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Abstract 
 
In this paper we present a simple and rapid implementation of a fluid dynamics solver for game 
engines. Our tools can greatly enhance games by providing realistic fluid-like effects such as 
swirling smoke past a moving character. The potential applications are endless. Our algorithms 
are based on the physical equations of fluid flow, namely the Navier-Stokes equations. These 
equations are notoriously hard to solve when strict physical accuracy is of prime importance. 
Our solvers on the other hand are geared towards visual quality. Our emphasis is on stability 
and speed, which means that our simulations can be advanced with arbitrary time steps. We 
also demonstrate that our solvers are easy to code by providing a complete C code 
implementation in this paper. Our algorithms run in real-time for reasonable grid sizes in both 
two and three dimensions on standard PC hardware, as demonstrated during the presentation 
of this paper at the conference. 
 
 
Introduction 
 
Fluid flows are everywhere: from rising smoke, clouds and mist to the flow of rivers and 
oceans. Because one of the major goals of games is to immerse players into plausible virtual 
worlds, it is desirable to include fluid flows into game engines. There already exist many ad-
hoc models that attempt to fake fluid-like effects, such as particles rendered as textured 
sprites. However, animating them in a convincing manner is not easy. 
 
We believe that a better alternative is to use the physics of fluid flows which have been 
developed since the time of Euler, Navier and Stokes (from the 1750’s to the 1850’s). These 
developments have led to the so-called Navier-Stokes Equations, a precise mathematical 
model for most fluid flows occurring in Nature. These equations, however, only admit analytical 
solutions in very simple cases. No progress was therefore made until the 1950’s when 
researchers started to use computers and develop numerical algorithms to solve the 
equations. In general, these algorithms strive for accuracy and are fairly complex and time 
consuming. This is because the applications that require these solvers have to be physically 
accurate. It is obviously crucial that the stresses and drag on an airplane or a bridge are 
calculated precisely. 
 
In computer graphics and in games on the other hand what matters most is that the 
simulations both look convincing and are fast. In addition it is important that the solvers aren’t 



too complex so that they can be implemented on standard PCs, game consoles or PDAs. In 
this paper we present a set of algorithms which meet these requirements. To achieve these 
goals we depart from conventional wisdom in computational physics and develop algorithms 
custom tailored for creating visual effects. Unlike physically accurate solvers which have strict 
bounds on their time steps, our algorithms are stable, and never “blow up.” 
 
The Physics of Fluids 
 

 
Figure 1: The Navier-Stokes Equations for the velocity in a compact vector notation (top) and 

the equation for a density moving through the velocity field (bottom). 
 
Mathematically, the state of a fluid at a given instant of time is modeled as a velocity vector 
field: a function that assigns a velocity vector to every point in space. Imagine the air that 
occupies a room, its velocity will vary due to the presence of heat sources, air drafts, etc. For 
example, the velocity of the air near a radiator will predominantly be pointing in the upward 
direction due to heat rising. The distribution of velocities within a room is also quite complex as 
is evident when watching the smoke rising from a cigarette or the motion of dust particles in 
the air.The Navier-Stokes Equations are a precise description of the evolution of a velocity field 
over time. Given the current state of the velocity and a current set of forces, the equations tell 
us precisely how the velocity will change over an infinitesimal time step. Figure 1 (top) depicts 
these equations in a compact vector-like notation. Very roughly the equation states that the 
change in velocity is due to the three terms on the right hand side of the equal sign. 
 
A velocity field on its own isn’t really visually interesting until it starts moving objects such as 
smoke particles, dust or leaves. The motion of these objects is computed by converting the 
velocities surrounding the object into body forces. Light objects such as dust are usually just 
carried along with the velocity field: they simply follow the velocity. In the case of smoke, it is 
prohibitively expensive to model every particle. Hence in this case the smoke particles are 
replaced by a smoke density: a continuous function which for every point in space tells us the 
amount of dust particles present. The density usually takes values between zero and one: 
where there is no smoke the density is zero, and elsewhere it indicates the amount of particles 
present. The evolution of the density field through the velocity field of the fluid can also be 
described by a precise mathematical equation, which is depicted at the bottom of Figure 1. The 
reader is not expected to fully understand these equations. However, it should be evident to 
anyone that the two equations in Figure 1 look very much alike. In fact, this resemblance was 



instrumental in the development of our algorithms. The equation for the density (bottom) is in 
fact simpler than the one for the velocity (top). The technical reason is that the former is linear 
while the latter is non-linear. We first developed an algorithm for the density moving through a 
fixed velocity field and then realized we could apply it to compute the evolution of the velocity 
field as well. In this paper we will follow this historical development. First we will show how to 
solve the density equation. This will familiarize the reader with the different components of our 
solver. The concepts involved are also easier to explain and visualize. Subsequently we will 
transfer these ideas to the harder problem of simulating velocity fields.  
 
 
A Fluid in a Box 
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Figure 2: Computational grids considered in this paper. Both the density and the velocity are 

defined at the cell centers. The grid contains an extra layer of cells to account for the boundary 
conditions. 

 
Mathematical equations for fluids are useful when thinking about fluids in general. However, in 
practice we need a finite representation for our fluids. The usual approach is to dice up a finite 
region of space into identical cells and sample the fluid at each cell’s center. In this paper for 
the sake of clarity we will only describe a fluid living in two dimensions. However, extensions to 
three dimensions of everything stated in this paper are straightforward. Nothing in this paper is 
restricted to two dimensions. Therefore, our fluid will be modeled on a square grid like the one 
shown in Figure 2. We allocate an additional layer of grid cells around the fluid’s domain to 
simplify the treatment of the boundaries. Both the velocity and the density are assumed to be 
constant in each grid cell and we usually display their values at the cell center. In practice we 
allocate two arrays for both the density and the velocity of size, size=(N+2)*(N+2): 
 
static u[size], v[size], u_prev[size], v_p rev[size]; 
static dens[size], dens_prev[size];  
 
We prefer to use single dimensional arrays over double ones for efficiency purposes. The 
array elements are referenced using the following macro: 
 
#define IX(i,j) ((i)+(N+2)*(j)) 
 



For example cell (i,j) of the horizontal component of the velocity is given by the entry 
u[IX(i,j)]. We also assume that the physical length of each side of the grid is one so that the 
grid spacing is given by h=1/N.  
 
The basic structure of our solver is as follows. We start with some initial state for the velocity 
and the density and then update its values according to events happening in the environment. 
In our prototype we let the user apply forces and add density sources with the mouse. Forces 
will set the fluid into motion while sources will inject densities into the environment. In a game 
the forces could come from a virtual fan, a creature blowing air or a falling object, while the 
density sources could be located at the tip of a burning cigarette or at the top of a smoke stack. 
The simulation is therefore a set of snapshots of the velocity and density grids. We assume 
that the time spacing between the snapshots is given by the fixed variable dt in the remainder 
of this paper. 
 
 
Moving Densities 
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Figure 3: Basic structure of the density solver. At every time step we resolve the three terms 

appearing on the right hand side of the density equation (see bottom of Figure 1). 
 
As explained above we will first describe our solver for a density field moving through a fixed 
velocity field that doesn’t change over time. Let us consider the density equation again 
depicted in the bottom of Figure 1. This equation states that the changes in density over a 
single time step are due to three causes. These causes are the three terms on the right hand 
side of the equal sign in the equation. The first term says that the density should follow the 
velocity field, the second states that the density may diffuse at a certain rate and the third term 
says that the density increases due to sources. Our solver will resolve these terms in the 
reverse order as they appear in the equation as shown in Figure 3. We start from an initial 
density and then repeatedly resolve these three terms over each time step. 
 
The first term is easy to implement. We assume that the sources for a given frame are 
provided in an array s[].This array is filled in by some part of the game engine which detects 
sources of density. In our prototype it is filled in from the user’s mouse movement. The routine 
that adds the source to the density is simply: 
 



void add_source ( int N, float * x, float * s, float dt ) 
{ 
 int i, size=(N+2)*(N+2); 
 
 for ( i=0 ; i<size ; i++ ) x[i] += dt*s[i];  
} 
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Figure 4: Through diffusion each cell exchanges density with its direct neighbors. 
 
The second step accounts for possible diffusion at a rate diff, when diff>0 the density will 
spread across the grid cells. We first consider what happens at a single grid cell. In this case 
we assume that the cell exchanges densities only with its four direct neighbors as shown in 
Figure 4. The cell’s density will decrease by losing density to its neighbors, but will also 
increase due to densities flowing in from the neighbors, which results in a net difference of 
 

x0[IX(i-1,j)]+x0[IX(i+1,j)]+x0[IX(i,j-1)]+x0[IX(i,j+1)]-4*x0[IX(i,j)]  
 
A possible implementation of a diffusion solver then simply computes these exchanges at 
every grid cell and adds them to the existing values. This would result in the following simple 
implementation 
 
void diffuse_bad ( int N, int b, float * x, float * x0, float diff, float dt ) 
{ 

int i, j; 
float a=dt*diff*N*N; 

 
for ( i=1 ; i<=N ; i++ ) { 

for ( j=1 ; j<=N ; j++ ) { 
   x[IX(i,j)] = x0[IX(i,j)] + a*(x0[IX(i-1,j)]+x0[IX(i+1,j)]+ 

x0[IX(i,j-1)]+x0[IX(i,j+1)]-4*x0[IX(i,j)]); 
} 

} 
set_bnd ( N, b, x ); 

} 
 
The routine set_bnd() sets the boundary cells and will be discussed below. Although the 
diffusion routine is straightforward to code and might seem attractive at first, it unfortunately 



doesn’t work. For large diffusion rates a the density values start to oscillate, become negative 
and finally diverge, making the simulation useless. This behavior is a general problem that 
plagues unstable methods. For these reasons we consider a stable method for the diffusion 
step. The basic idea behind our method is to find the densities which when diffused backward 
in time yield the densities we started with. In code:  
 
x0[IX(i,j)] = x[IX(i,j)] - a*(x[IX(i-1,j)]+x[IX(i+1,j)]+x[IX(i,j-1)]+x[IX(i,j+1)] 
                             -4*x[IX(i,j)]); 

 
This is a linear system for the unknowns x[IX(i,j)]. We could build the matrix for this linear 
system and then call a standard matrix inversion routine. However, this is overkill for this 
problem because the matrix is very sparse: only very few of its elements are non-zero. 
Consequently we can use a simpler iterative technique to invert the matrix. The simplest 
iterative solver which works well in practice is Gauss-Seidel relaxation. Here is the 
implementation: 
 
void diffuse ( int N, int b, float * x, float * x0, float diff, float dt ) 
{ 

int i, j, k; 
float a=dt*diff*N*N; 

 
for ( k=0 ; k<20 ; k++ ) { 

for ( i=1 ; i<=N ; i++ ) { 
for ( j=1 ; j<=N ; j++ ) { 

    x[IX(i,j)] = (x0[IX(i,j)] + a*(x[IX(i-1,j)]+x[IX(i+1,j)]+ 
  x[IX(i,j-1)]+x[IX(i,j+1)]))/(1+4*a); 

} 
} 
set_bnd ( N, b, x ); 

} 
} 
 
The beauty of this version of the diffusion solver is that it is almost as simple as the unstable 
one, but can handle any values for diff, dt, or N: no matter how big these values are the 
simulation will not blow up. 
 

   
 

Figure 5: The advection step moves the density through a static velocity field. 



 
Let us now turn to the final step in the density solver which forces the density to follow a given 
velocity field. Refer to Figure 5. Again we want a technique which is stable and doesn’t blow 
up. Similarly to the diffusion step we could set up a linear system and solve it using Gauss-
Seidel relaxation. However, the resulting linear equations would now depend on the velocity, 
making it trickier to solve. Fortunately, there is an alternative which is more effective. The key 
idea behind this new technique is that moving densities would be easy to solve if the density 
were modeled as a set of particles. In this case we would simply have to trace the particles 
though the velocity field.  For example, we could pretend that each grid cell’s center is a 
particle and trace it through the velocity field as shown in Figure 6 (b). The problem is that we 
then have to convert these particles back to grid values. How to properly do that is not 
necessarily obvious. A better method is to find the particles which over a single time step end 
up exactly at the grid cell’s centers as shown in Figure 6 (c). The amount of density that these 
particles carry is simply obtained by linearly interpolating the density at their starting location 
from the four closest neighbors. This suggests the following update procedure for the density. 
Start with two grids: one that contains the density values from the previous time step and one 
that will contain the new values. For each grid cell of the latter we trace the cell’s center 
position backwards through the velocity field. We then linearly interpolate from the grid of 
previous density values and assign this value to the current grid cell. 
 

(a) (b) (c)  
 

Figure 6: Basic idea behind the advection step. Instead of moving the cell centers forward in 
time (b) through the velocity field shown in (a), we look for the particles which end up exactly at 

the cell centers by tracing backwards in time from the cell centers (c). 
 
 
 
The following code implements this idea. We use a simple linear backtrace. 
  
void advect ( int N, int b, float * d, float * d0, float * u, float * v, float dt ) 
{ 
 int i, j, i0, j0, i1, j1; 
 float x, y, s0, t0, s1, t1, dt0; 
 
 dt0 = dt*N; 
 for ( i=1 ; i<=N ; i++ ) { 
  for ( j=1 ; j<=N ; j++ ) { 



   x = i-dt0*u[IX(i,j)]; y = j-dt0*v[IX(i,j)]; 
   if (x<0.5) x=0.5; if (x>N+0.5) x=N+0.5; i0=(int)x; i1=i0+1; 
   if (y<0.5) y=0.5; if (y>N+0.5) y=N+0.5; j0=(int)y; j1=j0+1; 
   s1 = x-i0; s0 = 1-s1; t1 = y-j0; t0 = 1-t1; 
   d[IX(i,j)] = s0*(t0*d0[IX(i0,j0)]+t1*d0[IX(i0,j1)])+ 
        s1*(t0*d0[IX(i1,j0)]+t1*d0[IX(i1,j1)]); 
  } 
 } 
 set_bnd ( N, b, d ); 
} 
 
This completes our description of the density solver. All of these steps can conveniently be 
grouped together into a single routine. We assume here that the source densities are initially 
contained in the x0 array. 
 
void dens_step ( int N, float * x, float * x0, float * u, float * v, float diff, 

float dt ) 
{ 
 add_source ( N, x, x0, dt ); 
 SWAP ( x0, x ); diffuse ( N, 0, x, x0, diff, dt ); 
 SWAP ( x0, x ); advect ( N, 0, x, x0, u, v, dt ); 
} 
 
where SWAP is a macro that swaps the two array pointers: 
  
#define SWAP(x0,x) {float *tmp=x0;x0=x;x=tmp;} 
 
 
Evolving Velocities 
 
We are now in a position to present the velocity solver. Once again consider the equations in 
Figure 1. In the light of what we now know about the density solver we can interpret the 
velocity equation as saying that the velocity over a time step changes due to three causes: the 
addition of forces, viscous diffusion and self-advection. Self-advection may seem obscure but 
we can simply interpret it as the fact that the velocity field is moved along itself. More 
importantly we can now reuse the routines that we developed for the density solver and apply 
them to update the velocity field. Assuming that the force field is stored in the arrays u0 and v0, 
we have the following code: 
 
 void vel_step ( int N, float * u, float * v, float * u0, float * v0,  

float visc, float dt ) 
{ 
 add_source ( N, u, u0, dt ); add_source ( N, v, v0, dt ); 
 SWAP ( u0, u ); diffuse ( N, 1, u, u0, visc, dt ); 

SWAP ( v0, v ); diffuse ( N, 2, v, v0, visc, dt ); 
project ( N, u, v, u0, v0 ); 

 SWAP ( u0, u ); SWAP ( v0, v ); 
advect ( N, 1, u, u0, u0, v0, dt ); advect ( N, 2, v, v0, u0, v0, dt ); 
project ( N, u, v, u0, v0 ); 

} 
 
 



Notice the similarity to the density update routine. In most cases we simply had to duplicate the 
calls for each component of the velocity field. There is, however, a new routine called 
project() which is not present in the density solver. This routine forces the velocity to be mass 
conserving. This is an important property of real fluids which should be enforced. Visually it 
forces the flow to have many vortices which produce realistic swirly-like flows. It is therefore an 
important part of the solver. 
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Figure 7: Every velocity field is the sum of an incompressible field and a gradient field (top). 
To obtain an incompressible field we simply subtract the gradient field from our current 

velocities (bottom). 
 
After the steps preceding the project() routine the velocity field seldom conserves mass. The 
idea is to make it mass conserving in the last step. To achieve this we use a result from pure 
mathematics called the Hodge decomposition: every velocity field is the sum of a mass 
conserving field and a gradient field. This result is illustrated in Figure 7 (top). Notice how the 
mass conserving field has nice swirly-like vortices, typically the type of field we would like to 
have. On the other hand the gradient field shown in the upper right corner of Figure 7 is the 
worst possible case: the flow at some points either points all outward or inward. In fact the 
gradient field indicates the direction of steepest descent of some height function. Imagine a 
terrain with hills and valleys with an arrow at every point pointing in the direction of steepest 
descent. Computing the gradient is then equivalent to computing a height field. Once we have 
this height field we can subtract its gradient from our velocity field to get a mass conserving 
one as shown in Figure 7 (bottom). We will not go into the hairy mathematical details, but will 
simply state that computing the height field involves the solution of some linear system called a 



Poisson equation. This system is sparse and we can re-use our Gauss-Seidel relaxation code 
developed for the density diffusion step to solve it. Here is the code for the projection step 
 
void project ( int N, float * u, float * v, float * p, float * div )  
{ 

int i, j, k; 
float h; 

 
h = 1.0/N; 
for ( i=1 ; i<=N ; i++ ) { 

  for ( j=1 ; j<=N ; j++ ) { 
   div[IX(i,j)] = -0.5*h*(u[IX(i+1,j)]-u[IX(i-1,j)]+ 

 v[IX(i,j+1)]-v[IX(i,j-1)]); 
   p[IX(i,j)] = 0; 

} 
} 
set_bnd ( N, 0, div ); set_bnd ( N, 0, p ); 

 
for ( k=0 ; k<20 ; k++ ) { 

  for ( i=1 ; i<=N ; i++ ) { 
   for ( j=1 ; j<=N ; j++ ) { 
    p[IX(i,j)] = (div[IX(i,j)]+p[IX(i-1,j)]+p[IX(i+1,j)]+ 

  p[IX(i,j-1)]+p[IX(i,j+1)])/4; 
} 

  } 
  set_bnd ( N, 0, p ); 
 } 
 
 for ( i=1 ; i<=N ; i++ ) { 
  for ( j=1 ; j<=N ; j++ ) { 
   u[IX(i,j)] -= 0.5*(p[IX(i+1,j)]-p[IX(i-1,j)])/h; 
   v[IX(i,j)] -= 0.5*(p[IX(i,j+1)]-p[IX(i,j-1)])/h; 
  } 
 } 
 set_bnd ( N, 1, u ); set_bnd ( N, 2, v );  
} 
 
Notice that we call the project() routine twice in our code. We do this because the advect() 
routine behaves more accurately when the velocity field is mass conserving. Something we 
have left out up to now is the treatment of the boundary, namely the purpose of the set_bnd() 
routine which appears in many places in our code. We assume that the fluid is contained in a 
box with solid walls: no flow should exit the walls. This simply means that the horizontal 
component of the velocity should be zero on the vertical walls, while the vertical component of 
the velocity should be zero on the horizontal walls. For the density and other fields considered 
in the code we simply assume continuity. The following code implements these conditions. 
 
void set_bnd ( int N, int b, float * x ) 
{ 

int i; 
 

for ( i=1 ; i<=N ; i++ ) { 
  x[IX(0  ,i)] = b==1 ? –x[IX(1,i)] : x[IX(1,i)]; 
  x[IX(N+1,i)] = b==1 ? –x[IX(N,i)] : x[IX(N,i)]; 
  x[IX(i,0  )] = b==2 ? –x[IX(i,1)] : x[IX(i,1)]; 



  x[IX(i,N+1)] = b==2 ? –x[IX(i,N)] : x[IX(i,N)]; 
} 
x[IX(0  ,0  )] = 0.5*(x[IX(1,0  )]+x[IX(0  ,1)]); 
x[IX(0  ,N+1)] = 0.5*(x[IX(1,N+1)]+x[IX(0  ,N )]); 
x[IX(N+1,0  )] = 0.5*(x[IX(N,0  )]+x[IX(N+1,1)]); 
x[IX(N+1,N+1)] = 0.5*(x[IX(N,N+1)]+x[IX(N+1,N )]); 

} 
 
Other boundary conditions are of course possible. For example, we could assume that the fluid 
wraps around itself: a flow that exits one wall simply reenters the opposite one. Changing the 
above to handle this case is fairly straightforward and is left as an exercise for the reader. Note 
that in this case the advect() routine should also be modified. Another possibility is to have a 
fixed velocity on some parts of the boundary to simulate an inflow like that found in a wind 
tunnel. We encourage the reader to explore different boundary conditions.  
 
To conclude this section here is how our code is used in our prototype 
 
while ( simulating ) 
{ 

get_from_UI ( dens_prev, u_prev, v_prev ); 
vel_step ( N, u, v, u_prev, v_prev, visc, dt ); 
dens_step ( N, dens, dens_prev, u, v, diff, dt ); 
draw_dens ( N, dens ); 

} 
 
 
Extensions 
 
The algorithm presented in this paper is one of the simplest fluid solvers one can write, it is a 
little bit over 100 lines of readable C code long. In fact we challenge the reader to write an 
even smaller one. However, it is somewhat limited in scope. There are many ways in which it 
can be extended. We already mentioned enforcing different boundary conditions. Extending 
the solver to three dimensions should be straightforward to anyone who understands our code. 
All that is required is to add new arrays for the z-component of the velocity and add an 
additional for-loop in our routines. 
 
Another improvement is to add internal boundaries in the flow. This is crucial in computer 
games where we want to simulate flows around characters and other objects in the 
environment. A simple way of implementing internal boundaries is to allocate a Boolean grid 
which indicates which cells are occupied by an object or not. Then we simply have to add 
some code to the set_bnd() routine to fill in values for the occupied cells from the values of 
their direct neighbors. This simple procedure will work if an object is at least two grid cells 
thick, since otherwise some values might leak through the boundary. Thin objects can be 
handled by carefully changing the routines provided in this paper. Whether this is worth the 
effort is up to the reader. 
 
We also implemented our algorithm on CPUs without floating point support. These include the 
CPUs found on the Palm and PocketPC devices. In this case we can replace floating point 
operations with fixed point arithmetic. This is actually fairly straightforward to implement. 



Simply add the following macros at the beginning of your code: 
 
typedef long freal; 
#define FPP 9 
#define X1_0 (1<<FPP) 
#define I2X(x) ((freal)((x)<<FPP)) 
#define F2X(x) ((freal)((x)*X1_0)) 
#define X2I(x) ((int)((x)>>FPP)) 
#define X2F(x) ((float)(x)/X1_0) 
#define XM(x,y) ((freal)(((x)*(y))>>FPP))  
#define XD(x,y) ((freal)((((x))<<FPP)/(y)))  
 
Then replace all occurrences of multiplication, divisions, etc with the macros. For example, 
(int)((x*f)/y) would become X2I(XD(XM(x,f),y)). 
 
The visual quality of the flows can be further improved by using a more sophisticated solver to 
compute the solution of the linear system in the project() routine. Instead of Gauss-Seidel 
relaxation we could use a conjugate gradient solver which is fairly easy to code and has better 
convergence properties. Nice C++ templates for various sparse linear solvers are available 
from NIST [IML]. A conjugate gradient solver could also be used in the diffuse() routine. 
However, we believe that it is not worth the additional effort, since the visual improvements are 
minor. We also warn the reader that the conjugate gradient does not behave well with the fixed 
point arithmetic implementation, where we always use simple relaxation. 
 
We now point the reader to some recent work done in computer graphics which builds on top 
of this solver or is related to it. This list is certainly not exhaustive nor do we describe these 
works in great detail. It is given here to provide the motivated reader with some pointers to the 
current literature. 
 
The current solver suffers from what is called “numerical dissipation”: the fluids dampen faster 
than they should in reality. This is in essence what makes the algorithms stable. Recently 
Fedkiw et al. [Fedkiw01] propose a technique called “vorticity confinement” which re-injects the 
lost energy due to dissipation back into the fluid, through a force which encourages the flow to 
exhibit small scale vorticity. This technique works well for the simulation of smoke for example. 
 
Another extension is to use this solver as a basis to animate water flows. In this case there are 
two fluids with different densities: water and air. The air is usually not modeled and the solver 
is harder to implement for the following reason: the domain of the water fluid changes over 
time and has to be tracked somehow and the correct boundary conditions have to be applied 
at the interface. The water region can be tracked using particles which simply move through 
the fluid as done by Foster and Metaxas [Foster96] or can be tracked with a combination of 
particles and level sets [Foster01,Enright02]. The latter technique has produced very nice 
results but is still fairly slow in order to be included in game engines. A related problem is that 
of modeling fire where again there are two different fluids interacting. In this case a reaction 
occurs at the front between air and fire, see for example the recent work of Nguyen et al. 
[Nguyen02]. 
 
 



Historical Notes 
 
The stable density solver was developed by us in 1996, where we moved density fields 
through kinetic turbulent wind fields [Stam97]. The work of Foster and Metaxas [Foster97] 
which is unstable gave us the insight of applying our stable density solver to the simulation of 
the fluid’s velocity. The results of this research were published in [Stam99] where we called 
this approach “Stable Fluids”. Subsequently we have published a high level article [Stam00] 
and an elegant implementation of the algorithm based on the Fast Fourier Transform [Stam01]. 
The idea of tracing back and interpolating which lies at the heart of the advect() routine 
apparently goes back to the work by Courant et al. [Courant52]. It has since then been 
rediscovered by many researchers in various fields and is generally classified under the 
heading of “Semi-Lagrangian” techniques. Parts of our work are also protected under U. S. 
patent # 6,266,071 B1 [Patent]. 
 
 
Results 
 
In the last couple of years we have written many versions of the solver and various demos and 
prototypes. Figure 8 depicts some snapshots of these demos, some of which were shown at 
the conference during our talk. Our work, however, has culminated in the MAYA Fluid 
EffectsTM feature that is now available in version 4.5 of our modeling and animation software 
MAYATM. That solver is of course more sophisticated and general than the one provided in this 
paper, but at its core it embodies the ideas presented in this paper. In Figure 9 we show 
several effects which were modeled, animated and rendered within our animation system. A 
screen saver based on this technology is available for download from: 
 

http://www.aliaswavefront.com/en/products/maya/unlimited/fluideffects/screensaver.shtml. 
 
Often we get asked about the accuracy of our flows, as in how do they compare to real flows? 
Since we are after visual accuracy, we decided to set up some simple experiments that were 
close to the ones presented in the beautiful book “An Album of Fluid Motion” [vanDyke]. Figure 
10 shows some of the results. They compare favorably with the ones presented in the book. 
 
 
What’s on the CDROM ? 
 
On the CDROM accompanying these proceedings we provide the source code that appears in 
this paper and a simple prototype that uses the code. The prototype uses OpenGL and GLUT 
for its interface and should run on many platforms. We also have included executables that run 
on Palm and PocketPC 2002 devices. Feel free to “beam out” these demos. Further material 
can be found on my web page. 
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Figure 8: Snapshots from our prototypes: two-dimensional solver (top) and three-dimensional 
solver (below). In each case densities and forces were added interactively by the 

user. 
 
 
 
 
 
 
 
 
 



 
 

   
 

   
 

   
 

Figure 9: Stills of animations of various phenomena created with the MAYA Fluid EffectsTM 
technology now available in MAYA 4.5. 



 
 

 
 

 
 
 

 
 
 

 
 

Figure 10: Virtual experiments of Fluids. The top two pictures show a simulation of the flow 
between two plates with different temperatures. When the difference in 

temperature is small convection rolls appear, while for higher differences in 
temperature we get buoyant plumes. The picture in the middle shows a typical 
Von Karmann vortex street behind a sphere. The lower picture shows a Kelvin-

Helmholtz instability. 


