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Abstract. Multiple scattering in participating media is generally a complex
phenomenon. In the limit of an optically thick medium, i.e., when the mean
free path of each photon is much smaller than the medium size, the effects of
multiple scattering can be approximated by a diffusion process. We introduce
this approximation from the radiative transfer literature to the computer graph-
ics community and propose several numerical methods for its solution. We
implemented both a multi-grid finite differences scheme and a finite-element
blob method.

1 Introduction

One of the principal aims of computer graphics is to accurately model the propagation
of light. One challenge in this area is to model the propagation of light in the presence
of a participating medium. Many natural environments contain participating media
such as fog, steam, mist, clouds or dust. Typically in such environments each beam
of light undergoes many changes as it interacts with the participating medium. The
phenomenon of scattering, which changes the direction of propagation, makes this
process particularly complicated. In rendering these effects, most researchers make the
assumption that the light rays propagating through the medium encounter at most only
one scatter event [3, 14]. To model the effects of multiple scattering, researchers either
make simplifying assumptions about the participating medium or resort to expensive
simulations. Rushmeier et al. assume a medium with isotropic scattering properties and
derive a radiosity-style algorithm [13]. This method essentially models the interchange
of energy between cubical elements (zones) of the environment. Anisotropic effects
can also be modelled by discretizing the directions. These methods are known as
Discrete Ordinates and have been applied to the rendering of participating media by
Max and Languénou et al. [9, 8]. Other researchers have used direct Monte-Carlo
techniques to simulate the paths of light particles in general environments [1, 11].
None of these models attempt to derive analytical models to account for the effects of
multiple scattering. A notable exception is the work of Kajiya and Von Herzen [7]. They
model the effects of multiple scattering by expanding the intensity field into a spherical
harmonics basis. This method is known as the

���
-method in the transport theory

literature, where � is the degree of the highest harmonic in the expansion [2]. Kajiya
and Von Herzen derived the general method but used the

�
1 expansion in their results

as inferred from their statement: “We truncate the so-called “p-wave”, viz. after the���
1 term” [7]. In this situation, a diffusion-type equation is obtained for the scattered

part of the illumination field. Unfortunately this characterization was obscured by the
level of generality of their derivation. Also boundary conditions were not discussed in
detail.
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Fig. 1. Reduced Incident Intensity ����� vs Diffuse Intensity ���
The purpose of this paper is to present this diffusion approximation in greater detail

to the computer graphics community. The approximation is valid when scattering events
are frequent, i.e., in “optically thick” media. Under these exact conditions the effects
of multiple scattering become apparent and the single scattering approximation is no
longer valid. The effect of many scattering events is to smooth out the dependence of
the intensity on its angular variable. Intuitively, in each region of the medium we find
photons travelling in arbitrary directions.

The rest of the paper is organized as follows. Section 2 reviews the basic concepts
and equations of transport theory. In Section 3 we show how the diffusion approximation
is obtained from the transport equation. Section 4 presents numerical methods to solve
diffusion equations. In Section 5 applications and results are given. Finally in Section
6 we state the conclusions and discuss future research.

2 Transport Theory

It is often convenient to separate the intensity field into two components: the reduced
incident intensity ���
	 and the diffuse intensity ��� [6]. The reduced incident intensity
is that part of the intensity entering the participating medium which is attenuated by
both scattering and absorption. The diffuse intensity, on the other hand, is created
entirely within the medium through the phenomenon of scattering. Figure 1 illustrates
the meaning of these two terms. Specifically, consider the ray �� � � 0 ����� connecting
a point ��� on one of the surfaces of the environment to a point � 0 within the medium
(again see Fig. 1). The reduced incident intensity is then the fraction of the intensity��������� ��� coming from the surface which is not scattered away or absorbed along the ray:

���
	���� 0 � ��� � ��������� ��� exp

� � �"!�# �
0 $ ���% �'&��"( �

where $ is the density of the medium and �)! is the extinction cross-section characterizing
the scattering and absorptive properties of the medium. Indeed, it is the sum of a
scattering cross section �+* and an absorption cross section �%, : �"! � �)*.-/�), . The
albedo of the medium is the fraction of light that is scattered versus that which is
absorbed: Ω

� �+*102�"! . Usually, there is no analytical closed form for the diffuse
intensity. An equation for the diffuse intensity is obtained by equating the variation of
the diffuse intensity along a given direction to the gain in intensity due to inscatter and
emission minus losses caused by outscatter and absorption [6]:� 314 �1� � � �"! $ ���1� - � 1 � Ω �
56- Ω 5 �
	 - Ω 798��1�2: � � � 1 �



where 5 is the self-emission of the gas and 5 �
	 � 798����
	
: is the intensity due to the first
scatter of the reduced incident intensity. The functional 7 models the effect of a single
scattering event and is equal to:

798���:2���'� ��� � 1
4 � # 4 �

� � �93�� � � �����'� � � � &�� � � � 2 �
where the phase function � gives the spherical distribution of light. The phase function
is usually normalized such that its integral over all directions is 4 � . A simple measure
of the anisotropy of the participating medium is given by the first moment of the phase
function defined by ¯� � 3 0 2 ��� 1� 1

�	� � � �'& � . For negative ¯� the phase function favours
back scattering over forward scattering. The converse is true for positive ¯� . The reduced
incident intensity is generally easy to calculate, since it involves only the integration
of the density of the medium along a ray. A fast volume tracer can therefore be used
[14, 17]. The diffuse intensity requires the solution of the transport equation and is
usually more complicated to solve. In the next section we derive a diffusion equation
for this intensity.

3 The Diffusion Approximation

As stated in the previous section, the diffused intensity is entirely created within the
medium through the phenomenon of scattering. As the number of scattering events
increases, the angular dependence tends to be smoothed out (see Appendix A). This is
important since it shows that the diffuse intensity caused by many collision effects has
only a weak dependence on direction. This motivates the main approximation made in
the diffusion approximation, namely that the diffuse intensity can be expanded into the
first two terms of its Taylor expansion in the directional component only:�1�����'� ��� � � 0� ��� ��-�
 1� ��� �'3��� � 3 �
By substituting this reduced expansion of the diffuse intensity into Eq. 1 we obtain two
equations by grouping terms that have the same order. Indeed, the left hand side of Eq.
1 becomes: �93�4 �1� � � 314 � 0� -64 3�
 1� �
The scattering term on the right hand side can be calculated likewise to be:1

Ω 798��1�2: � Ω
4 � # 4 �

�
1 - ¯� � � 31� � �%- 3�3�3 � � � 0� ��� ��-�
 1� ��� �'31� � � &�� � � Ω � 0� - Ω ¯�

3 
 1� 3���
Using these relations and grouping terms that have the same order, we get two equations
for the coefficients � 0� and 
 1� :4 3�
 1� � � $ � �), � 0� � �)*�5 0�
	 � �),�5 � � (4)4 � 0� � � $ � �"! � 
 1� � �)*�� 1�
	 � � (5)

1We use the following identities:
�

4 �����1���� 0,
�

4 ���������1���� 0 and
�

4 �� ������� �������1���� 4 �
3 � .



where 5 0�
	 and � 1�
	 are the first two coefficients of 5 �
	 expanded in its angular variable.
The transport cross section �)! � is introduced as shorthand notation:�"! � � � 1 � Ω ¯� 0 3 �
�"! � �)* � 1 � ¯� 0 3 �%-6�), �
For constant phase functions, the flux � 1�
	 is equal to zero and the transport cross
section equals the extinction cross section. These two functions, then, characterize the
anisotropy of the diffuse intensity. Equations 4 and 5 are equivalent to the

�
1 equations

used by Kajiya and Von Herzen to render their clouds [7]. The diffusion aspect of these
equations is, at this point, still hidden. We achieve a single equation for the average
diffuse intensity as follows. The average flux can be extracted from the second equation
and substituted into the first one to yield a diffusion equation for the average diffuse
intensity: 4 3 � � 4 � 0� � � � � 0� - � �

0 � � 6 �
where we have used the following shorthand notations:

� ��� � � � �"! � $ ��� � � � 1 �
� ��� � � �), $ ��� � �� ��� � � �"! $ ��� �
5 0�
	 ��� ��� �)*�"! � 4 3�� 1�
	 ��� ��- �), $ ��� �
5 ��� ���

The boundary condition that no diffuse intensity can penetrate the medium at a surface
cannot be satisfied exactly, because the diffuse intensity is approximated only by its first
two moments. Instead, an approximate boundary condition that the total inward flux be
zero is appropriate. The exact form of this condition is [6]:

� 0� ��� *1� � 2 � ��� *1� ���� � 0� ��� *1�%- 2 �)*�"! � � 3�� 1�
	 ��� *1� � 0 � � 7 �
for all points � * lying on the boundary and

�
denotes the normal to the surface at point� * . Once the average diffuse intensity has been calculated, we can compute the average

flux from Equation 5:


 1� ��� � � � ��� � � � 4 � 0� ��� �%-6�)* $ ��� ��� 1�
	 ��� � � � � 8 �
In other words, the diffuse intensity is determined essentially by its first coefficient,
since the flux 
 1� is proportional to the gradient of � 0� .

The diffusion equation can also be obtained by expanding the intensity field into a
perturbation series in the dimensionless ratio

� 0�� 0, where
� �

1 02�"! $ is the mean free
path of the photons and � 0 is a characteristic length of the medium, e.g., � 0

�
100

km for clouds and � 0
�

1 m for steam rising from a kettle. When this ratio is small,
local interactions dominate and the global transport equation collapses into a diffusion
equation. The approximation is commonly considered valid when this ratio is smaller
than 1 0 4 [15].

From this diffusion equation, we can now make certain qualitative remarks concern-
ing the phenomenon of multiple scattering. The basic effect is to smear out the initial
source intensity

�
equal to the first scatter and the self-emission of the gas over time.
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Fig. 2. The multi-grid method and a “v”-cycle

The effects of multiple scattering are most pronounced when the diffusion coefficient
is high and the absorption rate is low. Specifically, the diffusion constant is higher for
phase functions favouring forward scattering ( ¯��� 0) versus backward scattering. The
same is achieved when the albedo is close to unity. Chiefly, clouds have both a high
albedo and a strong forward scattering. Multiple scattering is therefore an important
phenomenon in clouds.

In the next section we will review some numerical techniques to solve the diffusion
equation.

4 Numerical Solution of the Diffusion Equation

4.1 Multi-Grid Schemes

We obtain a straightforward numerical scheme for the diffusion equation when both
the diffuse intensity and the source intensity are discretized on a three-dimensional grid
of size � 3 and spacing � . The diffusion operator is then approximated using central
differences:

4 � 4 ��� � 	 � 1 � ��� � ��	 � 1 � ��� �.- � 	 � 1 � ��� � ��	 � 1 � ��� �'- 3�3�3�- � 	 � ��� � � 1 ��	 � ��� � � 1 � 6 ��	 � ��� �
� 2

�
where � 	 � ��� � is the sampled version of the diffusion constant. This discretization yields
a system of equations for the interior points of the domain. For large � this system
cannot be solved directly and is usually solved by relaxation [12]. After each relaxation
step, we update the boundary by discretizing Equation 7. Let �
	
��� �� � be a point on the
boundary. The variation along the normal is then approximated by:

�
��� ��	 � ��� � � ��	�� � � � � � � � ��	 � ��� �

� �
where �
	 � ��� � �� � � is the closest sample to the boundary along the normal. For example,
for the boundary point �
	
� 0 �� � , the closest point is �
	
� 1 �� � . The boundary condition is
thus satisfied if the boundary is updated after each relaxation step:

��	 � ��� � � 2 � 	 � ��� � ��	�� � � � � � � � 2 � � 3�� 	 � ��� �
� - 2 � 	 � ��� � �

where � 	 � ��� � is the sampled version of the function �%*�02�"! � � 1�
	 .
A major drawback of relaxation schemes is their slow convergence. A powerful

technique to speed up the convergence rate is to relax the system on grids with different
spacings � . Following we will briefly review this method, known as the multi-grid
method (for more details see [4]). The efficiency of the multi-grid method is due to both



the fact that it can produce a good initial estimate of the solution and that it removes
the high frequencies from the error by relaxing on coarser grids. These are achieved
by considering a hierarchy of grids of spacings � �

2 � , � � ����� , � *�� � . . . � ��� 	
	 � . The
equation is first relaxed on the finest grid for a fixed number of iterations and then
projected onto the next coarsest grid. This projection is likewise relaxed for a fixed
number of iterations. These two steps are repeated until the coarsest level has been
reached. The whole process is then reversed: each approximation is interpolated and
relaxed on to the next finer grid. This process is repeated until the finest grid is reached.
The above procedure corresponds to a complete “v-cycle” as illustrated in Figure 2. An
approximation of the solution is attained by going through a fixed number of such v-
cycles until convergence. In practice, the multi-grid is an order of magnitude faster then
straightforward relaxation. However, this method is very memory intensive for large
three-dimensional domains. Therefore, we propose an alternative method of solution
corresponding to a finite element scheme.

4.2 Blob Finite Element Method

We obtain an alternate finite representation of the diffuse intensity by expanding it into
a set of basis functions. We have chosen to experiment with a “blob representation” of
the intensity field [18]:

� 0� ��� � � 1 0 $ ��� �
�
� 	� 1

��	���	�� ��� � �%	�� � 	 � �
where ��	 , �%	 and � 	 model the mass, center and size of the blob, respectively. The
smoothing kernel depends usually on distance alone and is taken here to be a Gaussian
“bell” function. By inserting this representation into Eq. 6 and setting � � � �
( � � 1 � 3�3�3 � � ) we obtain a set of � equations:

�
� 	� 1

��	���	
� 4 � ��� � �
4 � 	 � � � ��� � � � 	 � ��- � ��� � � � 0 �
where � 	 � � � ��� � � �%	�� � 	 �
0 $ ��� � � . This method is actually a collocation method
[10]. Care should be taken that the centers of the blobs are not too proximate, to avoid
numerical instabilities. The system can be solved by ��� decomposition when the
number of blobs is below 200 or so [12].

5 Applications and Results

5.1 Light Beam in a Constant Density Atmosphere

In the first application we show the effects of the various parameters of the diffusion
equation for a simple case of a constant density $ 0 illuminated by a beam of light.
For simplicity, the propagation is limited to a two-dimensional domain. We assume
that the initial intensity

�
0 of the beam is concentrated on the lower part of the plane



corresponding to the � -axis. Then the source term of the diffusion equation can be
computed analytically [6]:

� ������� � � $ 0

� �)* - �)*1�"!�02�"! � ¯� � � 0 ��� � exp � � $ 0 �"! � ���
The flux � 	 � � appearing in the boundary conditions can be computed likewise to be:

� 	 � � � �)* ¯��"! � � 0 �
� 	 � exp � � �"! $ 0 � � � � 0 � 1 ���
We have implemented the multi-gridfinite difference scheme on a grid of size 512 � 512
with a “v”-cycle of depth 5. Only three relaxation steps were performed on each level.
The solution of the diffusion equation took approximately 30 seconds on an SGI Indigo
with an RS4000 processor. The following pictures depict both the diffuse intensity and
the sources. Figure 3 shows the effects of the following parameters on the diffusion
process: albedo Ω, extinction cross-section �)! and the first moment of the phase function
¯� . As predicted, the diffusion is strongest for forward scattering in high albedo media.

5.2 Non-Constant Densities

Now we apply the diffusion approximation to a participating medium with a non-
constant density distribution lit by a directional light source from above. We assume
that the density is modelled as a superposition of the � Gaussian blobs [18]. In this
case, the diffuse intensity drops off to zero at the edge of the density and the boundary
conditions are satisfied naturally by the blob finite elements [10]. As in the previous
example we used a two-dimensional domain. Each picture was rendered by assuming
that the domain has a certain thickness

�
. The final intensity for each pixel ������� � is then

calculated by:��������� � ��� ������� � �1� , � �9- � 1 � � ������� �
� ��	 � � where
� ������� � � exp

� � �"! $ ������� � � � �
where �

� 	 � and �
� � � . In our pictures we have set

� �
100 and the background

colour �1� , � � to blue. We have computed solutions for two different numbers of blobs.
The results are shown in Figure 5 and are compared to a multi-grid finite difference
solution. The top pictures display the source term for each method. The source term is
sampled at the center of each blob in the finite element method. The pictures at the bottom
show the result after diffusion. The results demonstrate that the diffusion approximation
does a fairly good job at approximating the solution given by the multi-grid scheme.
This is achieved by using a discretization, which is an order of magnitude more efficient
both in terms of storage (76 versus 5122 � 262144 elements) and computation time (0 � 2
versus 30 seconds). The blob solution could be used in an interactive graphics package.

5.3 Other Applications

Another potential application is the calculation of diffuse light from surfaces due to
subsurface scattering. Hanrahan and Krueger calculated the effect of multiple scattering
in the sub-surface layer using a Monte-Carlo simulation technique [5]. The multi-grid
diffusion scheme could be used on a thin slice corresponding to one of the subsurface



layers. The source intensity driving the diffusion process is equal to the refracted light
incident on the surface. However, because boundary conditions are only approximate
in the diffusion approximation, the results of such a simulation might not be sufficiently
accurate.

6 Conclusions and Future Research

In this paper we have presented and explored applications of the diffusion approximation
from transport theory to computer graphics. We have introduced a multi-gridsolution to
this equation that is efficient for nearly two-dimensional (thin slice) domains. In three-
dimensions, this method suffers from the problems associated with grid-based methods:
high computation costs and high storage requirements. To alleviate this problem, we
have proposed an efficient finite element method based on Gaussian blobs to calculate
the effects of multiple scattering in media with non-constant densities. The blob method
gives a fairly good approximation, using far less memory and computation time. The
accuracy of the diffusion approximation itself has not been tested rigorously. We intend
to compare our results with the solutions obtained via Discrete Ordinates [8].
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A Proof of Angular Smoothing Due to Multiple Scattering

Both the phase functionand the angular component of the intensityfield can be expanded
into spherical harmonics [16, 2]:

� � �93�� � � � ��
� � 0

��
� � � �

� � ���� � � � � � � ��� � � � ��� �
�����'� ��� �

��
� � � 0

� ��
� � � � � � � � � � � ����� � ��� � � � ��� ��� �

in particular � 0
�

4 � and � 1
�

2 � ¯� 0 3. We are not concerned with the exact form of
the harmonics. However, we do use the property that they form an orthonormal basis
of the functions defined on the unit sphere:

#
4 �
���� � � � � � ��� ��� � � � ���'&�� �	� � � � � � � � � � �

Consequently, a single scatter event becomes a simple multiplication by the coefficients
of the phase function:

798���:2���'� ��� � �
� � � � �

�
� � �

� � � � � � � ����� � ��� � � � ��� 1
4 � # 4 �

���� � � � � � � ��� � � � ��� � � � &�� �



� �
� � �

� �
4 � � � � � ��� � ��� � � � �����

The accumulative effect on the intensity field of � scattering events at a location � can
be expressed through the scattering functional 7 (see Eq. 2) as

7 	 8���:2���'� ��� � 7 	 � 1 8�798���:2:2���'� ��� � ��
� � 0

��
� � � �

� � �
4 ��� 	 � � � � ��� � ��� � � � �����

This last expression tends towards � 0 � 0 ��� � as � tends towards infinity. This is a conse-
quence of the fact that each coefficient � � is strictly smaller than 4 � in absolute value,
with the exception of the first one. This demonstrates that the dependence of the intensity
field diminishes as the number of scatter events � increases.
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Fig. 3. Effect of Varying Ω, ��� and ¯�



Fig. 4. Non-Constant Densities


