Using Deformations for Browsing Volumetric Data

Michael J. McGuffin*

Liviu Tancau'

Ravin Balakrishnan*

Department of Computer Science, University of Toronto, http://www.dgp.toronto.edu

Abstract

Many traditional techniques for “looking inside” volumetric data
involve removing portions of the data, for example using various
cutting tools, to reveal the interior. This allows the user to see hid-
den parts of the data, but has the disadvantage of removing poten-
tially important surrounding contextual information. We explore an
alternate strategy for browsing that uses deformations, where the
user can cut into and open up, spread apart, or peel away parts of the
volume in real time, making the interior visible while still retaining
surrounding context. \We consider various deformation strategies
and present a number of interaction techniques based on different
metaphors. Our designs pay special attention to the semantic layers
that might compose a volume (e.g. the skin, muscle, bone in a scan
of a human). Users can apply deformations to only selected layers,
or apply a given deformation to a different degree to each layer,
making browsing more flexible and facilitating the visualization of
relationships between layers. Our interaction techniques are con-
trolled with direct, “in place” manipulation, using pop-up menus
and 3D widgets, to avoid the divided attention and awkwardness
that would come with panels of traditional widgets. Initial user
feedback indicates that our techniques are valuable, especially for
showing portions of the data spatially situated in context with sur-
rounding data.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—interaction techniques; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—interaction styles

Keywords. volumetric data, volume data, deformations, brows-
ing, layers, interaction techniques, 3D widgets

1 Introduction

Volumetric data can contain an enormous amount of densely packed
data points, or voxels. Visualizing such data is challenging. While
in the real world, we typically only perceive the surfaces of objects,
computational visualization of volumetric data should ideally not
have such a restriction. Where possible, we should be able to see
the data throughout the volume simultaneously. However, this is
especially difficult to achieve on a flat 2D display surface, where
the user is, in some sense, forced to pick one point of view at a

*mjmcguff@cs.toronto.edu
Tliviu@pathcom.com
*ravin@cs.toronto.edu

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$17.00 ©2003 IEEE

401

time, and where the number of voxels in the data can easily exceed
the number of available pixels.

At least 3 general strategies exist for “peering inside” volumetric
data:

1. Making some or all of the volume semi-transparent, allowing
the user to see inside or through layers of data

2. Cutting away or removing portions of the data, to eliminate
occlusion of inner regions

3. Spatially transforming or deforming the volume, to displace,
project, break apart or separate outer portions and reveal inner
portions

Strategies 1 and 2 have been widely used in volume visualiza-
tion systems. The control over transparency in strategy 1 is often
achieved by adjusting a transfer function which maps voxel values
to colour, opacity, and other properties used in rendering. Strategy 2
includes all the common boolean masks used to “carve away” parts
of a volume, such as cutting planes, cutting boxes, cutting spheres,
etc., and more generally includes any technique that selects and dis-
plays a subset of the data, such as showing the voxels bounded by
an isosurface.

As pointed out by Carpendale et al. [1997], although trans-
parency and removal of outer data both make inner data more visi-
ble, they also result in loss of context. This can make it difficult for
users to form an integrated mental picture of the entire volume.

Strategy 3 is based on deforming the data in some manner. We
use the term “deformation” somewhat loosely here, to refer not
only to smooth, non-rigid transformations, but also piece-wise rigid
transformations, discontinuous transformations, and combinations
of these. Thus, strategy 3 includes techniques such as “exploded
views” (often used in assembly manuals for mechanical devices)
that simply translate parts away from each other, as well as more
exotic transformations, which, apart from some recent research
[Carpendale et al. 1999; Carpendale et al. 1997; Kurzion and Yagel
1997; LaMar et al. 2001], have remained largely unexplored for the
purpose of browsing volumetric data.

Our goal in using deformations is to increase the visibility of
the inner portions of the volume, without completely removing the
surrounding data that normally occludes the inside. This is akin to
focus+context schemes that allow a user to “zoom in” on data of
interest, while using remaining screen space to show the surround-
ing context. Appropriately chosen deformations could, for exam-
ple, split open a volume, showing displaced structures side-by-side,
making it easy for the user to see how they connect, and allowing
the user to mentally stitch them together into a whole. Deforma-
tions with familiar real-world analogues (e.g. cutting and peeling
the skin off a fruit, or the layers off an onion) are also likely to be
readily understood by users.

In this paper, we describe a prototype system that implements
different metaphors for deformation-based browsing of volumetric
data. Since strategy 3 above seems to be the least explored, we
have focused our research mainly on it, without, for example, im-
plementing support for transparency. However, there is no reason
that the techniques in this paper could not be profitably extended to
work in conjunction with strategies 1 and 2.

As will be seen, a key element of our approach is to support
differential treatment of the various semantic layers in a data set.

Administrator
IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$17.00 ©2003 IEEE

By “semantic layers”, we mean subsets of the data that are useful
or meaningful to the user. These layers could be defined geomet-
rically, for example as sections created with parallel planar cuts.
More typically, layers would depend on the voxel data values, for
example boundaries that are found during segmentation or isosur-
face extraction. In the context of medical visualization, there is at
least anecdotal evidence that anatomists, for example, prefer to re-
move tissue layer by layer [Hohne et al. 1992], rather than making
arbitrary planar cuts.

In the following sections, we review related work, identify de-
sign issues and tradeoffs to consider when choosing a deformation,
describe our prototype system, report some initial user feedback,
and offer conclusions and thoughts on future directions.

2 Background

Many of our deformation techniques are inspired by surgical
metaphors, where the user cuts into and opens up data. There have
been attempts to create high-fidelity simulations of surgical proce-
dures [Pflesser et al. 1995, for example] for education, training, and
rehearsal. These often involve the use of virtual reality, haptic feed-
back, and the simulation of the physical properties, such as elas-
ticity and hardness, of the tissues being operated on. Bruyns and
Montgomery [2002] describe virtual tools that look and behave like
scalpels, scissors, and forceps, allowing a 2- or 3-dimensional mesh
to be cut and peeled open. While this approach has the advantage of
easily understood, very literal, metaphors, it imposes an interaction
style limited to what is possible in the physical world, without fully
exploiting the additional capabilities of the computational medium.
Our present work, in contrast, allows the user to explore and visu-
alize volumetric data in ways that would be physically impossible.
For example, in our system, users can peel away bone just as easily
as skin, or change the location of an incision after the cut has been
made by “swimming” the location of the cut through the volume.
Because we are not concerned with simulating a physical process
such as surgery, the user can browse data in a more light-weight
and free-form style. We can also build intelligence into our brows-
ing tools, so that they, for example, automatically detect boundaries
between layers of data and do not cut across these boundaries.

Another difference between medical applications in general, and
our work, is that medical specialists usually have a good idea of
the underlying anatomy of a volume and thus can estimate where to
look to find features of interest. In contrast, our techniques are de-
signed to support general purpose exploratory browsing, and could
be used with volumetric data of unknown content. This makes
focus+context techniques all the more appropriate, since showing
more of the data on the screen can make it easier and faster for
users to find interesting data.

Looking beyond surgical applications, the deformation of vol-
umetric data for general visualization has also been explored. For
example, Laidlaw [1995] segmented scans of a banana and a human
hand, and created animations of their skin peeling off. Our work,
however, uses deformations for real-time, interactive browsing.

Kurzion and Yagel [1997] describe a “discontinuous ray deflec-
tor” that gives the appearance of cutting into a volume and spread-
ing open the voxels. This is similar to the “book™ metaphor used
by Carpendale et al. [1999] where data are spread open like pages
of a book. The same book metaphor has been used in traditional
anatomical diagrams, where organs are shown cut in half and spread
apart on consecutive pages of a book [Agur and Lee 1999, for ex-
ample pp. 622-623, 718, 719]. In the next section, we describe our
own Hinge Spreader tool which also uses this metaphor. Our work,
however, also extends the existing repertoire of deformations with
other tools.

Focus+context techniques have also been proposed for volumet-
ric data. Carpendale et al. [1997] describe a visual access distor-

402

tion technique that clears a path of visibility to a point of interest by
pushing occluding data away from the line of sight. This “cleared
path” remains on the line of sight as the scene is rotated, giving the
appearance of a constantly shifting deformation. Thus, the rotation
and deformation of the data are coupled. In our system, however,
the user deforms the data in a desired way, and can then view the
deformed data from any angle; i.e. rotation and deformation are
separate actions. Although this introduces a risk that the user may
have to rotate the scene more deliberately to gain a clear line of
sight, the user also has more freedom and control to look at the
deformed data in different ways.

LaMar et al. [2001] describe a focus+context technique that
magnifies a region inside a volume. This magnified region is visible
to the user if the surrounding data is semi-transparent, or if a cutting
plane is used to reveal the inside. As will be seen in the next section,
our own Sphere Expander tool may seem similar in that it expands
regions of data. However, the Sphere Expander pushes voxels away
from a central point rather than magnifying data. Thus, it can be
used not only to enlarge an existing cavity or hole in the data, but
also to create a hole where none previously existed. Furthermore,
our Sphere Expander can be applied differentially to the layers in a
data set, yielding new interaction possibilities.

3 Approach

At the outset of our research, we imagined three main actions that
might be supported by a volume browsing system: (i) selecting a re-
gion of the volume, (ii) changing the appearance (i.e. transfer func-
tion, including opacity) of the selected region, and (iii) spatially
transforming or deforming the selected region. Together, these
three actions could be composed to achieve the same effect of po-
tentially any existing browsing technique. Although we have not
yet implemented the full vision of these three composable actions,
we have explored issues surrounding region selection and deforma-
tion of a region.

Users commonly select regions of a volume using geometric
primitives, such as halfspaces (planes), spheres, or boxes. The
deformation tools in our system similarly have simple geomet-
ric shapes, and are constrained to act only on voxels within these
shapes. However, the features of interest within a volume may have
irregular shapes. Hohne et al.’s [1992] Anatomical Atlas supported
“selective cutting” tools, that were sensitive to the layers in the data,
and could be made to only act on certain layers. Thus, a cutting
plane could be used to first remove skin, then bone, etc. The tools
in our system are also sensitive to the layers in a data set, and can
act differentially on them. Users can treat each layer separately,
making selection of related voxels simpler and more implicit.

Unfortunately, the subsets of a volume data set are not always
best thought of as layers — take for example the internal organs in
a human body, or even vascular structures. Furthermore, volumetric
data is often noisy and difficult to cleanly segment into distinctive
subsets. Nevertheless, we chose to assume the existence of layers,
and focus on how a user might manipulate such layers, because this
inspired unique interaction techniques.

It is informative to compare the layers in a volumetric data set to
a stack of cards or papers, and to consider the various ways in which
these could be browsed. Mander et al. [1992] describe different
ways of browsing virtual piles of documents, emulating the effect
of riffling or thumbing through a physical pile of paper. Beaudouin-
Lafon [2001] designed novel interaction techniques for overlapping
windows. One of these allowed a user to peel back the corner of one
or more windows, to take a peek at occluded windows. We identify
a few other methods for manipulating layers in Figure 1.

In keeping with the layers-as-a-stack-of-cards analogy, there are
three different points of view one might want of a given layer: first,
a dorsal view of the back/top/outer surface of the layer; second,

|
wn %

Figure 1: Techniques for browsing the layers depicted in A. B: leaf-
ing through the layers like pages of a book. C: pulling out an in-
dividual layer. D: compressing upper layers to reveal lower layers.
E: fanning layers open like a hand of cards or like a Chinese fan.
F: peeling layers back. G: flipping layers over — here the user is
flipping the 3rd layer from the left, and the other layers to the left
are pushed along like dominoes. H: an exploded view of the layers.

a ventral view of the underneath/bottom/inner surface of the layer
(this is visible when the layer is flipped or turned over in some way);
and third, a cross-sectional view, showing the thickness of the layer
from the side, in which case it is often useful to see neighbouring
layers stacked above and below the current layer.

Interactive browsing techniques that enable the various manipu-
lations of Figure 1, and that also support dorsal, ventral, and cross-
sectional views — possibly simultaneously — of one or more lay-
ers, are more likely to afford the user with flexible and useful van-
tages. We have tried to incorporate these elements in our designs.

Figure 1 already hints at some interesting ways in which layers
could be deformed for visualization. Other deformations of inter-
est can be inspired by surgical metaphors, whereby data might be
cut into and spread open in different ways. Two questions to con-
sider when choosing a deformation are: should the deformation be
rigid or non-rigid, and what kind of continuity conditions should be
satisfied by the deformation?

Rigid deformations, i.e. rotating and/or translating out a piece of
a layer, have the advantage of preserving lengths and volume, which
could be important for performing measurements, or simply for as-
surance that the data being visualized has not been distorted. On
the other hand, non-rigid deformations, such as curvilinear “peel-
ing”, encompass a much broader range of possibilities, and may
be more realistic in medical contexts for giving an impression, if
only approximate, of how tissue would deform if it were physically
peeled.

Regarding continuity, one issue is how a deformed region of data
should remain “connected”, if at all, with the rest of the volume. We
return to this question in section 4.6.

Finally, there is a risk that deformations might sometimes render
data unrecognizable, or change the spatial arrangement of voxels
in ways that are unfamiliar or difficult to understand. To counter
this, we use smooth animations to show changes or transitions in
the shape of the data. For example, if the user invokes a tool that
peels back a layer, rather than suddenly “snapping” the layer into a
fully peeled state, the layer is continuously peeled in real time, to
show the user what is happening. The benefits of using animation
for smooth transitions have been documented by others [Bartram
1997; Grossman et al. 2001; Robertson et al. 1991; Woods 1984].
Essentially, users more easily maintain a mental model of the data
across transitions, spending less time assimilating new states.

403

4 Prototype Implementation

Our prototype volume browser was implemented in C++ using
OpenGL and GLUT, and runs under Linux and Microsoft Windows.

The individual voxels of the data are rendered as points (i.e.
GL_POINTS) whose size in screen space is chosen (via glPoint-
Size()) to give the appearance that adjacent voxels are just touch-
ing. Although many techniques exist for high quality volume ren-
dering, for example using hardware texturing and trilinearly inter-
polating voxel values, we chose to render individual points to keep
our prototype simple and maximally flexible. Any deformation that
remaps the voxel locations can be supported by our system, since
each voxel is rendered on its own. This gives us the freedom to fo-
cus on exploring interaction techniques, rather than optimized, high
quality rendering.

There is currently no support in our system for transparency. Al-
though we suspect our techniques could be enhanced with good use
of transparency, we wanted to first isolate and identify the qualities
and issues that are unique to deformations.

On a 1.7 GHz laptop with an nVidia GeForce4 Go graphics card,
32 MB of video memory, and 512 megabytes of RAM, our system
can render over 500000 voxels at 13 full screen frames per second,
or over 4000000 voxels at 2 full screen frames per second. Since
real time interaction is critical, our system downsamples large data
sets and renders them at a lower resolution during interaction. Full
resolution rendering is performed after the system has been idle for
a given timeout (e.g. one second), or whenever the user explicitly
requests it. An even better implementation might render different
parts of the volume at different resolutions. For example, only the
portion of the volume currently in the user’s focus could be ren-
dered at full resolution, without precluding real-time interaction.

To support arbitrary transformations of voxel positions, we ex-
plicitly store the position of each voxel, rather than storing a 3D
bitmap. This is also more efficient for sparse data sets. Voxel po-
sitions are stored in an octree, where each node of the octree has a
bounding box and a colour (black, white, or both). A dividing plane
can be applied to the octree, and voxels can be quickly categorized
by colouring them black or white, according to the side of the plane
they lie on. Intersections or unions of halfspaces can be coloured
by applying multiple planes. Operations on the octree, such as ren-
dering voxels, deforming voxel positions, or copying voxels into
a second octree, can be applied to the whole octree, or to only a
subset of a given colour.

As a minor optimization, each voxel position is not stored in
its own leaf node. Instead, each leaf node stores a small number
(e.g. 8) of voxels in an array that can be traversed more quickly
than an equivalent subtree with one voxel per leaf. Rather than
storing a colour flag for each voxel, we save memory by storing
black voxels in the first n elements of the array, and white voxels
in the remaining elements. Changing the colour of a voxel requires
swapping a single pair of elements and adjusting the value of n.

To support operations that treat each layer of data differently,
each layer of voxels is stored in a separate octree. Thus, having N
layers requires N octrees. This does not, however, imply using N
times more memory than a single octree for all the layers would.
Each layer typically exhibits some spatial coherence, and can be
stored efficiently in an octree.

Each voxel has an associated normal, and is rendered with light-
ing to provide the user with shading cues. Voxels near a surface of
the data set have a normal computed from their neighbourhood —
this computation is slow, but need only be done once, at load time.
Voxels in the interior of the volume are initially not visible, and
have a zero normal. However, deformations can cut or split open
the volume and reveal these interior voxels. Thus, the normals of
interior voxels are dynamically recomputed, in a fast but approxi-
mate way, based on the current deformation, and based on a guess

of the orientation of the closest surface. Although the result is only
approximate, the depth cues resulting from lighting the scene were
found to be preferable over having no lighting.

The browsing tools in our system are positioned, oriented, and
resized using 3D widgets [Conner et al. 1992], i.e. objects embed-
ded in the 3D scene that can be clicked and dragged. 3D widgets
are also used to control the parameters of the different deforma-
tions. Each draggable component of our 3D widgets is highlighted
when the mouse cursor passes over them, to hint to the user which
elements can be dragged. The shape of the widgets also suggests
how to use them: arrow widgets are for translation or adjustment of
a linear quantity such as the radius of a sphere; circle and arc wid-
gets are for rotation or adjusting angles. In an early version of our
prototype, we noticed perceptual problems with the visual design
of our 3D widgets. We thus improved them by adding more depth
cues (Figure 2).

\N/I/\\/H

Figure 2: Example 3D widgets before and after design changes that
enhanced depth cues. On the right, shading and variation in thick-
ness are used, and intentionally exaggerated, to suggest depth. A
thin halo of black pixels is also drawn to ensure contrast with what-
ever data may be in the background. The arrow widgets are used
for translation along an axis, the circle widgets are used for rota-
tion around an axis, and the ‘L’-shaped widgets are for translation
within a plane.

Another challenge encountered was that some deformations have
many adjustable parameters, and if each of these is controlled with a
separate 3D widget that is always visible, the screen becomes clut-
tered with widgets. We therefore identified situations where cer-
tain widgets were not likely to be used, and changed our prototype
to only display a given 3D widget if the current state warrants it.
For example, Figure 10 shows a set of layers that are fanned open.
Only after they are fanned open do additional 3D widgets appear,
attached to each layer.

Figures 3 through 14 show our system browsing a scan of a
human head that was pre-segmented into 5 layers. At any given
time, only one browsing tool is active, which the user chooses
from a popup radial menu [Callahan et al. 1988] or Marking Menu
[Kurtenbach and Buxton 1993] (our menu is only one level deep,
and so could be described as either a radial menu or Marking
Menu). The active tool only affects the currently selected layers
of the data, leaving unselected layers unchanged. When a layer
is selected or unselected, an animation shows the layer’s transition
from one state to the other, for example, from a deformed state to
an undeformed state.

Two mechanisms were implemented for selecting/unselecting
layers. First, the selection state of each layer can be toggled indi-
vidually through a set of hotkeys assigned to each layer — but these
could just as easily be virtual check boxes in a menu. Second, there
are two special items in the popup radial menu, the right and left
items, that also control layer selection. These items can be invoked
with quick flick gestures to the right or left, and have the effect of
(a) selecting the outermost unselected layer, or (b) unselecting the
outermost selected layer, respectively. Thus, the user can, for ex-
ample, make 5 flick gestures to the right, causing each layer, from
the outermost to the innermost, to be successively selected. If the
currently selected tool peels layers away, this would have the effect
of successively peeling each layer in the natural ordering.

404

To support this behaviour, the system needs some notion of
which layers are inside or outside other layers. We manually as-
signed a global, fixed ordering, from outside to inside, of the layers
in our head data set. This ordering is important not just for selec-
tion, but also for deformations that automatically deform layers to
different degrees, such as the fanning out in Figure 10, where inner
layers are rotated by a larger angle than outer layers. Although the
fixed ordering is acceptable for our head data set, in general this
would not be a viable solution. It is possible for the semantic layers
in a data set to not have any single ordering from outside to inside.
An improved prototype would compute a locally acceptable order-
ing of layers on the fly, given the current location and orientation of
the deformation tool. Such an ordering might be computed by sam-
pling the relevant data along parallel rays, and finding the “average
ordering” of layers encountered along the rays.

No collision detection is performed between layers. Hence, lay-
ers can interpenetrate as they are manipulated or animated. How-
ever, as long as the user is manipulating a region of data where the
the inside-to-outside ordering of layers is reasonably accurate, the
interpenetration of layers is minimal.

The deformation tools in our system will be described in the fol-
lowing subsections. We also implemented more traditional cutting
tools, specifically: a cutting plane, cutting hinge, cutting sphere,
and cutting box. Figure 3 shows two of these in action. Just as
in Hohne et al.’s Atlas [Hohne et al. 1992], our cutting tools are
sensitive to the layers in the data, and only remove voxels from the
currently selected layers. Thus, they can be thought of as intelligent
scalpels that cut no deeper than the innermost selected layer. An al-
ternative way of thinking of these tools, especially the cutting box,
is that they behave like 3D magic lenses [Viega et al. 1996], in that
they make the currently selected layers fully transparent.

Figure 3: Examples of cutting tools. A: a cutting sphere. B: a
cutting hinge. Each cutting tool can be made to cut away all layers
(as in A) or only a subset of layers (as in B).

4.1 Hinge Spreader Tool

The Hinge Spreader (Figure 4) tool is a dihedral shaped object that
pushes all the voxels between the hinge to either side. As mentioned
in the Background section, this deformation can be used to create
views of data that resemble anatomical dissections spread open like
a “book” [Agur and Lee 1999].

3D widgets enable positioning and orientation of the tool, and
also allow the angle of the hinge to be adjusted. Note that the cut-
ting hinge in Figure 3 B has the same dihedral shape as the Hinge
Spreader, but removes the voxels within the hinge, rather than dis-
placing them.

As with all our tools, the Hinge Spreader only deforms voxels of
selected layers. When layers are selected or unselected, an anima-
tion shows the voxels of that layer transition from a deformed state
to a resting state, or vice versa. Interestingly, the Hinge Spreader
can be used to create views that look like exploded diagrams (Fig-
ure 5) when applied to only a subset of the layers.

Figure 4: The Hinge Spreader. Left: a sketch of the voxels before
and after deformation. Solid black lines show the hinge seen by the
user. Dashed lines delimit the voxels affected by the deformation.
Voxels are pushed away from the bisector of the hinge, compressing
surrounding voxels that are within twice the hinge’s angle. Right:
a face is split down a line through the nose. Note that both halves
of the nose are still present — no voxels have been removed or cut
away, they have simply been pushed aside.

Figure 5: The Hinge Spreader, acting only on layers outside the
skull, has been pushed all the way through the head, and therefore
spreads both halves of the skin off the skull. This provides a kind
of “exploded view”.

The hinge form factor of this tool, and of the cutting hinge, have
interesting properties with respect to interface design. First, the
positioning, orientation, and angle of a hinge could be easily con-
trolled with a hand-held prop, much like Hinckley et al.’s [1998]
use of a cutting plane prop in their “doll’s head” interface. Users
have a strong mental model of the shape and function of a hinge,
and would probably be able to use a hinge prop as successfully as
Hinckley et al.’s cutting plane. In addition, the use of a hinge has
certain advantages over a plane. A hinge opened up to 180 degrees
reduces to a plane as a special case, and so is more general than
a plane. Acute hinge angles allow for more context to be main-
tained close to a focal point. Finally, two-handed techniques are
possible where a user holds two hinge props, and could make fast,
compound cuts or spreads of the data.

4.2 Sphere Expander Tool

The Sphere Expander tool (Figure 6) pushes voxels away from a
central point. The centre and radius of the sphere are controlled
with 3D arrow widgets. Placing this tool outside and near the sur-

405

face of a volume creates a dent in the volume, which in itself may
not be useful for browsing. However, when placed inside a vol-
ume, the Sphere Expander can be used to inflate the voxels of the
volume outward. Since we render each voxel as a point, sufficient
inflation eventually makes the voxels sparse enough to see through
— a kind of cheap transparency. The Sphere Expander can also be
used to create a hole in a layer, by selecting only that layer, and by
placing the centre of the sphere on the layer (Figure 6, right hand
side). Interestingly, we did not initially know whether the Sphere
Expander tool would turn out to be useful. After implementing it,
however, we discovered that our layer-based architecture allowed
for situations like that in Figure 6.

Figure 6: The Sphere Expander. Left: voxels before and after defor-
mation. All voxels contained in the solid sphere are pushed outside,
compressing surrounding voxels that are within twice the sphere’s
radius. Right: the Sphere Expander, acting only on layers outside
the skull, is centred on a point on the face above the nose. This
opens up a hole in the face and lifts much of the skin off the skull,
creating a kind of “window” through which we can see the skull
and surrounding skin.

4.3 Box Spreader Tool

In the same spirit as the previous two deformation tools, the Box
Spreader (Figure 7) pushes all voxels outside the shape of the tool,
in this case a box. This tool was inspired by rib spreaders, instru-
ments used in chest cavity surgery. The Box Spreader could be used
to cut in to the virtual chest of a human data set, and spread open
the outer layers of the chest, revealing internal organs. When the
box is made wide enough, however, the deformation can eventually
lift outer layers off a data set, as in Figure 7.

i
a

Figure 7: The Box Spreader. Left: voxels before and after defor-
mation. All voxels contained in the box are pushed sideways, com-
pressing surrounding voxels that are within twice the box’s width.
Right: the Box Spreader, acting only on layers outside the skull,
cuts the upper face in half and pushes each half off the skull.

4.4 Leafer Tool

The Leafer is shaped like a tray (Figure 8). The voxels above each
half of the tray can be hinged open using 3D widgets. Selecting or
unselecting layers causes them to smoothly rotate out or back in to
place. A rapid succession of selections initiates an animation with
layers temporarily spaced out, or “leaved” (Figure 9), affording the
user a brief glimpse of the shape of individual layers. This style of
browsing inspired the name of the Leafer tool. Note that once the
animation is complete, however, all selected layers are rotated open
with the same angle.

The three views of layers mentioned in Section 3 are all made
available, simultaneously, with the Leafer. Figures 8 shows the ar-
eas where layers are seen from a dorsal, ventral, or cross-sectional
view. Selection or unselection of a single layer causes that layer to
transition from one view to the other.

After hinging open the halves of the Leafer’s tray, the layers that
make up each half can be fanned open (Figure 10). Fanned out
layers can then be pulled out and/or flipped over, showing the com-
ponents of the “dissected” voxels in context with the rest of the data
set.

Figure 8: The Leafer. Left: voxels before and after deformation.
Voxels above each half of a “tray” are (rigidly) rotated away from
the centre of the tray. The top edges of the tray are the axes of
rotation. Right: the Leafer is used to hinge open parts of a head.
Here, the depth of the tray has been set to zero, i.e. the axes of
rotation coincide with the bottom edges of the tray, whereas in the
figure on the left, the depth of the tray is non-zero. Three areas
are labelled A, B, and C, to show how the Leafer provides cross-
sectional, ventral, and dorsal views of layers, simultaneously.

4.5 Peeler Tool

The Peeler, like the Leafer, consists of a tray that can be positioned
and oriented to encompass a region of interest, and allows each half
of the tray to be opened up. Unlike the Leafer, however, the Peeler
uses a non-rigid, curvilinear deformation to open up the layers (Fig-
ures 11 and 12).

As with the Leafer, selecting layers when the Peeler is active
initiates an animated transition, during which the user can see in
between the moving layers. However, unlike the Leafer, the Peeler
also affords control over the degree of peeling for each layer in-
dependently, through arrow widgets attached to each layer. This
gives the user an extra level of control, allowing the user to create
spaces between the layers (Figure 13) and keep them in this state
for further browsing.

We also created a variation on the Peeler called the Radial Peeler
(Figure 14). Each voxel is peeled radially away from the axis of the
tool, as if the tool were poking a hole in the volume and turning the
layers inside out, somewhat like a flower opening up.

406

Figure 9: When the user selects/unselects a layer, the Leafer ani-
mates the rotation of the layer open or back in to place. Here, the
user has selected each layer in rapid succession, and the leafer is
midway through an animation opening them up. In this way, the
user can “leaf” through the layers, as if they were pages of a book.

Figure 10: A: The left half of the leafer hinges open the top of the
head. B: The layers that make up the hinged-open region are fanned
open. New widgets appear attached to each layer. C: A translation
widget is used to pull out an individual layer. D: Rotation widgets
are used to flip over layers.

Figure 12 sketches the deformation for the left half of the reg-
ular Peeler, where voxels are peeled to the left. If this sketch is
revolved around the vertical axis x = p, where p is the radius of
the Radial Peeler, the resulting form corresponds to how the Radial
Peeler deforms voxels: they are peeled away from the axis x = p.

4.6 Observations

Similarities can be seen between our set of tools and the layer
browsing techniques of Figure 1. The Hinge Spreader, Sphere Ex-
pander, and Box Spreader all non-rigidly compress and push lay-
ers to reveal data, just like Figure 1 D. The Leafer combines the
techniques of Figure 1 B, E, C and G. And the Peeler, of course,
corresponds to Figure 1 F. Our tools are not the only possible com-
binations of techniques, and extensions are possible (such as the
exploded view of Figure 1 H), but we have demonstrated the appli-
cability of layer-based techniques for browsing volumetric data.
An interesting tradeoff to consider is how much control to give
the user. The Leafer allows users to “leaf” through layers (Figure 9)

Figure 11: The Peeler. Left: voxels before and after deformation.
Voxels in each half of a “tray” are peeled off the bottom of the tray.
Right: the left half of the Peeler’s tray is positioned to encompass
the brow of the head, and this is peeled off. Notice that, above the
Peeler, a thin section of the top of the head has been automatically
translated upward and out of the way.

Y

X

Figure 12: The deformation on the left half of the Peeler’s tray.
Each point (x,y) € A is mapped to a new point (x',y’) € B. Let
R be the radius at which length is preserved by the deformation.
Points where x < Rt are mapped to the curved region via (x',y') =
(—ysin(x/R),ycos(x/R)). Other points are shifted and rotated with
(x,y") = (=(x=Rm), -y).

using animation. This shows how animation is useful not only for
helping the user maintain their mental model of the data as it de-
forms, but can be a browsing technique in itself. In contrast, the
Peeler also allows the user to individually peel each layer by dif-
ferent amounts (Figure 13), giving the user more control, but this
comes at the cost of more 3D widgets that clutter the screen. In gen-
eral, we reduced clutter from widgets by only displaying them when
the state of the deformation warrants their presence. However, addi-
tional techniques for reducing the number of widgets shown at any
time, without limiting the user’s power, would be valuable. One
possibility is to develop a kind of popup 3D widget, that is shown
only when requested by the user.

The Leafer and Peeler also shed some light on the question of
how to connect a deformed set of voxels to the rest of the volume.
The Leafer rigidly deforms voxels, creating a sharp “seam” at the
axis of rotation. By hinging open the Leafer far enough, the user
can easily see this seam where the voxels connect. However, such
rigid rotation can lead to interpenetration of the deformed voxels
and the rest of the volume. The Peeler, on the other hand, is more
continuous in the sense that the deformed voxels connect smoothly
with the rest of the volume. Interpenetration of voxels is less likely,
and reduced in severity if it does occur. However, in the case of
the Peeler, the seam along which peeled regions connect with the
volume is much harder to see, since it is usually occluded by the
peeled layers. It may or may not be important for the user to be
able to see these seams or contact edges, however, it is a tradeoff to
consider when choosing a deformation.

407

Figure 13: A close up of the peeler in action. Here, each layer
has been peeled to a different degree (using the small arrow wid-
gets attached to each layer). The spacing between layers makes the
interfaces between them visible.

Figure 14: The Radial Peeler. Rather than peeling away two halves
of a tray as in Figure 11, this tool peels away all the voxels in a
cylinder. Two circles (only one of which is visible here) delimit
the cylinder. Voxels are pulled through the top of the cylinder and
then stretched away from the cylinder’s centre. A hole along the
cylinder’s axis is thus opened up, allowing the user to peer inside.

5

Informal trials with members of our lab led to some improvements
in the visual design of the tools and 3D widgets. Furthermore, an
earlier prototype of our system didn’t employ animations, i.e. de-
formations would cause the volume to suddenly “snap” to a trans-
formed state. During demonstrations of this prototype, people often
had trouble understanding how exactly the tools were deforming
voxels. Hence our incorporation of smoothly animated transitions.

More recently, we had a professional anatomist, having little ex-
perience using 3D software, try out our system during an informal,
one hour session. The session consisted of a mix of designer-driven
demonstration and user-driven exploration of the tools.

The anatomist found that the direct manipulation 3D widgets af-
forded flexible control and were easy to understand. Deforming or
pulling out portions of the volume in context, with the rest of the
volume still displayed, was found to be very valuable, for keeping
track of “where you are in the whole”. Animated transitions were
also found to be valuable. The anatomist suggested that they would

Initial User Feedback

be very appropriate in educational settings, e.g. to show layers ac-
tually peeling back, rather than showing a sudden change of state.
The anatomist also suggested that, in some situations, after a
layer has been peeled away, it may not be important to continue
displaying the layer, since the user’s goal may be to simply see the
tissues revealed underneath. However, there were other situations
were the anatomist found it important to keep all data present, for
example when showing the two halves of the Hinge Spreader.

6 Conclusion and Future Directions

We have extended the range of deformations used for exploratory
browsing of volumetric data. Our prototype demonstrates one way
of integrating these deformations with differential treatment of the
layers in a data set, as well as with 3D widgets and use of animation.
We have identified various tradeoffs and design issues brought to
light by our work. Initial user feedback suggests that our techniques
are useful for helping a user understand and maintain context while
exploring different regions of a data set.

One aspect not explored in our prototype is enhancing tool be-
haviour with transparency. For example, a hinge-shaped tool might
make voxels enclosed by the hinge gradually more transparent as
the hinge is opened up to a wider angle. The Leafer and Peeler
tools could also make affected layers partially transparent, reduc-
ing occlusion of the immediate neighbourhood of these layers.

Our Leafer tool combined many techniques of Figure 1 in one
particular order, but many other orderings or combinations are pos-
sible. More flexible tools could be designed, perhaps allowing the
user to “construct” their own custom deformations by combining
more primitive operations or widgets.

Sophisticated deformations with many parameters can clutter the
screen with 3D widgets. Ideally, a widget should only be visible
when the user wants to interact with it. Popup 3D widgets, or use
of gestures instead of widgets, could eliminate this problem.

Finally, the implementation of true volume rendering, possibly
using graphics hardware [Rezk-Salama et al. 2001], could improve
visual quality and frame rates.

7 Acknowledgements

Thanks to Karan Singh, Sheelagh Carpendale, Anne Agur, Gord
Kurtenbach, Rafeef Abugharbieh, Nicholas Woolridge, Lloyd
Burchill, Kim Chua, Joe Laszlo, Gonzalo Ramos, Glenn Tsang, and
the members of the Interaction Research Group at the University of
Toronto, for their help throughout this work.

8 Supporting Material

Videos and additional screen shots of our prototype can be down-
loaded at http://www.dgp.toronto.edu/"-mjmcguff/research/

References

AGUR, A. M. R., AND LEE, M. J., Eds. 1999. Grant’s Atlas of Anatomy,
10th ed. Lippincott, Williams and Wilkins.

BARTRAM, L. 1997. Can motion increase user interface bandwidth?
In Proceedings of IEEE Conference on Systems, Man and Cybernetics,
1686-1692.

BEAUDOUIN-LAFON, M. 2001. Novel interaction techniques for over-
lapping windows. In Proceedings of ACM UIST Symposium on User
Interface Software and Technology, 153-154.

BRUYNS, C. D., AND MONTGOMERY, K. 2002. Generalized interactions
using virtual tools within the Spring framework: Cutting. In MMVR
Medicine Meets Virtual Reality.

408

CALLAHAN, J., HOPKINS, D., WEISER, M., AND SHNEIDERMAN, B.
1988. A comparative analysis of pie menu performance. In Proceedings
of ACM CHI Conference on Human Factors in Computing Systems.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., AND FRACCHIA, F. D.
1997. Extending distortion viewing from 2D to 3D. IEEE Computer
Graphics and Applications: Special Issue on Information Visualization
17, 4, 42-51.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., TIGGES, M., FALL,
A., AND FRACCHIA, F. D. 1999. The Tardis: A visual exploration en-
vironment for landscape dynamics. In Proceedings of SPIE Conference
on Visual Data Exploration and Analysis VI.

CONNER, D. B., SNIBBE, S. S., HERNDON, K. P., RoBBINS, D. C.,
ZELEZNIK, R. C., AND VAN DAM, A. 1992. Three-dimensional wid-
gets. In Proceedings of ACM I3D Symposium on Interactive 3D Graph-
ics, 183-188.

GROSSMAN, T., BALAKRISHNAN, R., KURTENBACH, G., FITZMAU-
RICE, G., KHAN, A., AND BUXTON, W. 2001. Interaction techniques
for 3D modeling on large displays. In Proceedings of ACM I3D Sympo-
sium on Interactive 3D Graphics, 17-23.

HINCKLEY, K., PAUSCH, R., PROFFITT, D., AND KASSELL, N. F.
1998. Two-handed virtual manipulation. ACM TOCHI Transactions on
Computer-Human Interaction 5, 3 (September), 260-302.

HOHNE, K. H., BOMANS, M., RIEMER, M., SCHUBERT, R., TIEDE, U.,
AND LIERSE, W. 1992. A volume-based anatomical atlas. IEEE Com-
puter Graphics and Applications 12, 4 (July), 72-78.

KURTENBACH, G., AND BUXTON, W. 1993. The limits of expert perfor-
mance using hierarchical marking menus. In Proceedings of ACM CHI
Conference on Human Factors in Computing Systems, 35-42.

KURZION, Y., AND YAGEL, R. 1997. Interactive space deformation with
hardware-assisted rendering. IEEE Computer Graphics and Applications
17, 5.

LAIDLAW, D. H. 1995. Geometric Model Extraction from Magnetic Reso-
nance Volume Data. PhD thesis, California Institute of Technology.

LAMAR, E., HAMANN, B., AND JOv, K. I. 2001. A magnification lens for
interactive volume visualization. In IEEE Pacific Conference on Com-
puter Graphics and Applications, 223-232.

MANDER, R., SALOMON, G., AND WONG, Y. Y. 1992. A “pile’ metaphor
for supporting casual organization of information. In Proceedings of
ACM CHI Conference on Human Factors in Computing Systems, 627—
634.

PFLESSER, B., TIEDE, U., AND HOHNE, K. H. 1995. Towards realistic
visualization for surgery rehearsal. In Computer Vision, Virtual Reality
and Robotics in Medicine, Proc. CVRMed ’95 (N. Ayache, ed.), vol. 905
of Lecture Notes in Computer Science, 487-491.

REzZK-SALAMA, C., SCHEUERING, M., SOzA, G., AND GREINER, G.
2001. Fast volumetric deformation on general purpose hardware. In
Proceedings of ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 17-24.

ROBERTSON, G. G., MACKINLAY, J. D., AND CARD, S. K. 1991. Cone
trees: Animated 3D visualizations of hierarchical information. In Pro-
ceedings of ACM CHI Conference on Human Factors in Computing Sys-
tems, 189-194.

VIEGA, J., CONWAY, M. J., WILLIAMS, G., AND PAUSCH, R. 1996.
3D Magic Lenses. In Proceedings of ACM UIST Symposium on User
Interface Software and Technology, 51-58.

Woopbs, D. D. 1984. Visual momentum: a concept to improve the cog-
nitive coupling of person and computer. International Journal of Man-
Machine Studies 21, 229-244.

