
A General Joint Component Framework For Realistic Articulation in Human

Characters

Wei Shao∗

New York University
Victor Ng-Thow-Hing†

Honda Research Institute USA, Inc.

Abstract

We present a general joint component framework model that is ca-
pable of exhibiting complex behavior of joints in articulated figures.
The joints are capable of handling non-orthogonal, non-intersecting
axes of rotation and changing joint centers that are often found in
the kinematics of real anatomical joints. The adjustment of joint
articulation is done with a relatively small set of intuitive param-
eters compared to the number of articulations in the motions they
parameterize. This is done by making various linear and nonlin-
ear joint dependencies implicit within our framework. An animator
is restricted from putting the skeleton in an infeasible pose. We
have used our joint framework model to successfully model highly-
articulated complex joints such as the human spine and shoulder.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—Modelling packages; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Interaction tech-
nique;

Keywords: biomechanical joint, human modelling, articulated fig-
ure, joint modelling

1 Introduction

The need to animate realistic depictions of human characters is an
important element contributing to the appeal and success of inter-
active graphics applications. 3-D humanoids are often the physical
embodiment of the interactive interface, either serving as an avatar
for the player, or as representations of other autonomous charac-
ters in the virtual environment. While recent research has focused
on better geometric representations [DeRose et al. 1998], anatomy-
based modelling [Scheepers et al. 1997; Wilhelms and Van Gelder
1997], and pose-based skin deformation [Lewis et al. 2000; Sloan
et al. 2001; Wang and Phillips 2002] for representing and animating
the exterior skin and muscle deformations of humans, the underly-
ing articulated body representation that drives these methods has
generally been unchanged since its first use in computer animation
in the 1980’s[Tost and Pueyo 1988].

Introducing accurate biomechanical joint models to the tradi-
tional hierarchy of joint transformations can lead to improved re-

∗e-mail: weishao@cs.nyu.edu
†e-mail:vng@honda-ri.com

alism in human character animation. Interactive applications such
as 3-D computer games and virtual reality have benefited from im-
provements in graphics hardware by depicting humanoid charac-
ters with greater levels of detail in their geometric surface models.
However, studies in perception of human motion with different ge-
ometric models have suggested that observers may be more sensi-
tive to motion changes if polygonal models are used compared to
stick figures [Hodgins et al. 1998]. As the majority of 3-D interac-
tive applications use polygonal models with increasing detail, ob-
servers may be more sensitive to noticing unrealistic joint motions
in animations, such as in the shoulder and torso regions of the body.
This is especially relevant to sport simulations where perceived ath-
leticism is tied to the coordination of movement in virtual human
players. For animation techniques that deform an outer skin model
based on skeleton motion, accurate joint transformations of bone
segments can lead to better performance of these methods by im-
proving the association between skin movement and the underlying
bones in the case of pose-based deformations and modelling more
accurate muscle deformations in response to skeletal movement in
the case of anatomy-based models.

Despite the continued work to develop better joint models in both
the biomechanics and computer graphics communities (see Section
2), their adoption in mainstream computer graphics such as 3-D
games has been limited. Part of the reason may be the mispercep-
tion that complex joint models will require more user handles for
an animator to control or that these models require large changes in
software infrastructure that make their use incompatible with popu-
lar 3-D modelling packages, such as Maya[Alias/Wavefront 1999].
Indeed, the majority of commercial software allows skeleton hier-
archies to be built only as a tree of ball-and-socket joints between
bone segments. The data structures for bone segments consist of a
transformation matrix that is relative to its parent coordinate frame
in the tree. The motion of a single joint is usually restricted to the
relative motion between two adjacent bone segments.

This paper introduces a general joint component model frame-
work that allows the modelling of joint expressions over sev-
eral bone segments, biomechanically accurate joints with non-
orthogonal rotation axes, changing joint centers, closed loops, and
intuitive parameters to configure these joints. We utilize several
previous concepts developed for accurate joint modelling, and al-
low them to be expressed together within a common framework that
hides the complexity from an animator. Each joint component is a
mapping that takes a set of inputs to produce outputs that can be at-
tached to other components in the framework to produce a network
whose final outputs correspond to the transformations of individual
bone segments. The inputs of the network correspond to the set of
parameters that the animator or an animation algorithm will mod-
ify to control articulation of the human model (Figure 1). In this
manner, a relatively few set of intuitive parameters can be designed
to effectively control complex articulations in the human body. We
demonstrate the versatility of the model by building biomechani-
cally detailed shoulder and spine examples which can be manipu-
lated in real-time.

Previous developments in joint modelling are discussed in Sec-
tion 2, highlighting ideas we adopt in our component model frame-

Copyright © 2003 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2003 ACM 1-58113-645-5/03/0004 $5.00

11

Joint Set Function

Joint Components

Transformation

matrices for

segments of

joint set

Animator

modifies

degrees of

freedom/

generalized

coordinates

Figure 1: Overview of the joint component framework

work. Section 3 gives an overview of the general structure of our
joint component framework, followed by a more detailed descrip-
tion of our joint components in Section 4. In Section 5, we illustrate
how the framework can be used to model two relatively complex
joints (the spine and shoulder). Section 6 concludes with discus-
sion and future work.

2 Previous Work

The origins of articulated joint models for human character repre-
sentations can be found in the study of kinematics of robotic manip-
ulators [Craig 1989]. Early animation systems, such as PODA [Gi-
rard and Maciejewski 1985] made use of the Denavit-Hartenberg
link parameter notation from robotics to represent figures with ar-
ticulated limbs. Although the notation is a convenient way to relate
coordinate frames between adjacent segments with four parameters,
each parameter set only describes a single degree of freedom be-
tween two segments. Multiple sets of parameters must be combined
to achieve multiple degree of freedom (DOF) joints. For complex
articulations, a higher level of organization to provide a convenient,
unified interface for adjusting multiple joint DOFs to an animator
is desirable.

Although Euler angles[Craig 1989] are often used to express
segment orientations, quaternions [Shoemake 1985] and exponen-
tial maps [Grassia 1998] have emerged as excellent alternatives
that have desirable interpolation properties as well as avoiding sin-
gularities inherent with Euler angles. Nevertheless, Euler angles
have persisted in popularity probably because their degrees of free-
dom have natural analogs to motions descriptions such as twist,
flexion-extension and abduction-adduction in human movement.
Our framework does not restrict the choice of parameterization for
orientation, but allows the choice of best representation for the sit-
uation.

In the area of biomechanics, physiological joints have been
shown to have many complexities that are often neglected in graph-
ical models. For example, biomechanists routinely specify joints
with several non-orthogonal, arbitrary axes of rotation [Delp and
Loan 1995] that are better aligned to bone articulation. Many joints
have translational components and changing centers of rotation, in-
cluding the knee which is traditionally simplified as a single DOF
hinge joint [Bull and Amis 1998]. In joints like the shoulder, the
closed loop consisting of the clavicle, scapula and thoracic sur-
face of the rib cage creates a coupling between the articulations
of all these joints. Several groups model this situation by enforc-
ing a constraint on the scapula to stay on the surface of an ellipsoid
approximating the rib cage [Garner and Pandy 1999; Maurel and
Thalmann 2000]. Other structures, like the human spine, exhibit a
high degree of coupling behavior between the vertebrae. Monheit
and Badler [Monheit and Badler 1991] exploit this fact to develop a
kinematic model of the human spine that exhibits flexion/extension,
lateral bending and axial twist rotation. Our framework is designed
to accommodate all these desirable biomechanical characteristics.

Finally, there have been several animation systems that focus on
modelling accurate, anatomical joints with similar features to our
framework. Maciel et al. [Maciel et al. 2002] develop a model

that incorporates joints that can translate and rotate together on a
plane and have joint limits that dynamically change with the DOF
of any joint. Each DOF is associated with an axis of rotation or
translation for a single segment. In contrast, we have expanded our
definition to allow a DOF to control a coordinated set of motions
over several segments. Joint sinus cones [Maurel and Thalmann
2000; Wilhelms and Van Gelder 2001] have been introduced to the
graphics community to provide a better mechanism of restricting
joint angle ranges for ball-and-socket joints. We incorporated joint
cones into our framework to produce natural limits on limb motion
as DOFs are adjusted. The Peabody system [Badler et al. 1992]
collects joints into joint groups that have group angles to configure
the joint group’s segments. This system is closest to our philoso-
phy of providing a higher level organization to coordinate individ-
ual joints. Although our framework allows more generality in the
joint models by allowing changing joint centers, surface constraints
and joint sinus cones for joint limits on ball-and-socket joints, we
believe the Peabody system could similarly be extended to accom-
modate these features.

The H-Anim specification [Humanoid Animation Working
Group 1999] describes a standardized humanoid joint hierarchy for
the purpose of avatar representation. Custom joints can be added
only if they do not interfere with the movement of standard joints.
Although a standard human representation is important for avatar
exchange and compatibility in different software, the flexibility to
define new coordinated articulations is hampered by constraints en-
forced by the hierarchy.

Judging from the extensive array of previous joint models, we
can see that no single representation is best for capturing all joints.
In fact, specialized joint models are often needed, as in the shoulder
and spine. Similarly, the complexity of these articulations should be
made accessible to animators by providing intuitive controls. In ap-
plications where physiological consistency is desired, an animator
should not be allowed to configure a skeleton into a non-natural,
infeasible posture. These guidelines influenced the design of our
general joint component model.

3 General Joint Component Model

Some terminology and notation is introduced to clarify the discus-
sion that follows. An articulated figure consists of a set of segments
s that can express only rigid body motion. The segments are re-
lated to each other by a hierarchy where the motion of segment s
is expressed relative to its parent p in the form of a 4x4 transfor-
mation matrix p

s T (we will remove the superscript p when we do
not need to reference the parent segment). A segment can have no
parent, 0

s T , implying that its motion is relative to the world coordi-
nate frame. Therefore, the segments of a single articulated figure
can be partitioned into several hierarchical trees. This is useful if
an articulated figure contains free-floating segments.

A joint set J contains one or more segments whose configura-
tion is described by independent degrees of freedom (DOF) or gen-

 Acromio-
clavicular joint

 Scapula
 bone

 Scapulo-
humeral joint

 Humerus
 bone

 Sterno-
clavicular joint

 Clavicle
 bone

 Scapulo-
 thoracic joint
(behind scapula)

Figure 2: Shoulder joint set

12

eralized coordinates (GC), qJ . For each segment in the joint set,
its relative motion with its parent is described as an articulation
or joint. For example, the shoulder joint set consists of four bone
segments (clavicle, scapula, thorax and humerus) with four articu-
lations (sterno-clavicular, acromio-clavicular, scapulo-humeral and
scapulo-thoracic joints) as shown in Figure 2. Segments do not
have to be adjacent to each other within a joint set, implying a seg-
ment’s parent can reside in a different joint set.

Mathematically, the transformation matrix for each segment’s
joint in J is expressed as a changing transformation matrix func-
tion, sT (qJ). For each joint set J, we define a joint set function as a
mapping of its generalized coordinates to the transformation matrix
functions for each segment (Figure 1):

fJ : {qJ}→ {sT |s ∈ J}.

By partitioning the motion of segments of an articulated figure into
several joint sets, it is possible to kinematically control complex
articulations with only a few DOFs. In Section 5, we implemented
a 24 vertebrae human spine using three joint sets for the cervical,
thoracic and lumbar regions, with each region having three DOFs
for flexion/extension, side-bending and axial twisting.

To implement joint set functions, a set of building blocks called
joint components were designed. Each joint component implements
a cohesive function, facilitating its reuse in different contexts. A
joint component is formally defined as a mapping,

jΛ : Θ → Ω,

where Λ is a list of parameters that configure a joint component
to describe specific features such as joint limits and axes of rota-
tion. The sets, Θ and Ω can have scalar, vector or matrix elements
and correspond to the inputs and outputs of the joint component,
jΛ respectively. A joint set function comprises a network of joint
components that is created by connecting the output of one compo-
nent to the inputs of one or more other components. Generalized
coordinates feed into the network with transformation matrices for
segments produced as output. A relatively small number of simple
joint components can be combined to create a diverse array of be-
haviors. This framework allows new types of joint components to
be added and used with existing components with minimal coupling
between modules.

4 Joint Components

In our current framework, we have implemented a repertoire of
seven types of joint components: matrix multiplication, one-to-
many mapping, compensation, rotation, dependency, joint cone,
and scapula constraint. Each of these will be discussed in the fol-
lowing subsections.

4.1 Matrix Multiplication Component

The matrix multiplication component takes as input a list of several
matrices and multiplies them together to produce a single transfor-
mation matrix as output. The order of elements in the list deter-
mines the multiplication order. The output can either be the final
transformation that will be applied to the corresponding joint or an
intermediate result that will be used as input to other components.
This component is very useful as many transformations can be ex-
pressed as matrix decompositions with intuitive parameters for an
animator [Shoemake and Duff 1992].

4.2 One-to-Many Mapping Component

A one-to-many mapping component has a single scalar input and
produces a vector of one or more joint variables, which can be in-
terpreted as angles or translational units for revolute or translational

joints. This mechanism allows a single scalar DOF to control the
articulations of more than one joint. For example, we have imple-
mented a knee model where a single generalized coordinate is the
common parameter of several cubic spline functions that evaluate
the Euler angle rotations and translations for the patella, fibula and
tibia bones (Plate 1).

Within this component, each element of the output vector can
have its own linear or nonlinear function in its connection from
the input scalar. These functions can implement different rates of
change for several joint variables, unit conversions, and joint lim-
its for one or more joints. For example, the domain [0,1] can be
mapped to the limits [θmin,θmax] for a rotation angle θ .

4.3 Compensation Component

In a standard hierarchical skeleton tree, the transformations of a par-
ent segment are inherited by the child segment. However, this may
produce undesirable behavior in some situations. For instance, if
we wanted to shrug the shoulders of a human model, the rotation in
the clavicle would propagate to the humerus, causing the humerus
to rotate away from the body (Figure 3). An animator may want to
keep the orientations of the humerus and clavicle independent. The
Peabody system handles this by applying a corrective angle rota-
tion that compensates for the parent’s propagated rotation [Badler
et al. 1992]. The compensation component generalizes this concept
to cancel out the orientation transformation (created by any rotation
parameterization) of any ancestor segment (not just the direct par-
ent) for a particular segment while maintaining connectivity at the
joint with its segment by adjusting the translation of the segment.
This allows a segment to have orientation with respect to the world
frame.

The compensation component for a particular segment s takes
as input a single transformation matrix of an ancestor segment
and produces a matrix which cancels out the undesired orientation
change caused by the rotation of that ancestor. Depending on how
far up the skeleton hierarchy tree we wish to cancel out orienta-
tions, a segment can have a compensation component for each an-
cestor. The outputs of each compensation component are then mul-
tiplied using a matrix multiplication component to produce a matrix
that compensates for all the undesired movements caused by a seg-
ment’s ancestors up to a certain level in the skeleton tree. In the
shoulder joint set, two compensation components are used to create
an independent humerus orientation from the scapula and clavicle
rotation. The first component cancels the effects of the acromio-
clavicular joint (connecting the scapula to the clavicle), and the sec-
ond component nullifies the sterno-clavicular joint (connecting the
clavicle to the sternum of the rib cage).

Step 1: Step 2:

Figure 3: The two steps for computing the compensation matrix

The computation of the compensation matrix is done in two
steps. First, the inverse of the ancestor segment’s transformation
matrix is computed to cancel out its movement. At this stage, the
segment has moved back to its original position and orientation be-
fore any of the ancestor transformations have been applied. The
segment now has to be reconnected to the same coincident joint
location it shared with its parent. In the second step, a corrective

13

translation is calculated as the displacement of the segment’s local
origin caused by the ancestor’s transformation matrix.

In Figure 3, the scapula, which is the parent of the humerus, is
itself a child of the clavicle. On the left, the clavicle rotates from its
reference position (light gray), to a new configuration (dark gray).
The first step of applying the inverse transformations of the scapula
and clavicle to the humerus results in the configuration shown in
the center image. The humerus is now disjointed from the scapula.
In the second step, we apply the corrective translation (shown by
the black arrow in the right image) to the humerus to reunite it with
the scapula.

4.4 Rotation Component

The rotation component is designed to accommodate non-
orthogonal, arbitrary axes of rotation with changing joint centers
that are a function of generalized coordinate values. Joints with
multiple DOF rotations are created by combining rotation compo-
nents, each of which produces a rotation matrix for a single axis
rotation. An important simplifying assumption being made is that
the joint centers for each axis rotation is independent of the rota-
tions about the other axes. While this may not be the case in reality,
reasonable articulations were observed in the joints we created.

For each rotation component, the following rotation parameters
can be provided:

1. A list of n consecutive angle intervals:
[a0,a1), [a1,a2), . . . , [an−1,an]

2. For each angle interval [ai−1,ai),
a rotation center point ci =< cx,cy,cz >

3. a common rotation axis x.

Each angle interval has a different joint rotation center. The abil-
ity to model a changing joint rotation center is important to accu-
rately describe rotations in the knee and humerus of the shoulder
[Kapandji 1982b]. There may be only a single angle interval (and
corresponding joint center) defined for a rotation component. With
these rotation parameters and an input rotation angle α ∈ [a0,an]
(which can be derived from the output of other joint components),
the final output rotation matrix R for the joint component is com-
puted as follows:

R = Mn ×Mn−1 × ...×M1
Mi = T−1

i ×Qi ×Ti

Ti =

1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1

T−1
i =

1 0 0 cx
0 1 0 cy
0 0 1 cz
0 0 0 1

,

(1)

where R,Mi,Ti,T−1
i , and Qi are all transformation matrices. Qi is

computed from a quaternion representing the rotation of angle βi
around axis x. The angle βi is determined by

βi =

ai −ai−1 if α > ai

α −ai−1 if ai−1 < α < ai

0 otherwise
.

The final rotation of the angle α is the cumulative result of a
sequence of quaternion rotations of smaller angles βi. Each of these
quaternion rotations has its own center represented in the Ti and

C2

C1

0˚

50˚

50˚

90˚

70˚

Figure 4: Floating center of shoulder abduction. Abduction of up-
per arm takes c1 as rotation center during 0 to 50 degrees and takes
c2 during 50 to 90 degrees rotation. For an abduction angle of 70
degrees, first a 50 degree rotation is carried out around c1, and the
remaining 20 degrees uses c2 as the center of rotation.

T−1
i translation matrices. This implements a changing joint rotation

center of a joint. An example is given in Figure 4.
Notice that for a given α that falls into a certain interval

[a j−1,a j), all Mk (0 < k < j) will not depend on α since each of
their βk is a constant equal to ak − ak−1. We can precompute and
store all the matrices Mk for the full angle interval rotation to re-
duce computation. Furthermore, the cumulative matrix product R
in Equation 1 for the jth interval can have M j−1 ×M j−2 × ...×M1
precomputed and retrieved to update the articulated figure motion
at interactive rates.

4.5 Dependency Component

The dependency component allows the modelling of coupling be-
havior between different joints within a joint set. In each depen-
dency component, a pair of joints are specified, one as the active
joint a that drives the other passive joint p. The movement of a
DOF of p is set to be dependent on a DOF of a through a mapping
function. The actual nature of the mapping function used in the
dependency component can be any linear or nonlinear function. In-
terpolating splines are often convenient to match dependency rela-
tions to experimental data samples. Typically, the DOF corresponds
to Euler angles that define the rotation matrix of each joint. The de-
pendency component takes two input Euler angles, one from each
joint, and contains a mapping function to output a modified angle
for the passive joint. We implemented several types of mapping
relationships:

1. One-to-one mapping: For any given DOF value of a, a DOF
value for p is defined. For instance, the rotation of the scapula
around an axis perpendicular to its outward surface tangent
plane is almost linearly dependent on the abduction of upper
arm. A linear one-to-one mapping can capture this relation-
ship.

2. One-sided bound mapping: This is a one-to-one map where
values of p are bounded on one side by a lower or upper limit
that is a function of a DOF of a. An example of this is the
dependency between the abduction of the humerus bone and
the elevation of the clavicle bone. The higher the upper arm
is raised, the more restricted is the vertical movement of the
shoulder’s clavicle. The restriction is due to a lower limit
placed on clavicle elevation, which can be implemented as a
one-sided bound that is dependent on the amount of abduction
of the humerus.

3. Two-sided bound mapping: The value of a DOF of p is
bounded on both sides by limits dependent on a DOF of a.

14

curve C

Figure 5: Joint limit cone. On the left, a list of 14 points is used to
define the curve C. In the middle, the cone is refined using subdivi-
sion. On the right, the cone is shaded based on the twist limits on
each point. Darker shades indicate a more restricted limit range.

Again using the shoulder as an example, when the left upper
arm is rotating in the horizontal plane from the left side to the
front right of the body, the horizontal movement of the shoul-
der (at the clavicle bone) becomes more restricted. A similar
phenomenon occurs when the left upper arm is rotating to the
back of the body. Since there are both upper and lower limits,
a two-sided mapping is appropriate.

4.6 Joint Cone Component

Joint sinus cones [Maurel and Thalmann 2000; Wilhelms and Van
Gelder 2001] have been used to provide a better mechanism for
joint limits for ball-and-socket joints than pairs of Euler angle
bounds for each joint DOF. We have extended the joint cones in
[Wilhelms and Van Gelder 2001] to accommodate changing joint
centers that can occur with our rotation components.

In a joint cone component, the joint sinus cone is defined using
a reference point p and a space curve C. The reference point p is
the apex of the cone and is located at the joint center. The curve
c creates a boundary of the bottom of the cone and is defined by
an initial list of user-selected control points. Subdivision rules are
used to refine and smooth the curve. An additional vector vrest is
defined and positioned at p so that it lies in the same direction as the
bone’s longitudinal axis at its rest configuration. This cone provides
a way of bounding the movements of two DOF of a joint, such
as abduction/adduction and flexion/extension in the humerus at the
shoulder. To limit the third twist DOF, an additional pair of angle
bounds is associated with each control point on the curve c and
the point vrest . During the refinement process, new interpolated
bound pairs are computed for the new control points produced by
subdivision. To get a pair of twist limits for any given configuration
within the cone, interpolation is performed at run-time (Figure 5).

vrest

vadjusted vinput

apex of
the cone

boundary
surface

p

Figure 6: The projected configuration

Joint cone components are used to check for legal joint configu-
rations and project illegal orientations back to the boundary curve.
A joint cone component is always attached to one specific joint, say
joint j. It takes as input the transformation matrix Tinput of j, which

3rd pair

2nd pair

1st pair

perimeter
edge

axis normal
to scapula
surface

Figure 7: Reference points on scapula bone

is produced by rotation components. Tinput transforms the vector
vrest to vinput to test if the bone’s orientation is within the joint cone.
If it is, Tinput is passed out of the joint cone component. Otherwise,
a new transformation matrix Tad justed is computed by using Tinput
so that vinput is transformed to vad justed (Figure 6). The line seg-
ment connecting vinput , and vrest must intersect the boundary of the
cone at vad justed . Using vad justed , rotation angles α (for first DOF
of the joint) and β (for second DOF of the joint) from the rotation
components are newly calculated to produce the adjusted rotation
matrix Tad justed .

4.7 Scapula Constraint Component

The scapula constraint component is a custom-designed component
to handle the specific situation of the scapulo-thoracic constraint in
the shoulder. This example illustrates how the component frame-
work can be extended for special handling of an individual joint.
The scapula bone is always gliding on a curved surface defined by
ribs, muscles and fatty structures. To represent this in our model, we
use an ellipsoidal constraint as others have done in the past [Garner
and Pandy 1999; Maurel and Thalmann 2000]. However, instead of
using only one ellipsoid, we have chosen to use two, with one for
each side of the rib cage (Plate 6). This allows the constraints on
both sides of the rib cage to be properly maintained as the spine is
twisted or laterally bent. In order to constrain the scapula bone to
be gliding on the surface of an ellipsoid, we define pairs of refer-
ence points on the scapula, and make sure that at least one active
pair stays on the ellipsoid at all times (see Figure 7).

We describe how the DOF are fully determined for the scapula.
Let us think of the scapula as an initially free joint with three DOF
for rotation and three DOF for translation. Because it is attached
to the parent clavicle bone, the three DOF of translation are deter-
mined by its shared attachment point with the clavicle. We further
constrain the rotation of the scapula around an axis perpendicular
to its flat surface to be dependent on the abduction of the humerus
bone using a dependency component, removing another DOF. The
ellipsoidal constraint determines the remaining two DOF or rota-
tion. By constraining a pair of reference points on the scapula to
the ellipsoid’s surface, the configuration of scapula bone is fully
determined.

We define our pairs of reference points to lie near the outer
perimeter of the scapula as shown in Figure 7. Having several pairs
of reference points allows the contact area between the scapula and
rib cage to change depending on other joints in the shoulder. Re-
ferring to Figure 7, the area close to the 1st pair is more likely to
be in contact with the rib cage when the shoulder is lifted. The 2nd
pair is more likely to be in contact when the shoulder is lowered.
The 3rd pair is active when the scapula is fully rotated clockwise
around the axis normal to its surface. Therefore, these three pairs
of reference points are used to find a new contact pair by interpo-

15

lating over two DOFs corresponding to the amount of shoulder lift
and rotation about the scapula.

The scapula will then be rotated twice to constrain these contact
points on the surface of the ellipsoid. In the first rotation, a prede-
fined vector x1 going through the joint origin is used as the rotation
axis. Rotation of an angle θ around x1 will bring the first reference
point onto the ellipsoid surface. In the second rotation, the vector
connecting the joint origin and the first reference point is used as
the rotation axis, x2. Similarly, rotation of a angle ψ around x2 will
bring the second point onto the ellipsoid. Notice that the second ro-
tation will not change the position of the first contact point since it
is on the rotation axis x2. Binary search is used to find both rotation
angles θ and ψ .

In general, it is desirable to create joint components that can be
reused. Nevertheless, the ability to create very specialized con-
straints can be useful to create tailored, intuitive parameters to sim-
plify the description of complex articulations unique to a particular
joint. More biomechanical detail can be added to a joint component
as deemed necessary for the application.

5 Results

Having described all the joint components, we can connect them
in a network to construct joint set functions for the segments of
our skeleton. We will describe two cases of fairly complex joints
we created using our framework: the spine and the shoulder. Ini-
tial estimates of parameter data for the joints were determined from
literature on joint physiology [Kapandji 1982b; Kapandji 1982a].
Custom plug-ins were developed for the Maya 3-D modelling soft-
ware [Alias/Wavefront 1999] to allow interactive placement of the
bones and adjustment of joint parameters. Maya’s advanced mod-
elling environment allowed articulation of joint sets to be evaluated
interactively. Once we were satisfied with the joint model, we ex-
ported the parameters for all the joint components in an XML-based
file format which can be loaded into our own OpenGL-based cus-
tom application software. We implemented our joint component
framework in these two different software environments to test our
ability to interchange joint models between them. We can achieve
interactive rates on a Pentium III 933 MHz Windows 2000 machine,
with a Nvidia GeForce4 graphics card.

5.1 The Spine

There are twenty-four movable vertebrae in the spine of a human.
According to their position and functionality, they are divided into
three joint sets: the cervical region (seven vertebrae in the neck),
the thoracic region (twelve vertebrae in the thorax), and the lumbar
region (five vertebrae in the abdomen) [Kapandji 1982a]. For the
thoracic joint group, we also included all the ribs and the sternum,
creating the rib cage. For all three spine joint sets, the same type of
joint function is used. The difference between them is just the joint
parameters given for each joint group, where the amount of rotation
in the thoracic vertebrae is considerably less than the cervical and
lumbar regions.

For example, the cervical joint set has seven joints (c1-c7) as
well as seven bones (including both the vertebrae and the discs be-
tween any two vertebrae). Each joint alone has three DOF of ro-
tation and thus has three rotation components. Rotation axes and
rotation centers are estimated from [Kapandji 1982a] for each ro-
tation component. The three rotation components for a single joint
may have quite different rotation centers and non-orthogonal rota-
tion axes. A pair of joint limit angles defined by a one-to-many
mapping component is provided to bound each of the rotations.
Since rotation behavior of the vertebrae in the spine are coupled
together, we simplify movement control to have only three DOF:
flexion/extension, lateral-bending, and twisting along the vertebra

input
degrees of
freedom

Figure 8: Joint function of cervical joint set (Note: M: one-to-many
mapping, C: compensation, R: rotation, D: dependency, L: joint
cone limit, S: scapula constraint, *: multiplication)

axis. In each joint set of the spine, a one-to-many mapping com-
ponent first converts the input DOF to a rotation angle for each
vertebra in the joint set.

For example, in the cervical region, the flexion/extension maps
to the following angle rotation ranges (in degrees) for the seven ver-
tebrae (refer to Figure 8): C7 [-13.2,5.5], C6 [-7.5,5.5], C5[-4,5.5],
C4[-4.6,5.5],C3[-8,6.5],C2[-5.5,6.5],C1[-18.5,6.5]. The conver-
sion is a linear map between [-1,1] and a pair of vertebra-specific
angle limits [min, max]. Each angle is then sent to a specific rota-
tion component for the vertebra it corresponds to.

The output matrices of the rotation components for each DOF
will be directed into a matrix multiplication component to gener-
ate the final transformation for the vertebrae. This is illustrated in
Figure 8 for the cervical joint set.

The implementation of joint set functions for the thoracic and
lumbar are similar to the cervical vertebrae with the exception that
the thoracic group contains ribs attached to each vertebra. Because
the rib cage creates a closed chain with the spine and sternum, it
tends to resist thoracic spine movement that would otherwise cause
the individual ribs to rotate away or into each other during lateral
bending. By carefully choosing the joint parameters for the ribs, the
rotation of a rib can be set to be dependent on the amount of motion
of its attached thoracic vertebra to maintain the overall shape of the
rib cage. Intuitively, we should rotate the ribs in a direction opposite
to that of the spine’s rotation with the ribs always rotating less than
spine. Therefore, we choose to define the axes of ribs to be opposite
to those for vertebrae and define their rotation limits to be smaller.
As shown in Plate 2, we can successfully approximate the non-
rigidity of the whole rib cage (but not that of single ribs). For more
accurate deformations of the rib cage, a custom joint component
can be designed.

To summarize, our spine model is composed of three joint sets.
Each joint set has three DOF of rotation for flexion/extension, lat-
eral bending, and twist, making a total of nine DOF to control the
entire spine and the rib cage. This is considerably less than the
total number of articulations achievable in our model because we
have implicitly built in the various dependencies. Although our
model is probably still not as accurate as a real human spine, we can
achieve fairly realistic spine configurations (Plates 3 & 4) with a
lightweight, intuitive control mechanism. We believe that our spine
model is an acceptable compromise between the need for accuracy
and simplicity of control.

5.2 The Shoulder

The shoulder is one of the most complex joints in the human
body, making it a good test of the versatility of our joint compo-
nent framework model. The shoulder comprises four articulations
(the scapulo-humeral joint, the acromio-clavicular joint, the sterno-

16

clavicular joint, and the sliding scapulo-thoracic joint) (Figure 2).
Several bones are involved in these joints: the clavicle, scapula,
humerus, sternum and rib cage (Plate 5). In addition to the bone
articulations, ligaments, cartilage and muscles also play important
roles in the shoulder to create coupling behavior and dependencies
among the shoulder’s joints.

We put the shoulder complex (four joints and three bones) into
a shoulder joint set. Its joint set function has five DOF, of which
three control the scapulo-humeral joint (flexion/extension, abduc-
tion/adduction and twist of the humerus bone) and two control the
sterno-clavicular joint (vertical and horizontal rotation of the clavi-
cle bone). The acromio-clavicular joint has zero controllable DOF
because its movement can be fully determined by movements of the
other two joints and the ellipsoidal surface constraint with the rib
cage. The joint set function outputs three transformation matrices
for the three joints respectively. Inside, the function has three parts,
each in charge of one joint which we now describe.

Figure 9: Joint function of shoulder joint set: part 1

The first function part computes the matrix for the scapulo-
humeral joint. Shown in Figure 9, each control input goes first
through a one-to-many mapping component at which time it is con-
verted to an angle in the range of [-180, 180]. The two angles of
flexion/extension and abduction/adduction will be sent into two ro-
tation components to create their rotation matrices. For the right
arm abduction/adduction, the rotation component has two intervals,
[0,60] and [60,180] degrees, with rotation centers in the humerus lo-
cal coordinate system of (-0.373, -0.247, -0.181) and (-0.373, 0.449,
-0.181) respectively.1 The combined result of these two matrices,
together with the twist angle, will then go through a joint cone com-
ponent (Figure 5) to produce a final valid orientation matrix. As
we need to compensate movements from both the parent joint and
grandparent joint of scapulo-humeral joint, two compensation com-
ponents are needed. Their inputs are the final outputs of the other
two function parts, which will be discussed shortly. By multiplying
compensation matrices and the final rotation matrices together, we
get the final transformation of this joint.

Figure 10: Joint function of shoulder joint set: part 2

Proceeding to the next function part, which is in charge of the
sterno-clavicular joint (Figure 10). Each input DOF goes through
a one-to-many mapping component and gets converted to an an-
gle. The two angles, together with two angles of the scapulo-
humeral joint, are sent as input into two dependency components
since the rotation angles of the clavicle partially depend on those

1These coordinates depend on the measurement units, bone geometry
and local coordinate systems of the segments used to represent the skeleton
model and therefore will vary between different models.

of the upper arm as we described in Section 4.5. For example, in
the right shoulder, a piecewise linear function maps the humerus
abduction/adduction angles of 0, 60, 120, 180 degrees to the clavi-
cle elevation angles of -10, -6.7, 4.85, and 23 degrees respectively.
Rotation components construct matrices using the outputs from de-
pendency components and the combined result gets tested in a joint
cone component. Its output provides the final transformation.

Figure 11: Joint function of shoulder joint set: part 3

The third function part controls the acromio-clavicular joint
(Figure 11). All its inputs are from the other two function parts
discussed above. From the first part, we have the abduction angle
of the upper arm, which will decide, through a dependency com-
ponent and a rotation component, the rotation of the scapula bone
around the axis normal to its flat surface. The second part provides
the transformation of the sterno-clavicular joint, which will be used
to compute the compensation matrix. Then the scapula constraint
component will use the combined results to produce another two
angles. For the right shoulder, the initial local axis of rotation on
the scapula was (0.263, -0.912, 0.314). The three pairs of reference
points on the scapula (see Figure 7) in its local coordinates were
(8.5,-4,-0.3) with (8.7, -2.4, -0.1), (8.2,0,-0.1) with (7.5,2,0), and
(8,2,-0.8) with (7,3,-0.6) respectively. The two angles are used to
rotate the scapula onto the surface of an ellipsoid that is fixed in the
sternum’s frame of reference. Finally, the three rotation matrices
and the compensation matrix are multiplied together, bringing us
the final transformation.

Notice that these three function parts are tightly linked together.
It is not possible to completely compute any of them independently
of the others. This is because the computation of the first part de-
pends on the final results of the other two parts, which need interme-
diate results from the first part as their inputs. However, there exists
a strict topological order for these computations over the whole net-
work of these three parts, allowing the joint function to be serially
computed with no danger of deadlock.

To summarize, the shoulder in our model is deterministically
controlled by a complex function with a very simple interface (only
five DOF). Realism is not sacrificed. Not only do we model the
independent movements of the shoulder and upper arm, their cou-
pling behavior is captured as well. (Plates 5 & 6)

6 Conclusion

In this paper, we introduced a new method for building joint mod-
els for articulated figures. We develop a repertoire of different joint
components, each of which implements a simple functionality yet
combined can produce complex behaviors. The interface inputs to
the joint set functions can be designed to have intuitive interpreta-
tions to an animator, and be sufficiently compact because all depen-
dencies and coupling of the joints are implicitly built into the joint
set function. Joint components can be reused in different contexts
or extended to incorporate increasing accuracy in the joint model.

We have filled our repertoire with seven components. Using
these components, we outlined the construction of two complex
joints for the upper body in our skeleton model. They each have
a simple control interface, and can be computed quickly enough for

17

real-time interactive applications, while simultaneously producing
realistic joint movements. On the other hand, our joint models are
not an exact replica of real anatomical joints. The joint designer
is enabled through the framework to consider different competing
criteria such as desired level of detail, joint parameter design, and
computational complexity to develop suitable models for the de-
sired target application.

Due to the complexity of several joint functions, it may not al-
ways be possible to compute their analytic derivatives which would
be needed for inverse kinematics or gradient-based optimization.
However, as the joint set functions produce deterministic joint
transformations, one could use finite difference techniques to es-
timate their derivatives. We are currently using this framework to
find subject-specific parameters that will allow the same joint set
functions to be customized for different individuals or animals. The
seven joint components we defined do not represent a complete set
for modelling all joints at every level of accuracy. In particular,
through the design of new components or new joint sets, we would
like to incorporate and combine various joint models developed in
the biomechanics community to make them easily accessible within
a single convenient toolbox.

Acknowledgments

This project is supported by the Honda Research Institute USA, Inc.
We would also like to thank the reviewers for their helpful sugges-
tions.

References

ALIAS/WAVEFRONT, A. D. O. S., 1999. Maya. 3-D modeling
system.

BADLER, N. I., PHILLIPS, C. B., AND WEBBER, B. L. 1992.
Virtual humans and simulated agents. Oxford University Press.

BULL, A. M. J., AND AMIS, A. A. 1998. Knee joint motion:
description and measurement. In Proc. Instn. Mech. Engrs.,
vol. 212 Part H, 357–372.

CRAIG, J. J. 1989. Introduction to Robotics: Mechanics and Con-
trol. Addison-Wesley.

DELP, S. L., AND LOAN, J. P. 1995. A graphics-based software
system to develop and analyze models of musculoskeletal struc-
tures. Comput. Biol. Med. 25, 1, 21–34.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
surfaces in character animation. In Computer Graphics (SIG-
GRAPH ’98 Proceedings), 85–94.

GARNER, B. A., AND PANDY, M. G. 1999. A kinematic model of
the upper limb based on the visible human project (vhp) image
dataset. Computer Methods in Biomechanics and Biomedical
Engineering 2, 107–124.

GIRARD, M., AND MACIEJEWSKI, A. A. 1985. Computational
modeling for the computer animation of legged figures. In Com-
puter Graphics (SIGGRAPH ’85 Proceedings), B. A. Barsky,
Ed., vol. 19, 263–270.

GRASSIA, F. S. 1998. Practical parameterization of rotations using
the exponential map. Journal of Graphics Tools 3, 3, 29–48.

HODGINS, J. K., O’BRIEN, J. F., AND TUMBLIN, J. 1998. Per-
ception of human motion with different geometric models. IEEE
Transactions on Visualization and Computer Graphics 4, 4, 307–
316.

HUMANOID ANIMATION WORKING GROUP, 1999. H-anim 1.1
specification for a standard humanoid. www.h-anim.org.

KAPANDJI, I. A. 1982. The Physiology of the Joints: The Trunk
and the Vertebral Column, 2 ed., vol. 3. Churchill Livingstone.

KAPANDJI, I. A. 1982. The Physiology of the Joints: Upper Limb,
2 ed., vol. 1. Churchill Livingstone.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: A unified approach to shape interpolation
and skeleton-driven deformation. In Computer Graphics (SIG-
GRAPH 2000 Proceedings), 165–172.

MACIEL, A., NEDEL, L. P., AND DAL SASSO FREITAS, C. M.
2002. Anatomy-based joint models for virtual human skeletons.
In Proceedings of Computer Animation 2002, 220–224.

MAUREL, W., AND THALMANN, D. 2000. Human shoulder mod-
eling including scapulo-thoracic constraint and joint sinus cones.
Computers and Graphics 24, 2, 203–218.

MONHEIT, G., AND BADLER, N. I. 1991. A kinematic model
of the human spine and torso. IEEE Computer Graphics and
Applications 11, 2 (March), 29–38.

SCHEEPERS, F., PARENT, R. E., CARLSON, W., AND MAY, S. F.
1997. Anatomy-based modeling of the human musculature. In
Computer Graphics (SIGGRAPH ’97 Proceedings), 163–172.

SHOEMAKE, K., AND DUFF, T. 1992. Matrix animation and polar
decomposition. In Proceedings of Graphics Interface ’92, 258–
264.

SHOEMAKE, K. 1985. Animating rotations with quaternion curves.
In Computer Graphics (SIGGRAPH ’85 Proceedings), vol. 19,
245–254.

SLOAN, P., ROSE, C., AND COHEN, M. 2001. Shape by exam-
ple. In Proceedings of the 2001 Symposium on Interactive 3D
Graphics, 135–143.

TOST, D., AND PUEYO, X. 1988. Human body animation: a
survey. The Visual Computer 3, 5 (March), 254–264.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight envelop-
ing: Least-squares approximation techniques for skin animation.
In 2002 ACM SIGGRAPH Symposium on Computer Animation,
129–138.

WILHELMS, J., AND VAN GELDER, A. 1997. Anatomically based
modeling. In Computer Graphics (SIGGRAPH ’97 Proceed-
ings), 173–180.

WILHELMS, J., AND VAN GELDER, A. 2001. Fast and easy reach-
cone joint limits. Journal of Graphics Tools 6, 2, 27–41.

18

A General Joint Component Framework For Realistic Articulation in Human Characters
Wei Shao and Victor Ng-Thow-Hing

Plate 1: Four snapshots of the knee joint driven by a single DOF.
Notice how the joint center (yellow and black disk) changes during
the motion.

Plate 2: Lateral bending in the spine with the rib cage intact

Plate 3: Flexion in cervical vertebrae (within yellow circle)

Plate 4: Lumbar region of spine (within yellow circle)

sternum

clavicle

humerus

scapula

rib cage

Plate 5: Extreme abduction of right arm in shoulder

Plate 6: Ellipsoids to constrain scapulo-thoracic joint

233

