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Jos Stam

The simulation of fluids is one of the most
challenging problems in a number of engineering
fields. Here, I offer a solution in the form of a rapid
method I developed for computing the motion and
appearance of fluids, allowing users to interact in
real time with virtual smoke and fire. 

My work is motivated by such computer graphics
applications as designing virtual reality games and cre-
ating special effects in the entertainment industry.
Ideally, a user immersed in a virtual environment
should be able to interact with natural phenomena in
real time. Imagine an actor traversing a wall of virtual
smoke swirling to the movement of an arm. This
work will also prove of interest to other fields, includ-
ing manufacturing design, architecture, and educa-
tion. Although the related simulations are
not strictly accurate, they capture the
essential visual characteristics associated
with fluids at interactive speeds. 

This model is desirable in, say, educa-
tional software designed to familiarize
students with the basic behavior of fluids.
It might assist a designer in evaluating the

effect of fluid flows past automobile, train, and air-
plane bodies in the early stages of shape design. It
could also be used in architectural design to estimate
the general circulation of air in a building. These
potential applications, along with many others, have
been suggested by professionals with expertise beyond
the field of computer graphics. Although they were
aware of the model’s inaccuracies, they have been
amazed by both the speed and the visual quality of the
related fluid demonstrations. So, although my focus
here is on computer graphics applications, I expect it
to be of use to researchers in many other areas.

The physics of fluids provides the natural frame-
work for these simulations. Fluids have been studied
in many disciplines for the last thousand years and are

now understood fairly well. Mathemati-
cally, their behavior is described by a set of
equations known as the Navier-Stokes
equations, arrived at more than 150 years
ago by the French engineer Claude Navier
and the Irish mathematician George
Stokes. These equations have been instru-
mental in the development of my solver.W
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These simulated fluids move around 

randomly while interacting with such 

everyday objects as a human hand in 

surprisingly realistic swirls, flows, 

and vortices.
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In fact, the key idea behind it was prompted when I
noticed the visual similarity between the Navier-
Stokes equations and a simpler set of equations for
which I had already developed a rapid solver. Note,
however, that my algorithm can be understood
without precise knowledge of these equations; wher-

ever I state the equations in the article, I do so only
to get you to recognize a particular—and as it turns
out critical—similarity between two different
ideograms. 

The problem of simulating realistic fluids is equiv-
alent to writing good solvers for the Navier-Stokes
equations. Solving them is central to research in areas
as diverse as aeronautics, combustion science, bio-
physics, and mechanical engineering. However, they
are also notoriously difficult to solve, due to their
nonlinearity, complicating the relationship between
causes and effects. Because there is no general ana-
lytic solution to them, researchers have made many
different simplifying assumptions appropriate to
their disciplines. Engineering fields, including aero-
nautics, can often ignore the complex visual appear-
ance of a fluid, so long as they accurately predict
average quantities (such as the maximum stress on an
airplane wing).

In computer graphics, on the other hand, how a
fluid appears is of primary interest. A good fluid
solver in computer graphics should exhibit all the
characteristics of real fluids, such as swirling flows
around bodies. Moreover, the speed of the simulator
is crucial, since animators want close-to-real-time
feedback in a virtual environment. The novel fluid
solver I describe here seeks to meet both these
requirements. To do so, I departed from conven-
tional wisdom in the computational fluid dynamics
literature to design a fluid solver in light of the spe-
cific needs of computer graphics. Few models in
computer graphics attempt to solve the Navier-

Stokes equations directly. Early models considered
only those techniques specific to 2D fluids [6, 11].
More recently, Nick Foster of Pacific Data Images
and Dimitris Metaxas of the University of Pennsyl-
vania showed that interesting 3D flows can be ani-
mated using inaccurate solvers [4] (see Foster and

Metaxas’s “Modeling Water for Computer
Animation” in this section). But because
their method requires a small time step,
these solvers are relatively slow. My solvers
are unconditionally stable and can be
advanced over time at any speed. Figure 1
shows the solver’s basic structure, which
consists of a single loop repeated for each
time step.

My approach falls into the class of the so-
called “Semi-Lagrangian schemes” intro-
duced in the early 1950s [2]. They are rarely
used in engineering applications, because
they suffer from too much numerical dissi-
pation; the simulated fluid tends to dampen
more rapidly than an actual fluid. This

shortcoming is less of a problem in computer graph-
ics applications, especially in an interactive system in
which the flow is “kept alive” by an actor applying
external forces. In fact, a flow that does not dampen
at all might be too chaotic and difficult to control. 

As the results demonstrate, I am able to produce
nice swirling flows despite the numerical dissipation.
Moreover, these new solvers have been integrated into

an environment in which an animator, or even a
museum visitor interacting with a virtual exhibit, can
apply forces to a virtual fluid at interactive frame
rates—an effect never achieved before. Additional
visual complexity can also be added at little cost by
“dressing up” fluid flows with textures. 

Textures are widely used in computer graphics,
typically to add a more natural look inexpensively
to otherwise smooth surfaces. In the case of my
solvers, I use 3D fractal-like texture maps to add
visual detail to the densities of smoke moving
through the fluids. Similar techniques are well
known in computer graphics as “solid texture map-
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Figure 1. Overview of the solver.

Figure 2.  The Navier-Stokes equations.
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ping” [3]. The novelty of this approach is to let the
textures move naturally along the fluid flow.

A Fluid’s Velocity
Fluids are everywhere. Probably their most dramatic
manifestation is as a flow of water. The air sur-
rounding us is also a fluid, one whose motion is gov-
erned by many external factors (forces), including
heat sources, wind fans, and the movement of an
actor. The state of a volume of air is specified entirely
by its density, temperature, and velocity. Air at rest,
such as in a very quiet room, has zero velocity, con-
stant temperature, and constant density. In more
interesting environments, these quantities change
from point to point and over time. How these quan-
tities change in various situations and environments
is the subject of fluid mechanics. I assume that the
density and the temperature of the fluid are con-
stant. Constant-density fluids approximate most flu-
ids quite well, while the effects of temperature,
including buoyancy, are modeled easily using heat-
like forces. An animator needs to describe only how
the fluid’s velocity changes over time. 

The main application of a fluid solver in computer
graphics is to use the velocity field to move things
around realistically. Examples include smoke, clouds,
leaves, and flags. Consequently, in addition to a fluid
solver, graphic-effects animators also need a model for
the fluid-object interaction. Here, I emphasize the
effect of a fluid on “fuzzy” substances like smoke and
clouds that are modeled using a density function. For
example, clouds are modeled by assigning a density of
water droplets to each point in the environment.
Where there are no clouds, the density is simply zero.
However, the density of such a substance should not
be confused with the density of the fluid—air, in this
case—we assume to be constant.

The velocity of the fluid and the density of the sub-
stance are both defined on either a 2D or a 3D grid,
depending on the application. These grids are defined
entirely by their position, size, orientation, and reso-
lution in each coordinate, and they have to be large
enough to encompass the region of interest in the vir-
tual environment. The solver then updates the grids at
time events separated by a fixed time step. Before each
update, the solver displays the virtual scene from a
particular point of view, either inside the scene or out-
side looking in. Also, the solver takes input from an
interactive user interface to construct force fields and
density sources from an actor’s movements. Many
user interfaces can be devised and added to the solver,
though each requires the ability to track the move-
ments of the actor in 3D. In my implementation, the
forces and sources are returned to the application in a

set of grids. The forces set the fluid in motion and
provide the input to the fluid’s velocity solver. The
sources and the fluid’s velocity together control the
evolution of the density of the substance. 

These solvers are based on a precise mathematical
formulation of the evolution of a fluid—the Navier-
Stokes equations in Figure 2. The equation on the top
of the figure models the evolution of the fluid’s veloc-
ity; the one on the bottom describes the evolution of
the density of a substance immersed in the fluid. The
main reason I show these equations is to point out
how visually similar they are. This similarity is appar-
ent even to someone completely unfamiliar with the
equations. It gave me the insight I needed to go on to
invent the solvers. In fact, I first developed a solver for
a density moving through a static velocity field and
then realized the method could be extended to evolve
the velocity field as well. 

This approach is best explained by first describing
the density solver. (For a formal treatment of the
related mathematics, see [10], as well as [1], which
was instrumental in the development of the solver and
for the mathematical structure of the Navier-Stokes
equations, and [8] for a more hands-on approach to
solving the equations.)

The equation at the bottom of Figure 2 is simply a
precise mathematical formulation of the physics that
rule the evolution of density over time. It states that
over time the density changes for the three reasons
embodied in the three terms on the right side of the
equation. The first term states the density should flow
naturally with the fluid’s velocity; the second means
the density diffuses over time, mainly due to the small
turbulences of the velocity field not modeled explic-
itly; and the last states the density increases due to
external sources. These sources are provided by the
user interface and correlated to certain motions of the
actor. For example, the actor could light up a virtual
cigarette with the tip corresponding to a source of
smoke density. The solver resolves each term sequen-
tially. The source term is the easiest to resolve in the
following way: multiply the source grid (provided by
the user interface) by the time step and add it to the
grid storing the densities. This method increases the
density precisely in the areas where there are sources.

The most straightforward way to handle diffusion
is to consider exchanges only between adjacent cells
(see Figure 3). During the diffusion step, each cell
transfers a percentage of its density to its six closest
neighboring cells. Simultaneously, the cell receives a
percentage of its neighbor’s density. This percentage is
inversely proportional to the area of the cell’s face and
proportional to the time step and the diffusion rate.
Although this method is very easy to implement, it
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doesn’t always work. Problems arise when the cell size
is too small or when the time step or the diffusion rate
is too high. In these situations, a cell may have to give
away more than 100% of its density—an impossibil-
ity. Consequently, the
densities stored in the
grid can become negative
or grow without bounds.
In other words, instability
takes over, rendering the
simulation useless. This
method fails because the
exchange of density
requires a larger neigh-
borhood of cells. 

Any technique that
performs only explicit
updates between adjacent
cells will fail. To obtain a
stable solver, I use a dif-
ferent approach, known
as “implicit time step-
ping.” The basic idea is to
reverse the diffusion step
in time. The solver seeks a
set of new densities that, when diffused back-
ward in time, yield the initial set of densities.
Finding these new densities requires the solution of a
system of linear equations at every time step. This sys-
tem is spare and can be solved efficiently using one of
the many existing techniques in the literature [7]. I
opted for an iterative “conjugate gradient” method. In
practice, it turns out that solving a linear system with
a large implicit time step costs the application far less
computational overhead than taking many small
explicit time steps to avoid instabilities. This implicit

technique is quite standard. 
The most challenging step in the density solver is

the so-called “advection step,” which corresponds to
the first term on the right side of the density equation

in Figure 2. This term states
that the density must flow
along the velocity of the fluid.
This flow-velocity calculation
is similar to the diffusion step
in that densities are trans-
ferred between cells. In the
advection step, the transfer of
densities is greatest in the
direction of the velocity. Con-
sequently, the solver resolves
it using a similar implicit
time-stepping method. But it
turns out that there is an
alternative solution to this
problem that easily extends to
a solver for the fluid’s velocity.
The key observation is that
the advection step is solved
simply if the density is repre-
sented as a set of particles,

each carrying a certain amount of density. In this
case, the solver would then move each particle

through the velocity field, carrying the density along
that field.

The next idea is both simple and elegant. The
solver constructs a new grid of densities by computing
the initial positions of the particles that, over a single
time step, end up exactly in the centers of the grid
cells. The solver then samples the density at these ini-
tial positions through linear interpolation from the
density grid of the previous time step. These interpo-
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Figure 3. A simple but unstable solution for the diffusion step. Cells exchange densities with only
their six nearest neighboring cells (left), depending on the area of a face of the grid cell (right).

 



lated densities are then transferred to the correspond-
ing cells in which the particles end up. Figure 4 shows
how this is implemented in 2D. First, the solver traces
a particle starting at the center of a grid cell backward
in time through the fluid’s velocity. It then interpolates
the density from its four neighboring cells. Finally, it
sets the new density of the cell to the interpolated den-
sity. These three steps are performed automatically by
the solver for each grid cell. The method is stable
because it uses linear interpolation; the new values are
never larger than the maximum density of the previous
time step. Consequently, the density values remain
bounded no matter how large the time step.

A Stable Solver
Return now to Figure 2 and its equations for a flu-
id’s velocity and the density of a substance immersed
in the fluid. The evolution of velocity and density
over a time step is similar. Note that the two farthest-
right terms in the equations are almost identical;
over a time step, the velocity both diffuses and reacts
to external sources. The sources correspond to a
force field provided by the user interface as a grid of
vectors. As in the case of density, the solver multi-
plies the force grid by the time step and adds it to the
velocity. The diffusion step is resolved using the
same implicit time-stepping technique described
earlier for density. The difference is that the solver
now has to solve three diffusion steps—one for each
component of the velocity. The rate of diffusion cor-
responds to the viscosity of the fluid. Varying the vis-
cosity thus allows a wide spectrum of fluids to be
modeled, ranging from highly viscous glue-like sub-
stances to low-viscosity turbulent flows. 

The advection step is handled in the same way. In
the density case, the equation term states that the

velocity is moving the density. However, in this—the
velocity—case, we can interpret the advection step as
the “velocity moving itself.” It can be solved exactly as
in the density case. Simply trace a particle from the
center of each grid cell backward in time through the
velocity field. Then interpolate the velocity at that
location and transfer it to the grid cell. (Note that the
advection procedure is exactly like the one in Figure
4.) It can be shown mathematically that this algo-
rithm does indeed resolve the nonlinear advection
term. The advantage of this method over others is that
it is stable and easy to implement. 

So far, I have ignored another physical constraint:
that every fluid has to conserve mass, meaning the
flow into a cell should be equal to the flow coming
out of the cell. However, after the three previous
steps—adding forces, diffusion due to viscosity, and
advection—this is rarely the case. To force the veloc-
ity to conserve mass, it has to be “corrected” by sub-
tracting a vector field from it. The “corrective field”
satisfies a standard equation known as the Poisson
equation using the same techniques employed for the
diffusion term. Mass conservation is important for
producing realistic visual results, since it forces the
flow to swirl and form vortices, greatly enhancing the
flow’s realism.

Animations in 2D and 3D
I have implemented two versions, one for 2D and
one for 3D animations (see Figure 5). Most of these
images are from sequences created interactively. In
the 2D solver, the animator interacts with the fluid
through a standard input device like a mouse. Forces
and new densities are then painted into the simula-
tion at the cursor’s location. (The visual complexity
of these simulations was greatly enhanced by multi-
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time through the velocity field. A density is interpolated from its four neighbors; the 

new density is then transferred to the grid cell.
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Figure 5. Sample applications of the solver in 2D and 3D.

(a) Sequence created interactively with the 2D solver. 
The results can be used to texture map a virtual object (right).

(b) Example of 2D flow around bodies immersed in a fluid.

(c) 3D simulation of clouds animated and rendered interactively.

(d) Using the Zcam (left), an actor interacts with the 3D solver in real time.

 



plying the density by a texture map; the texture can
be any image.) When the entire grid is filled with a
constant density and the fluid is at rest, the image is
undistorted, as shown at the left of Figure 5a. 

When external forces are applied, the image
becomes warped and flows naturally along the fluid’s
velocity, also shown in Figure 5a. To achieve this
effect, I supplemented the density field with two new
scalar fields corresponding to the two texture coordi-
nates. Initially, these texture coordinates varied lin-
early from 0 to 1 across the grid. During the fluid
simulation, the density solver is applied to these tex-
ture coordinates as well, though without diffusion or
sources. Figure 5a also demonstrates that 2D flows
can be mapped to a virtual object. The solver grace-
fully handles flows around obstacles painted into the
scene as well, so they swirl and flow naturally past
these boundaries, as shown in Figure 5b.

The 3D solver needs a user interface allowing an
actor or animator to specify 3D forces and sources. I
wrote a system aimed specifically at animators who
wish to choreograph special effects involving fluids
and fuzzy densities, including smoke. In this environ-
ment, forces and sources are specified using 3D loca-
tors correlated with 2D input devices like a mouse.
Interactive changes to the input allow animators to
rapidly fine-tune a particular effect. 

To display the density field, the solver takes advan-
tage of specialized computer graphics hardware. The
cloud simulation in Figure 5c was rendered in real
time using the 3D hardware texture capabilities of an
SGI Octane workstation. Notice that the solver also
handles the effects of self-shadowing, through which a
density casts shadows on other parts of its virtual envi-
ronment and on itself. As in the solver’s 2D imple-
mentation, an animator can add realistic detail to the
density by moving 3D textures through the air fluid
flow as well. I also experimented with the volumePro
graphics card from Mitsubishi Electric Research Lab-
oratory, allowing large volumes to be rendered in real
time on a standard PC [9]. 

Figure 5d is a result of an ongoing collaboration
with 3dvSystems, an Israeli company that has devel-
oped a camera called the Zcam that records both
image and depth simultaneously in real time
(www.3dvsystems.com). In the figure, the closest
point to the camera is used as the moving location of
sources in a fluid simulation. It shows an actor inter-
acting with the fluid solver, using the tip of his finger
to add densities and stir up the fluid.

Conclusion
Development of this fluid solver shows that real-time
interaction with complex physical phenomena in a

virtual environment is increasingly feasible. Its results
were achieved not by augmenting the power of a par-
ticular application system’s hardware but by designing
algorithms in light of the special needs of computer
graphics—speed, stability, and good visual results.
This approach may allow other phenomena to be sim-
ulated rapidly as well. For example, other models for
simulating liquids, such as water [5], may be acceler-
ated using the ideas I’ve outlined here. I also wish to
extend this model to other general substances, includ-
ing clays and plastics. Modeling these materials
rapidly would have a wide range of applications in
entertainment, industrial design, and architecture.
The equations themselves are more complicated, but
I am convinced that a generalization of the technique
will prove to be effective.
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