platforms is simplified.

2) Near: The near condition determines whether an ob-
ject x is sufficiently near (the distance is a user-specified
parameter) some object y. Near can operate upon either the
bounding box or a reference point (e.g., center-of-mass, task
frame, etc.) of an object.

3) Above: The above condition determines whether the
bounding box for an object x is completely above the
bounding box for an object y (i.e., whether the bottom of
x’s bounding box is above the top of y’s bounding box.)

4) Graspable: The graspable condition is satisfied if one
of the robot’s hands is in a location such that the robot is
able to grasp the specified object.

5) Grasping: The grasping condition is satisfied if one of
the robot’s hands is currently grasping the specified object.

B. Skills

The Task Matrix relies upon a set of common (across
robot platforms) skills to perform tasks in the matrix. A task
program that simply follows a trajectory, for example, does
not operate directly upon the robot. Instead, the program
uses the trajectory following skill. The interface to skills
is independent of the underlying controllers; the task does
not need to know whether the robot uses computed torque
control, feedback control, etc.

Note that we make a critical distinction between tasks and
skills in this work. A task is a function to be performed;



(a) reach (with search and select) (b) move (c) turn and apply pressure (d) position

Fig. 1. Several examples of MTM-1 elements in action.

in contrast, skill refers to a developed ability. A task is an
objective to be accomplished and is robot independent. Skills
are diverse methods used to achieve that objective and are
robot-specific.

The common skill set for robots currently consists of
trajectory tracking (following a trajectory), motion planning
(with collision avoidance), trajectory rescaling (slowing the
timing of a trajectory so that it may be followed using
the robot’s dynamics limitations), forward and inverse kine-
matics, and a method for determining a viable humanoid
hand configuration for grasping a given object. A user that
wants to perform the programs in the Task Matrix on a
humanoid robot need only implement the common skill
set; the task programs should work approximately the same
whether the underlying controller is proportional-derivative
(PD) or computed-torque.

C. Task programs

A task program is a function of time and state that runs for
some duration (possibly unlimited), performing robot skills.
Task programs may run interactively (e.g., reactively) or may
require considerable computation for planning. Additionally,
users (or other task programs) can send parameters to a task
program that influences its execution. Note that task programs
neither query nor drive robots directly.

The remainder of this section discusses the primitive
programs in the Task Matrix that correspond directly to
the atomic elements in MTM-1. The position-controlled task
programs reach, position, grasp, release, and fixate have been
developed; these correspond to the MTM-1 elements reach,
position / move, grasp, release, and fixate.

1) Reach: The reach task program utilizes motion plan-
ning to formulate a collision-free plan for driving the hu-
manoid from its current configuration to one that allows
grasping of a specified object with a “hand” of the robot.
Reach handles three of the five subcategories of the MTM-1
reach element described in Section III-A; it does not handle
reaching to get the hand out of the way or in position for
the next movement (this is accomplished as needed by other
tasks) or reaching that requires “search and select”.

Fig. 2. A depiction of the reach task program in action. This figure shows
the process of reaching to a broom in a simulated real-world environment
in a collision-free manner.

2) Position: Position is analogous to reach with a tool
or object used as the end-effector of the robot, rather than
the hand. The position program corresponds to the MTM-1
elements move and position. We make no distinction between
the precision required to move an object; thus, we are able
to combine the two MTM-1 elements into a single task pro-
gram. The Task Matrix position program is currently unable
to move objects in ways that require interaction with the
environment. For example, position is unfit for using a tool to
compress a spring. Subsequently, position does not handle all
cases of the MTM-1 position element (i.e., it cannot handle
cases that require “light” or “heavy” pressure [see Section
III-E]). However, the Task Matrix position program does
not need to consider the symmetry of the object or its ease
of handling; the Task Matrix manages this by using grasp
configurations in the skill set (see Section IV-B). Similarly,
the task program need not consider moving the object to
an indefinite location, as is specified in the MTM-1 move
element, because the target location is a requisite parameter
for the position program.

3) Grasp: The grasp task program is used for grasping
objects for manipulation. Grasp utilizes collision detection to
move the fingers as much toward a clenched fist configuration



as possible; each segment of each finger is moved indepen-
dently in simulation until contact is made. Like reach, grasp
exits immediately if the condition grasping(object) is met,
precluding unnecessary motion planning.

Grasp currently implements only one of the five subcate-
gories of the MTM-1 grasp element, that of the “pick up”
grasp. “Regrasping” and “transfer grasping”, though not cur-
rently handled, could be added to the grasp program without
much difficulty. However, grasping among a jumbled collec-
tion of objects and grasps that require complex interactions
with the environment (i.e., the “contact”, “slide”, and “hook”
grasps) present significant obstacles to implementation. Thus,
the reach program is currently far less expressive than its
corresponding MTM-1 element.

Fig. 3. Depiction of using the grasp program to clutch a tennis ball

4) Release: Release is used to release the grasp on an
object. It utilizes a “rest” posture for the robot hand and
generates joint-space trajectories to drive the fingers from
the current grasping configuration to the rest posture. Thus,
it is equivalent to the MTM-1 “normal” release (see Section
III-F).

Fig. 4. Using release to relinquish the grip on the vacuum

5) Fixate: The fixate program focuses the robot’s “view”
(the front of the head) on both moving and non-moving
objects. Fixate was developed for two purposes. First, it
aims to make the appearance of executed tasks more human-
like by directing the robot to look at objects that it is
manipulating. However, the primary objective of fixate is to
facilitate updating of the robot’s model of the environment
where it is changing (i.e., at the locus of manipulation).

Fixate corresponds only roughly to MTM-1’s eye move-
ments element; the former specifies head and base movement,
while the latter specifies only eye movement. However, both

the fixate program and the eye movements element accom-
plish the same task, that of looking at a specific location.

Fig. 5. Depiction of the action of the fixate program; the simulated robot
is commanded to focus on the vacuum. The robot turns on its base while
simultaneously orienting its head.

D. Task Matrix connectivity
The Task Matrix is not a database; the collection of

components within it is interdependent. Indeed, the term
matrix does not refer to a mathematical array of quantities,
but rather a medium in which task programs can reside
and be interconnected. We utilize Message-Driven Machines
(MDMs) to perform macro task programs, which are task
programs composed of other task programs (including pos-
sibly other macro task programs).

MDMs operate using a message passing mechanism. Task
programs are executed or terminated based on messages from
other task programs. Typical messages include task-complete
(indicating the task has completed execution), planning-
started (indicating the planning phase of the task has be-
gun), and force-quit (indicating that the task was terminated
prematurely).

MDMs are composed of a set of states, each state corre-
sponding to a task program, and transitions. There is a many-
to-one mapping from states to task programs (i.e., multiple
states may utilize the same task program) within a MDM; the
task programs in this mapping may be primitive programs or
other MDMs. A transition within a MDM indicates that a
task program is to be executed or terminated, depending on
the transition type, and is followed if the appropriate message
is received.

It is natural to wonder what happens if one of the subtasks
in a macro task fails. We strive to make the primitive tasks
in the Task Matrix very robust, but failure is always possible.
MDMs can catch and recover from failures in execution using
an alternate path of execution, transitioned to by receiving the
task-failed message. By default, if a task-failed message is
not “caught”, execution of the MDM terminates.

V. RESULTS

We have utilized combinations of the primitive tasks
presented above to express complex behaviors, including



Fig. 6. Using a complex behavior composed of fixate, position, and release to put down an object

Fig. 7. Using a complex behavior composed of position and fixate to
simulated vacuuming debris

picking up objects, putting down objects (see Figure 6), and
performing a vacuuming task (see Figure 7) on a kinematic
simulation of the humanoid robot Asimo [16]. Previous work
[15] has demonstrated the viability of the Task Matrix frame-
work toward executing multiple primitive tasks concurrently;
for example, one such complex behavior consisted of a
simulated humanoid robot facing and waving to a moving
humanoid simultaneously.

VI. CONCLUSION

The Task Matrix and MTM-1 have served as media for
implementing a set of primitive task programs. Though the
set of primitive task programs does not yet fully correspond
to the primitive actions identified by MTM-1, these primitive
programs have already proven successful in composing sev-
eral complex position-controlled tasks. Future work will ad-
dress utilizing this vocabulary of primitive tasks for imitation
learning; we hope to endow humanoid robots with the ability
to acquire complex abilities from human demonstration.
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[4] T. Lozano-Pérez, “Task planning,” in Robot motion: planning and
control, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez,
and M. T. Mason, Eds. MIT Press, 1982, pp. 474–498.

[5] R. Taylor, P. Summers, and J. Meyer, “Aml: A manufacturing lan-
guage,” Intl. Journal of Robotics Research, vol. 1, no. 3, 1982.

[6] S. Narasimhan, “Task level strategies for robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

[7] A. M. Segre, Machine learning of robot assembly plans. Kluwer
Academic Publishers, 1988.

[8] J. R. Chen, “Constructing task-level assembly strategies in robot
programming by demonstration,” Intl. Journal of Robotics Research,
vol. 24, no. 12, pp. 1073–1085, Dec 2005.

[9] D. C. Bentivegna, “Learning from observation using primitives,” Ph.D.
dissertation, Georgia Institute of Technology, 2004.
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