
A set of C functions to compute rotation matrices

and spherical harmonics expansions

Didier Pinchon

July 13, 2011

1 Introduction

In a recent paper1, Philip Hoggan and I have introduced a new algorithm to compute general
rotation matrices using the precomputation of matrices Jl for l ≥ 1. A package of C functions
has been distributed that computes rotation matrices for 1 ≤ l ≤ lmax provided the coefficients
of matrices Jl are stored, in a compact way, inside a file. The main functions of this package are
functions that compute simultaneously all the rotation matrices for 0 ≤ l ≤ lmax and given Euler
angles or all rotated vectors of spherical harmonics expansions. Other functions are also provided
to compute individually, for a given value of l, the rotation matrix or a rotated vector of size 2l+1.

This version 2.0 improves a previous version 1.0 and is distributed under the GNU General Public
License (see file COPYING).

2 Description of the code

Two structures VecL and MatL are introduced to represent a list of vectors VL = (Vl)0≤l≤L and a
list of matrices ML = (Ml)0≤l≤L, where Vl has 2l+1 elements and Ml is a (2l+1)× (2l+1) matrix:

typedef struct S_VECL {

int lmax;

gsl_vector **lvec;

} VecL;

typedef struct S_MATL {

int lmax;

gsl_matrix **lmat;

} MatL;

These structures and the signature of available functions are defined in file rotation.h. The code
of the functions are located in the following C files.

alloc.c

1D. P. and Ph. Hoggan,Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in

pace-fixed axes, J. Phys. A 40(2007), 1597-1610.

1

This file contains four functions to allocate, for a given value of L, and desallocate space for VecL
and MatL objects.

VecL *vecl_calloc(int lmax);

void vecl_free(VecL *vecl);

MatL *matl_calloc(int lmax);

void matl_free(MatL *matl);

matj.c

The core of the algorithm presented in our paper is the precomputation of a set of matrices (Jl)0≤l≤L.
Two functions allows to recover Jl matrices whose coefficients are stored in file Bin/numMatJ.dat

for 2 ≤ l ≤ L or individually for each value of l in file Bin/NumMatJ/numMatJ-l.dat. These last
files may be extracted from Bin/numMatJ.dat. For reason of place, Bin/numMatJ.dat is provided
in this distribution for L = 150 and individual numMatJ-l.dat for 2 ≤ l ≤ 50.

MatL *read_lmatJ(int lmax) recovers (Jl)0≤l≤L.

gsl_matrix *read_matJ(int l) recovers an individual matrix Jl.

rotation matrix.c

int matl_matl_product(const MatL *matl1, const MatL *matl2, MatL *matres)

computes the list of product matrices CL = (Cl)0≤l≤L where Cl = AlBl given AL = (Al)0≤l≤L and
BL = (Bl)0≤l≤L.

int matl_rotation(int lmax,double alpha, double beta, double gamma,MatL *res,

const MatL *matj)

computes the rotation matrices RL = (Rl)0≤l≤L for a set of Euler’ angles α, β, γ.

int matrix_rotation(int l,double alpha, double beta, double gamma,gsl_matrix *res,

const gsl_matrix *matj)$}

computes Rl for given angles α, β, γ.

Four local fonctions are defined in rotation_matrix.c

int Zalpha_matl_product(const MatL *matl, const double alpha,MatL *res)

int matl_Zalpha_product(const MatL *matl, const double alpha,MatL *res)

to compute (Zl(α)Ml)0≤l≤L and (MlZl(α))0≤l≤L where Zl(α) is the rotation matrix of a rotation
with z-axis and angle α. in these two functions the iteration on l is done in an inner loop to
compute the products row by row. This allows to compute cos lα, 0 ≤ l ≤ L only once. However
this may present the following disadvantages for computation efficiciency: an access to distant
elements during the computation and a drawback to parallelization.

int Zalpha_mat_product(int l,const gsl_matrix *mat, const double alpha,gsl_matrix *res)

int mat_Zalpha_product(int l,const gsl_matrix *mat, const double alpha,gsl_matrix *res)

2

compute Zl(α)Ml and MlZl(α) for a given value of l.

rotation vector.c

int matl_vecl_product(const MatL *matl, const VecL *vecl, VecL *res)

computes WL = (Wl)0≤l≤L where Wl = AlVl given a MatL set of matrices AL = (Al)0≤l≤L and a
VecL set of vectors VL = (Vl)0≤l≤L.

int vecl_rotation(int lmax,double alpha, double beta, double gamma, const VecL *x,

VecL *res, const MatL *matj)

computes the VecL set of vectors (RlVl)0≤l≤L for a rotation given by its Euler’ angles.

int vector_rotation(int l,double alpha, double beta, double gamma,const gsl_vector *x,

gsl_vector *res,const gsl_matrix *matj)

does the same job for a single value of l.

Two local function are provided to compute (Zl(α)Vl)0≤l≤L or Zl(α)Vl for a single value of l:

int Zalpha_vecl_product(const VecL *vecl, const double alpha,VecL *res)

int Zalpha_vec_product(int l,const gsl_vector *vec, const double alpha,gsl_vector *res)

3 Test programs

Two test programs are located in directory Src/Util.

test rotation.c

It is called by the command ./test_rotation lmax alpha beta gamma to check several features
to insure that rotation functions do the right job. Here is an example of execution:

./test_rotation 40 0.3 0.7 0.9

1 -> Global rotation in MatL and rotations by bands in gsl_matrices are equivalent

2 -> Rotating all SH coefficients for lmax = 40 by two methods gives equivalent results,

dist = 8.8817841970012523e-16

3 -> Rotating SH coefficients for each l=0..40 gives identical results,

dist = 0.0000000000000000e+00

4 -> Conservation of the squared l2-norm by rotation :

5.6276343149376009e+02, 5.6276343149375964e+02 -> err rel = 8.0806130149468742e-16

5 -> Inverse rotation applied to the rotated vector : dist = 7.7715611723760958e-16

time rotation.c

This program evaluates times to compute RlVl for each l with 2 ≤ l L for a fixed random set
(VL = (Vl)0≤l≤L and a number of random choice of α, β, γ for the rotation by two methods. In the
first method, matrix Rl is computed and then applied to vector Vl while in the second method uses
only matrix-vector product using the product decomposition of Rl described in our paper.
The command is ./time_rotation lmax nb_test where lmax stands for the maximum value L

of l and nb_test is the number of random rotations. A second run of each computation, without

3

timing, is done to check that the methods provide equivalent results (not exactly tha same because
the order of arithmetic operations is not the same). Execution times are recorded in a file res.dat.
The following graphic has been done using results in res.dat.save obtained by the command
./time_rotation 150 10000.

0 25 50 75 100 125 150
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

S
ec

on
ds

l

Execution times for the two methods

Method 1
Method 2

4

