
Real-Time Fluid Dynamics for Games

Jos Stam

Alias | wavefront
210 King Street East

Toronto, Ontario, Canada M5A 1J7
Email: jstam@aw.sgi.com,

Url: http://www.dgp.toronto.edu/people/stam/reality/index.html.

Abstract

In this paper we present a simple and rapid implementation of a fluid dynamics solver for game
engines. Our tools can greatly enhance games by providing realistic fluid-like effects such as
swirling smoke past a moving character. The potential applications are endless. Our algorithms
are based on the physical equations of fluid flow, namely the Navier-Stokes equations. These
equations are notoriously hard to solve when strict physical accuracy is of prime importance.
Our solvers on the other hand are geared towards visual quality. Our emphasis is on stability
and speed, which means that our simulations can be advanced with arbitrary time steps. We
also demonstrate that our solvers are easy to code by providing a complete C code
implementation in this paper. Our algorithms run in real-time for reasonable grid sizes in both
two and three dimensions on standard PC hardware, as demonstrated during the presentation
of this paper at the conference.

Introduction

Fluid flows are everywhere: from rising smoke, clouds and mist to the flow of rivers and
oceans. Because one of the major goals of games is to immerse players into plausible virtual
worlds, it is desirable to include fluid flows into game engines. There already exist many ad-
hoc models that attempt to fake fluid-like effects, such as particles rendered as textured
sprites. However, animating them in a convincing manner is not easy.

We believe that a better alternative is to use the physics of fluid flows which have been
developed since the time of Euler, Navier and Stokes (from the 1750’s to the 1850’s). These
developments have led to the so-called Navier-Stokes Equations, a precise mathematical
model for most fluid flows occurring in Nature. These equations, however, only admit analytical
solutions in very simple cases. No progress was therefore made until the 1950’s when
researchers started to use computers and develop numerical algorithms to solve the
equations. In general, these algorithms strive for accuracy and are fairly complex and time
consuming. This is because the applications that require these solvers have to be physically
accurate. It is obviously crucial that the stresses and drag on an airplane or a bridge are
calculated precisely.

In computer graphics and in games on the other hand what matters most is that the
simulations both look convincing and are fast. In addition it is important that the solvers aren’t

too complex so that they can be implemented on standard PCs, game consoles or PDAs. In
this paper we present a set of algorithms which meet these requirements. To achieve these
goals we depart from conventional wisdom in computational physics and develop algorithms
custom tailored for creating visual effects. Unlike physically accurate solvers which have strict
bounds on their time steps, our algorithms are stable, and never “blow up.”

The Physics of Fluids

Figure 1: The Navier-Stokes Equations for the velocity in a compact vector notation (top) and

the equation for a density moving through the velocity field (bottom).

Mathematically, the state of a fluid at a given instant of time is modeled as a velocity vector
field: a function that assigns a velocity vector to every point in space. Imagine the air that
occupies a room, its velocity will vary due to the presence of heat sources, air drafts, etc. For
example, the velocity of the air near a radiator will predominantly be pointing in the upward
direction due to heat rising. The distribution of velocities within a room is also quite complex as
is evident when watching the smoke rising from a cigarette or the motion of dust particles in
the air.The Navier-Stokes Equations are a precise description of the evolution of a velocity field
over time. Given the current state of the velocity and a current set of forces, the equations tell
us precisely how the velocity will change over an infinitesimal time step. Figure 1 (top) depicts
these equations in a compact vector-like notation. Very roughly the equation states that the
change in velocity is due to the three terms on the right hand side of the equal sign.

A velocity field on its own isn’t really visually interesting until it starts moving objects such as
smoke particles, dust or leaves. The motion of these objects is computed by converting the
velocities surrounding the object into body forces. Light objects such as dust are usually just
carried along with the velocity field: they simply follow the velocity. In the case of smoke, it is
prohibitively expensive to model every particle. Hence in this case the smoke particles are
replaced by a smoke density: a continuous function which for every point in space tells us the
amount of dust particles present. The density usually takes values between zero and one:
where there is no smoke the density is zero, and elsewhere it indicates the amount of particles
present. The evolution of the density field through the velocity field of the fluid can also be
described by a precise mathematical equation, which is depicted at the bottom of Figure 1. The
reader is not expected to fully understand these equations. However, it should be evident to
anyone that the two equations in Figure 1 look very much alike. In fact, this resemblance was

instrumental in the development of our algorithms. The equation for the density (bottom) is in
fact simpler than the one for the velocity (top). The technical reason is that the former is linear
while the latter is non-linear. We first developed an algorithm for the density moving through a
fixed velocity field and then realized we could apply it to compute the evolution of the velocity
field as well. In this paper we will follow this historical development. First we will show how to
solve the density equation. This will familiarize the reader with the different components of our
solver. The concepts involved are also easier to explain and visualize. Subsequently we will
transfer these ideas to the harder problem of simulating velocity fields.

A Fluid in a Box

N+1

N

N-1

2

1

0

0 1 2 N-1 N N+1
Figure 2: Computational grids considered in this paper. Both the density and the velocity are

defined at the cell centers. The grid contains an extra layer of cells to account for the boundary
conditions.

Mathematical equations for fluids are useful when thinking about fluids in general. However, in
practice we need a finite representation for our fluids. The usual approach is to dice up a finite
region of space into identical cells and sample the fluid at each cell’s center. In this paper for
the sake of clarity we will only describe a fluid living in two dimensions. However, extensions to
three dimensions of everything stated in this paper are straightforward. Nothing in this paper is
restricted to two dimensions. Therefore, our fluid will be modeled on a square grid like the one
shown in Figure 2. We allocate an additional layer of grid cells around the fluid’s domain to
simplify the treatment of the boundaries. Both the velocity and the density are assumed to be
constant in each grid cell and we usually display their values at the cell center. In practice we
allocate two arrays for both the density and the velocity of size, size=(N+2)*(N+2):

static u[size], v[size], u_prev[size], v_p rev[size];
static dens[size], dens_prev[size];

We prefer to use single dimensional arrays over double ones for efficiency purposes. The
array elements are referenced using the following macro:

#define IX(i,j) ((i)+(N+2)*(j))

For example cell (i,j) of the horizontal component of the velocity is given by the entry
u[IX(i,j)]. We also assume that the physical length of each side of the grid is one so that the
grid spacing is given by h=1/N.

The basic structure of our solver is as follows. We start with some initial state for the velocity
and the density and then update its values according to events happening in the environment.
In our prototype we let the user apply forces and add density sources with the mouse. Forces
will set the fluid into motion while sources will inject densities into the environment. In a game
the forces could come from a virtual fan, a creature blowing air or a falling object, while the
density sources could be located at the tip of a burning cigarette or at the top of a smoke stack.
The simulation is therefore a set of snapshots of the velocity and density grids. We assume
that the time spacing between the snapshots is given by the fixed variable dt in the remainder
of this paper.

Moving Densities

Initial Density Add Forces Diffuse Move

Figure 3: Basic structure of the density solver. At every time step we resolve the three terms

appearing on the right hand side of the density equation (see bottom of Figure 1).

As explained above we will first describe our solver for a density field moving through a fixed
velocity field that doesn’t change over time. Let us consider the density equation again
depicted in the bottom of Figure 1. This equation states that the changes in density over a
single time step are due to three causes. These causes are the three terms on the right hand
side of the equal sign in the equation. The first term says that the density should follow the
velocity field, the second states that the density may diffuse at a certain rate and the third term
says that the density increases due to sources. Our solver will resolve these terms in the
reverse order as they appear in the equation as shown in Figure 3. We start from an initial
density and then repeatedly resolve these three terms over each time step.

The first term is easy to implement. We assume that the sources for a given frame are
provided in an array s[].This array is filled in by some part of the game engine which detects
sources of density. In our prototype it is filled in from the user’s mouse movement. The routine
that adds the source to the density is simply:

void add_source (int N, float * x, float * s, float dt)
{
 int i, size=(N+2)*(N+2);

 for (i=0 ; i<size ; i++) x[i] += dt*s[i];
}

i,ji-1,j i+1,j

i,j+1

i,j-1

Figure 4: Through diffusion each cell exchanges density with its direct neighbors.

The second step accounts for possible diffusion at a rate diff, when diff>0 the density will
spread across the grid cells. We first consider what happens at a single grid cell. In this case
we assume that the cell exchanges densities only with its four direct neighbors as shown in
Figure 4. The cell’s density will decrease by losing density to its neighbors, but will also
increase due to densities flowing in from the neighbors, which results in a net difference of

x0[IX(i-1,j)]+x0[IX(i+1,j)]+x0[IX(i,j-1)]+x0[IX(i,j+1)]-4*x0[IX(i,j)]

A possible implementation of a diffusion solver then simply computes these exchanges at
every grid cell and adds them to the existing values. This would result in the following simple
implementation

void diffuse_bad (int N, int b, float * x, float * x0, float diff, float dt)
{

int i, j;
float a=dt*diff*N*N;

for (i=1 ; i<=N ; i++) {

for (j=1 ; j<=N ; j++) {
 x[IX(i,j)] = x0[IX(i,j)] + a*(x0[IX(i-1,j)]+x0[IX(i+1,j)]+

x0[IX(i,j-1)]+x0[IX(i,j+1)]-4*x0[IX(i,j)]);
}

}
set_bnd (N, b, x);

}

The routine set_bnd() sets the boundary cells and will be discussed below. Although the
diffusion routine is straightforward to code and might seem attractive at first, it unfortunately

doesn’t work. For large diffusion rates a the density values start to oscillate, become negative
and finally diverge, making the simulation useless. This behavior is a general problem that
plagues unstable methods. For these reasons we consider a stable method for the diffusion
step. The basic idea behind our method is to find the densities which when diffused backward
in time yield the densities we started with. In code:

x0[IX(i,j)] = x[IX(i,j)] - a*(x[IX(i-1,j)]+x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)]
 -4*x[IX(i,j)]);

This is a linear system for the unknowns x[IX(i,j)]. We could build the matrix for this linear
system and then call a standard matrix inversion routine. However, this is overkill for this
problem because the matrix is very sparse: only very few of its elements are non-zero.
Consequently we can use a simpler iterative technique to invert the matrix. The simplest
iterative solver which works well in practice is Gauss-Seidel relaxation. Here is the
implementation:

void diffuse (int N, int b, float * x, float * x0, float diff, float dt)
{

int i, j, k;
float a=dt*diff*N*N;

for (k=0 ; k<20 ; k++) {

for (i=1 ; i<=N ; i++) {
for (j=1 ; j<=N ; j++) {

 x[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+x[IX(i+1,j)]+
 x[IX(i,j-1)]+x[IX(i,j+1)]))/(1+4*a);

}
}
set_bnd (N, b, x);

}
}

The beauty of this version of the diffusion solver is that it is almost as simple as the unstable
one, but can handle any values for diff, dt, or N: no matter how big these values are the
simulation will not blow up.

Figure 5: The advection step moves the density through a static velocity field.

Let us now turn to the final step in the density solver which forces the density to follow a given
velocity field. Refer to Figure 5. Again we want a technique which is stable and doesn’t blow
up. Similarly to the diffusion step we could set up a linear system and solve it using Gauss-
Seidel relaxation. However, the resulting linear equations would now depend on the velocity,
making it trickier to solve. Fortunately, there is an alternative which is more effective. The key
idea behind this new technique is that moving densities would be easy to solve if the density
were modeled as a set of particles. In this case we would simply have to trace the particles
though the velocity field. For example, we could pretend that each grid cell’s center is a
particle and trace it through the velocity field as shown in Figure 6 (b). The problem is that we
then have to convert these particles back to grid values. How to properly do that is not
necessarily obvious. A better method is to find the particles which over a single time step end
up exactly at the grid cell’s centers as shown in Figure 6 (c). The amount of density that these
particles carry is simply obtained by linearly interpolating the density at their starting location
from the four closest neighbors. This suggests the following update procedure for the density.
Start with two grids: one that contains the density values from the previous time step and one
that will contain the new values. For each grid cell of the latter we trace the cell’s center
position backwards through the velocity field. We then linearly interpolate from the grid of
previous density values and assign this value to the current grid cell.

(a) (b) (c)

Figure 6: Basic idea behind the advection step. Instead of moving the cell centers forward in
time (b) through the velocity field shown in (a), we look for the particles which end up exactly at

the cell centers by tracing backwards in time from the cell centers (c).

The following code implements this idea. We use a simple linear backtrace.

void advect (int N, int b, float * d, float * d0, float * u, float * v, float dt)
{
 int i, j, i0, j0, i1, j1;
 float x, y, s0, t0, s1, t1, dt0;

 dt0 = dt*N;
 for (i=1 ; i<=N ; i++) {
 for (j=1 ; j<=N ; j++) {

 x = i-dt0*u[IX(i,j)]; y = j-dt0*v[IX(i,j)];
 if (x<0.5) x=0.5; if (x>N+0.5) x=N+0.5; i0=(int)x; i1=i0+1;
 if (y<0.5) y=0.5; if (y>N+0.5) y=N+0.5; j0=(int)y; j1=j0+1;
 s1 = x-i0; s0 = 1-s1; t1 = y-j0; t0 = 1-t1;
 d[IX(i,j)] = s0*(t0*d0[IX(i0,j0)]+t1*d0[IX(i0,j1)])+
 s1*(t0*d0[IX(i1,j0)]+t1*d0[IX(i1,j1)]);
 }
 }
 set_bnd (N, b, d);
}

This completes our description of the density solver. All of these steps can conveniently be
grouped together into a single routine. We assume here that the source densities are initially
contained in the x0 array.

void dens_step (int N, float * x, float * x0, float * u, float * v, float diff,

float dt)
{
 add_source (N, x, x0, dt);
 SWAP (x0, x); diffuse (N, 0, x, x0, diff, dt);
 SWAP (x0, x); advect (N, 0, x, x0, u, v, dt);
}

where SWAP is a macro that swaps the two array pointers:

#define SWAP(x0,x) {float *tmp=x0;x0=x;x=tmp;}

Evolving Velocities

We are now in a position to present the velocity solver. Once again consider the equations in
Figure 1. In the light of what we now know about the density solver we can interpret the
velocity equation as saying that the velocity over a time step changes due to three causes: the
addition of forces, viscous diffusion and self-advection. Self-advection may seem obscure but
we can simply interpret it as the fact that the velocity field is moved along itself. More
importantly we can now reuse the routines that we developed for the density solver and apply
them to update the velocity field. Assuming that the force field is stored in the arrays u0 and v0,
we have the following code:

 void vel_step (int N, float * u, float * v, float * u0, float * v0,

float visc, float dt)
{
 add_source (N, u, u0, dt); add_source (N, v, v0, dt);
 SWAP (u0, u); diffuse (N, 1, u, u0, visc, dt);

SWAP (v0, v); diffuse (N, 2, v, v0, visc, dt);
project (N, u, v, u0, v0);

 SWAP (u0, u); SWAP (v0, v);
advect (N, 1, u, u0, u0, v0, dt); advect (N, 2, v, v0, u0, v0, dt);
project (N, u, v, u0, v0);

}

Notice the similarity to the density update routine. In most cases we simply had to duplicate the
calls for each component of the velocity field. There is, however, a new routine called
project() which is not present in the density solver. This routine forces the velocity to be mass
conserving. This is an important property of real fluids which should be enforced. Visually it
forces the flow to have many vortices which produce realistic swirly-like flows. It is therefore an
important part of the solver.

 = +

 = -

Figure 7: Every velocity field is the sum of an incompressible field and a gradient field (top).
To obtain an incompressible field we simply subtract the gradient field from our current

velocities (bottom).

After the steps preceding the project() routine the velocity field seldom conserves mass. The
idea is to make it mass conserving in the last step. To achieve this we use a result from pure
mathematics called the Hodge decomposition: every velocity field is the sum of a mass
conserving field and a gradient field. This result is illustrated in Figure 7 (top). Notice how the
mass conserving field has nice swirly-like vortices, typically the type of field we would like to
have. On the other hand the gradient field shown in the upper right corner of Figure 7 is the
worst possible case: the flow at some points either points all outward or inward. In fact the
gradient field indicates the direction of steepest descent of some height function. Imagine a
terrain with hills and valleys with an arrow at every point pointing in the direction of steepest
descent. Computing the gradient is then equivalent to computing a height field. Once we have
this height field we can subtract its gradient from our velocity field to get a mass conserving
one as shown in Figure 7 (bottom). We will not go into the hairy mathematical details, but will
simply state that computing the height field involves the solution of some linear system called a

Poisson equation. This system is sparse and we can re-use our Gauss-Seidel relaxation code
developed for the density diffusion step to solve it. Here is the code for the projection step

void project (int N, float * u, float * v, float * p, float * div)
{

int i, j, k;
float h;

h = 1.0/N;
for (i=1 ; i<=N ; i++) {

 for (j=1 ; j<=N ; j++) {
 div[IX(i,j)] = -0.5*h*(u[IX(i+1,j)]-u[IX(i-1,j)]+

 v[IX(i,j+1)]-v[IX(i,j-1)]);
 p[IX(i,j)] = 0;

}
}
set_bnd (N, 0, div); set_bnd (N, 0, p);

for (k=0 ; k<20 ; k++) {

 for (i=1 ; i<=N ; i++) {
 for (j=1 ; j<=N ; j++) {
 p[IX(i,j)] = (div[IX(i,j)]+p[IX(i-1,j)]+p[IX(i+1,j)]+

 p[IX(i,j-1)]+p[IX(i,j+1)])/4;
}

 }
 set_bnd (N, 0, p);
 }

 for (i=1 ; i<=N ; i++) {
 for (j=1 ; j<=N ; j++) {
 u[IX(i,j)] -= 0.5*(p[IX(i+1,j)]-p[IX(i-1,j)])/h;
 v[IX(i,j)] -= 0.5*(p[IX(i,j+1)]-p[IX(i,j-1)])/h;
 }
 }
 set_bnd (N, 1, u); set_bnd (N, 2, v);
}

Notice that we call the project() routine twice in our code. We do this because the advect()
routine behaves more accurately when the velocity field is mass conserving. Something we
have left out up to now is the treatment of the boundary, namely the purpose of the set_bnd()
routine which appears in many places in our code. We assume that the fluid is contained in a
box with solid walls: no flow should exit the walls. This simply means that the horizontal
component of the velocity should be zero on the vertical walls, while the vertical component of
the velocity should be zero on the horizontal walls. For the density and other fields considered
in the code we simply assume continuity. The following code implements these conditions.

void set_bnd (int N, int b, float * x)
{

int i;

for (i=1 ; i<=N ; i++) {
 x[IX(0 ,i)] = b==1 ? –x[IX(1,i)] : x[IX(1,i)];
 x[IX(N+1,i)] = b==1 ? –x[IX(N,i)] : x[IX(N,i)];
 x[IX(i,0)] = b==2 ? –x[IX(i,1)] : x[IX(i,1)];

 x[IX(i,N+1)] = b==2 ? –x[IX(i,N)] : x[IX(i,N)];
}
x[IX(0 ,0)] = 0.5*(x[IX(1,0)]+x[IX(0 ,1)]);
x[IX(0 ,N+1)] = 0.5*(x[IX(1,N+1)]+x[IX(0 ,N)]);
x[IX(N+1,0)] = 0.5*(x[IX(N,0)]+x[IX(N+1,1)]);
x[IX(N+1,N+1)] = 0.5*(x[IX(N,N+1)]+x[IX(N+1,N)]);

}

Other boundary conditions are of course possible. For example, we could assume that the fluid
wraps around itself: a flow that exits one wall simply reenters the opposite one. Changing the
above to handle this case is fairly straightforward and is left as an exercise for the reader. Note
that in this case the advect() routine should also be modified. Another possibility is to have a
fixed velocity on some parts of the boundary to simulate an inflow like that found in a wind
tunnel. We encourage the reader to explore different boundary conditions.

To conclude this section here is how our code is used in our prototype

while (simulating)
{

get_from_UI (dens_prev, u_prev, v_prev);
vel_step (N, u, v, u_prev, v_prev, visc, dt);
dens_step (N, dens, dens_prev, u, v, diff, dt);
draw_dens (N, dens);

}

Extensions

The algorithm presented in this paper is one of the simplest fluid solvers one can write, it is a
little bit over 100 lines of readable C code long. In fact we challenge the reader to write an
even smaller one. However, it is somewhat limited in scope. There are many ways in which it
can be extended. We already mentioned enforcing different boundary conditions. Extending
the solver to three dimensions should be straightforward to anyone who understands our code.
All that is required is to add new arrays for the z-component of the velocity and add an
additional for-loop in our routines.

Another improvement is to add internal boundaries in the flow. This is crucial in computer
games where we want to simulate flows around characters and other objects in the
environment. A simple way of implementing internal boundaries is to allocate a Boolean grid
which indicates which cells are occupied by an object or not. Then we simply have to add
some code to the set_bnd() routine to fill in values for the occupied cells from the values of
their direct neighbors. This simple procedure will work if an object is at least two grid cells
thick, since otherwise some values might leak through the boundary. Thin objects can be
handled by carefully changing the routines provided in this paper. Whether this is worth the
effort is up to the reader.

We also implemented our algorithm on CPUs without floating point support. These include the
CPUs found on the Palm and PocketPC devices. In this case we can replace floating point
operations with fixed point arithmetic. This is actually fairly straightforward to implement.

Simply add the following macros at the beginning of your code:

typedef long freal;
#define FPP 9
#define X1_0 (1<<FPP)
#define I2X(x) ((freal)((x)<<FPP))
#define F2X(x) ((freal)((x)*X1_0))
#define X2I(x) ((int)((x)>>FPP))
#define X2F(x) ((float)(x)/X1_0)
#define XM(x,y) ((freal)(((x)*(y))>>FPP))
#define XD(x,y) ((freal)((((x))<<FPP)/(y)))

Then replace all occurrences of multiplication, divisions, etc with the macros. For example,
(int)((x*f)/y) would become X2I(XD(XM(x,f),y)).

The visual quality of the flows can be further improved by using a more sophisticated solver to
compute the solution of the linear system in the project() routine. Instead of Gauss-Seidel
relaxation we could use a conjugate gradient solver which is fairly easy to code and has better
convergence properties. Nice C++ templates for various sparse linear solvers are available
from NIST [IML]. A conjugate gradient solver could also be used in the diffuse() routine.
However, we believe that it is not worth the additional effort, since the visual improvements are
minor. We also warn the reader that the conjugate gradient does not behave well with the fixed
point arithmetic implementation, where we always use simple relaxation.

We now point the reader to some recent work done in computer graphics which builds on top
of this solver or is related to it. This list is certainly not exhaustive nor do we describe these
works in great detail. It is given here to provide the motivated reader with some pointers to the
current literature.

The current solver suffers from what is called “numerical dissipation”: the fluids dampen faster
than they should in reality. This is in essence what makes the algorithms stable. Recently
Fedkiw et al. [Fedkiw01] propose a technique called “vorticity confinement” which re-injects the
lost energy due to dissipation back into the fluid, through a force which encourages the flow to
exhibit small scale vorticity. This technique works well for the simulation of smoke for example.

Another extension is to use this solver as a basis to animate water flows. In this case there are
two fluids with different densities: water and air. The air is usually not modeled and the solver
is harder to implement for the following reason: the domain of the water fluid changes over
time and has to be tracked somehow and the correct boundary conditions have to be applied
at the interface. The water region can be tracked using particles which simply move through
the fluid as done by Foster and Metaxas [Foster96] or can be tracked with a combination of
particles and level sets [Foster01,Enright02]. The latter technique has produced very nice
results but is still fairly slow in order to be included in game engines. A related problem is that
of modeling fire where again there are two different fluids interacting. In this case a reaction
occurs at the front between air and fire, see for example the recent work of Nguyen et al.
[Nguyen02].

Historical Notes

The stable density solver was developed by us in 1996, where we moved density fields
through kinetic turbulent wind fields [Stam97]. The work of Foster and Metaxas [Foster97]
which is unstable gave us the insight of applying our stable density solver to the simulation of
the fluid’s velocity. The results of this research were published in [Stam99] where we called
this approach “Stable Fluids”. Subsequently we have published a high level article [Stam00]
and an elegant implementation of the algorithm based on the Fast Fourier Transform [Stam01].
The idea of tracing back and interpolating which lies at the heart of the advect() routine
apparently goes back to the work by Courant et al. [Courant52]. It has since then been
rediscovered by many researchers in various fields and is generally classified under the
heading of “Semi-Lagrangian” techniques. Parts of our work are also protected under U. S.
patent # 6,266,071 B1 [Patent].

Results

In the last couple of years we have written many versions of the solver and various demos and
prototypes. Figure 8 depicts some snapshots of these demos, some of which were shown at
the conference during our talk. Our work, however, has culminated in the MAYA Fluid
EffectsTM feature that is now available in version 4.5 of our modeling and animation software
MAYATM. That solver is of course more sophisticated and general than the one provided in this
paper, but at its core it embodies the ideas presented in this paper. In Figure 9 we show
several effects which were modeled, animated and rendered within our animation system. A
screen saver based on this technology is available for download from:

http://www.aliaswavefront.com/en/products/maya/unlimited/fluideffects/screensaver.shtml.

Often we get asked about the accuracy of our flows, as in how do they compare to real flows?
Since we are after visual accuracy, we decided to set up some simple experiments that were
close to the ones presented in the beautiful book “An Album of Fluid Motion” [vanDyke]. Figure
10 shows some of the results. They compare favorably with the ones presented in the book.

What’s on the CDROM ?

On the CDROM accompanying these proceedings we provide the source code that appears in
this paper and a simple prototype that uses the code. The prototype uses OpenGL and GLUT
for its interface and should run on many platforms. We also have included executables that run
on Palm and PocketPC 2002 devices. Feel free to “beam out” these demos. Further material
can be found on my web page.

References

[Courant52] R. Courant and E. Isaacson and M. Rees, On the Solution of Nonlinear

Hyperbolic Differential Equations by Finite Differences, Communication on Pure
and Applied Mathematics, 5, 1952, 243-255.

[Enright01] D. Enright, S. Marschner and R. Fedkiw, Animation and Rendering of Complex
Water Surfaces, in SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, July 2002, 736-744.

[Fedkiw01] R. Fedkiw, J. Stam and H. W. Jensen, Visual Simulation of Smoke, In
SIGGRAPH 2001 Conference Proceedings, Annual Conference Series, August
2001, 15-22.

[Foster96] N. Foster and D. Metaxas, Realistic Animation of Liquids, Graphical Models and
Image Processing, volume 58, number 5, 1996, 471-483.

[Foster97] N. Foster and D. Metaxas, Modeling the Motion of a Hot, Turbulent Gas, In
SIGGRAPH 2001 Conference Proceedings, Annual Conference Series, August
1997, 181-188.

[Foster01] N.Foster and R. Fedkiw, Practical Animation of Liquids, In SIGGRAPH 2001
Conference Proceedings, Annual Conference Series, August 2001, 23-30.

[IML] The Iterative Methods Library (IML++), developed by NIST, available at
http://math.nist.gov/iml++/.

[Nguyen02] D. Q. Nguyen, R. Fedkiw and H. W. Jensen, Physically Based Modeling and
Animation of Fire, in SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, July 2002, 721-728.

[Patent] J. Stam and D. Brinsmead, Method of Producing Fluid-Like Animations Using a
Rapid and Stable Solver for the Navier-Stokes Equations, U. S. Patent
#6,266,071 B1, July 24, 2001.

[Stam97] J. Stam, A General Animation Framework for Gaseous Phenomena, ERCIM
Research Report R047, January 1997.

[Stam99] J. Stam, Stable Fluids, In SIGGRAPH 99 Conference Proceedings, Annual
Conference Series, August 1999, 121-128.

[Stam00] J. Stam, Interacting with Smoke and Fire in Real-Time. Communications of the
ACM, Volume 43, Issue 7, 2000, 76-83.

[Stam01] J. Stam, A Simple Fluid Solver based on the FFT, Journal of Graphics Tools
Volume 6, Number 2, 2001, 43-52.

[vanDyke] M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,
California, 1982.

Figure 8: Snapshots from our prototypes: two-dimensional solver (top) and three-dimensional
solver (below). In each case densities and forces were added interactively by the

user.

Figure 9: Stills of animations of various phenomena created with the MAYA Fluid EffectsTM
technology now available in MAYA 4.5.

Figure 10: Virtual experiments of Fluids. The top two pictures show a simulation of the flow
between two plates with different temperatures. When the difference in

temperature is small convection rolls appear, while for higher differences in
temperature we get buoyant plumes. The picture in the middle shows a typical
Von Karmann vortex street behind a sphere. The lower picture shows a Kelvin-

Helmholtz instability.

