
Rotation matrices for real spherical harmonics:

general rotations of atomic orbitals in space-fixed axes

Didier Pinchon1 and Philip E. Hoggan2

October 16, 2006

(1) MIP, UMR 5640 CNRS.
University Paul Sabatier
118 route de Narbonne

31062 TOULOUSE Cedex, FRANCE.

(2) LASMEA, UMR 6602 CNRS.
University Blaise Pascal
24 avenue des Landais,

63177 AUBIERE Cedex, FRANCE.

Abstract

The angular factors of atomic orbitals are real spherical harmonics. This is independent
of the choice of basis function. In the course of molecular electronic structure calculations,
numerous rotations of real spherical harmonics are required in a suitably defined space-fixed
co-ordinate system. The origin and axes are space-fixed and rotation matrices defined on a
basis of spherical harmonics.

In this work, a highly compact expression and efficient evaluation of the rotation matrices are
given for a real spherical harmonic basis. Relations to Gaunt coefficients are shown explicitly as
are recurrence formulae for rotation matrices. This leads to extremely rapid and precise rotation
algorithms.

The Wigner rotation matrices which are still often used in orbital rotations are shown to be
completely surpassed by this approach. The present work is related to a method described by
Kautz in the field of image processing but significant improvements have been made, especially
in the study of structure and storage of the rotation matrices.

After complete testing using computer algebra, a numerical program was written in C.
Numerical tests are cited in the closing sections of this work.

Keywords: atomic orbitals, rotations, real spherical harmonics, matrix structure, com-
pact integer representation.

1

1 Introduction

The standard convention for atomic orbitals in quantum chemistry is to choose them to be real
functions. Furthermore, since they are functions of independent variables, it is readily shown that
they can be expressed as products of a radial factor and an angular factor. The angular factor
will always be a spherical harmonic and the present work focusses on this angular variation. For
conventional atomic orbitals, it is just a real spherical harmonic. A few special cases can be
visualised very obviously (defined by the value of the azimuthal quantum number l integer or 0
with lmax = n − 1, n being the principal quantum number): if l = 0, the spherical harmonic is
constant and the orbitals are spherically symmetric. If l = 1, the functions are axially symmetric
and a suitable real basis is just the set of cartesian functions x, y and z. These are orthogonal and
equivalent functions which can evidently be permuted indistinguishably with the exception of their
orientation.
If l = 2, the set of cartesian functions of order l comprises six functions, whereas there can only be
5 (2 l + 1) independent real harmonics. The squared functions are, however, not all independent,
since the equation describing a sphere provides a relationship between them. The two independent
functions are determined from the orthogonality conditions and result in the choice of one symmetric
and one anti-symmetric combination with respect to permutations of axes: 3z2−1 and x2−y2. The
cartesian basis is over-defined for higher l and this procedure of determining the 2 l + 1 orthogonal
real spherical harmonics may be accomplished with the appropriate definitions (vide infra).
Note that the value of the quantum number l determines the orbital angular momentum. The real
spherical harmonics Sl,mare eigenfunctions of the magnitude operator L2:

L2 Sl,m = l(l + 1)h̄ Sl,m .

When m is non-zero, the real spherical harmonics are not eigenfunctions of the z-component op-
erator Lz but this operator is nevertheless useful since the x and y orientations are interconverted
by it.
The most frequently used rotation technique is that involving the Wigner rotation matrices as
described, for example in [1]. The nature of these matrices suggests that it would be advantageous
to investigate alternatives.
Previous work by Kautz has shown (in the context of image shading) [2] any general direct rotation
in IR3 may be accomplished by separate rotations about the z axis, then for rotation about y, a 90
degree rotation about x precedes the general rotation about z and then a rotation about x of -90
degrees in a real spherical harmonic basis. In the present work, a much simpler and more regular
series of axial rotations and direct permutations of axes is proposed, leading to a very efficient set
of half the number of matrix elements to store for rotation representation matrices as for those
in Kautz’ work. The structure of the elements is also elucidated fully and shown to be highly
simplified. First, a rigorous discussion is made of rotation in a basis of real spherical harmonics,
evidencing the simplest possible sparce matrix representations and suitable permutations of the
cartesian axes. The aim of this work is to provide a highly efficient scheme for general rotations of
the (real) atomic orbitals in a laboratory-fixed set of axes, in which the z axis is the quantisation
axis.
Let us consider the rotation R ∈ SO(3), the group of direct rotations in IR3. We denote by R̂ the
operator defined on L2(S2, dΩ), where S2 is the unit sphere with the area measure dΩ, by

R̂f(x, y, z) = f(R−1(x, y, z)), (x, y, z) ∈ S2 . (1)

For integers l and m with l ≥ 0, −l ≤ m ≤ l, the normalized spherical harmonic function Y l
m(θ, φ)

2

is defined by

Y 0
0 (θ, φ) =

1√
4π

, (2)

Y l
m(θ, φ) = im+|m|

√

(2l + 1)(l − |m|)!
4π(l + |m|)! P

|m|
l (cos θ) eimφ , (l,m) 6= (0, 0) , (3)

where l et m are non-negative integers and Pl(x) stands for the Legendre polynomial of degree l

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l , (4)

and P m
l (x) is the associated Legendre function defined for m ≥ 0 by

Pm
l (x) = (−1)m

√

(1 − x2)m
dm

dxm
Pl(x), −1 ≤ x ≤ 1 . (5)

For l ≥ 0 and −l ≤ m ≤ l, the real spherical harmonic function Sm,l(θ, φ) is defined by

Sl,0(θ, φ) =

√

2l + 1

4π
Pl(cos θ) , (6)

Sl,m(θ, φ) =

√

(2l + 1)(1 − m)!

2π(1 + m)!
Pm

l (cos θ) cos(mφ) for m > 0 ,

√

(2l + 1)(1 + m)!

2π(1 − m)!
P−m

l (cos θ) sin(−mφ) for m < 0 .

(7)

Real spherical harmonics functions are related to spherical harmonics by the relations

Sl,0(θ, φ) = Y l
0 (θ, φ) , (8)

Sl,m(θ, φ) =

1√
2

[

Y l
m(θ, φ) + (−1)mY l

−m(θ, φ)
]

for m > 0 ,

i√
2

[

(−1)mY l
m(θ, φ) − Y l

−m(θ, φ)
]

for m < 0 .
(9)

Let us denote by El the subspace of L2(S2, dΩ) generated by the 2l+1 (complex) spherical harmonic
functions Y l

m,m = −l, . . . , l or equivalently by the 2l+1 real spherical harmonics Sl,m,m = −l, . . . , l.
Yl = [Y l

m,m = −l, . . . , l] and Sl = [Sl,m,m = −l, . . . , l] each constitute an orthonormal basis of
El. Since El is invariant under rotation, a representation of SO(3) of dimension 2l + 1 results.
This representation is irreductible and all the irreductible representations of SO(3) are obtained
by varying l.

The specific problem addressed in the present work has already been studied in [3], [4]. It is the
computation of the matrix of an arbitrary rotation on El in the basis of real spherical harmonics.
Let us denote by Dl(α, β, γ) the matrix representation of R̂ on El in the basis Yl and by ∆l(α, β, γ)
in the basis Sl, when the rotation R is expressed as R = RZ(γ)RY (β)RZ(α) where RZ and RY are
rotation of axis 0z and 0y in IR3 and α, β, γ the so-called Euler angles.

R =

cos γ − sinγ 0
sin γ cos γ 0

0 0 1

cos β 0 − sinβ
0 1 0

sinβ 0 cosβ

cos α − sinα 0
sinα cos α 0

0 0 1

. (10)

3

The matrix of a rotation R̂Z(α) on El with basis Yl is the diagonal matrix of dimension 2l+1 (with
the diagonal elements e−imα,m = −l, . . . , l).
If Cl denotes matrix representation of the change of basis between Yl and Sl defined by Sl = YlCl,
the matrix of R̂Z(α) in Sl, denoted by Xl(α) is equal to

Xl(α) = C?
l Diag(eimα,m = −l, . . . , l) Cl . (11)

where C? is the transpose conjugate matrix of C. C is a complex unitary matrix : C?C = I2l+1.

The matrix Xl(α) has non-zero elements only on its diagonal and anti-diagonal and is the com-
mutative product of l in-plane rotations of angles −α,−2α, . . . ,−lα on the planes of coordinates
(l, l + 2), (l − 1, l + 3), . . . , (1, 2l + 1).

For example

X3(α) =

cos 3α 0 0 0 0 0 sin 3α
0 cos 2α 0 0 0 sin 2α 0
0 0 cos α 0 sinα 0 0
0 0 0 1 0 0 0
0 0 − sinα 0 cos α 0 0
0 − sin 2α 0 0 0 cos 2α 0

− sin 3α 0 0 0 0 0 cos 3α

(12)

The following is obtained:

∆l(α, β, γ) = Xl(α) Dl(β) Xl(γ) , (13)

where Dl(β) is the matrix of R̂Y (β) on El with the basis Sl.

In [4], the authors provide a method of computing Dl(β) for a given value of β with a two order
recurrence on l. This computation by recurrence must be done whenever Dl(β) is required, for
each distinct value of β.

In this work, the fact that a rotation in IR3 with axis Oy could be obtained by first exchanging
coordinates y and z , before a rotation with axis Oz and then reversing the exchange of coordinates
y and z is evidenced and applied. Let us denote by J this symmetric operator on IR3 and by Jl its
representation on El with matrix Jl for the base Sl.

Therefore

Dl(β) = JlXl(α)Jl , (14)

and thus

∆l(α, β, γ) = Xl(α) JlXl(β)JlXl(γ) . (15)

The problem is thus reduced to the computation of Jl that can be done once and for all and simul-
taneously for the required values of l with a maximal precision and stored before any computation
of rotation matrices on the basis of real spherical harmonics.

4

In conclusion to this paragraph, note that although the matrix of Jl has few non-zero elements in
the basis Yl, this is not the case of Jl. For example, for l = 3 :

JlYl = Yl

1

8
i
√

6

8
−

√

15

8
−i

√

5

4

√

15

8
i
√

6

8
− 1

8

−i
√

6

8

1

2
i
√

10

8
0 i

√

10

8
− 1

2
−i

√

6

8

−
√

15

8
−i

√

10

8
− 1

8
−i

√

3

4

1

8
−i

√

10

8

√

15

8

i
√

5

4
0 i

√

3

4
0 i

√

3

4
0 i

√

5

4
√

15

8
−i

√

10

8

1

8
−i

√

3

4
− 1

8
−i

√

10

8
−

√

15

8

−i
√

6

8
− 1

2
i
√

10

8
0 i

√

10

8

1

2
−i

√

6

8

− 1

8
i
√

6

8

√

15

8
−i

√

5

4
−

√

15

8
i
√

6

8

1

8

(16)

and

JlSl = Sl Jl = Sl

0 0 0
√

10

4
0 −

√

6

4
0

0 1 0 0 0 0 0

0 0 0
√

6

4
0

√

10

4
0

√

10

4
0

√

6

4
0 0 0 0

0 0 0 0 − 1

4
0 −

√

15

4

−
√

6

4
0

√

10

4
0 0 0 0

0 0 0 0 −
√

15

4
0 1

4

(17)

The following lemma may also be proven.

Lemma 1.– For every l ≥ 1, every element x in Jl may be uniquely expressed as x = a
√

b/c where
a and b are relatively prime integers with b > 0 and c is a square-free positive integer, i.e. without
squares in its prime factor decomposition.

Proof.– Let us call pure quadratic numbers those satisfying x2 = q with q positive definite. From
its definition, note that any real spherical harmonic function may be expressed by the product of a
constant (i.e. a pure quadratic number divided by

√
π) by a homogeneous polynomial in x, y, z with

rational coefficients. As the product of two pure quadratic numbers is a quadratic pure number,
deduce that any element of J is obtained as the product of a pure quadratic number divided by π
and a sum of integrals, expressed as follows:

I =

∫

xαyβzγ dΩ . (18)

Replacing x, y, z by their expression in spherical coordinates gives

I =

∫ 2π

0
cosα φ sinβ φ dφ

∫ π

0
sinα+β+1 θ cosγ θ dθ . (19)

Symmetries of the integrand in the first integral imply that it is zero if α or β is an odd integer.
When α and β are both even integers, linearizing the product gives cosα φ sinβ. Note that a
non-zero term can only come from a constant and the first integral is thus the product of π by a
rational number.

5

For a non-zero integral I, the second integral has the form

I2 =

∫ π

0
sin2k+1 θ cosγ θ dθ . (20)

Again by symmetry, I2 = 0 if γ is an odd integer. For an even γ, replacing cos2 θ by 1 − sin2 θ
shows that I2 is a linear combination of integrals such as:

∫ π

0
sin2n+1 θ dθ =

22n+1(n!)2

(2n + 1)!
, n ≥ 1 , (21)

with integer coefficients. Thus I is the product of a rational number by π which completes the
proof.

Lemma 1 is strengthened by the following conjecture.

Conjecture.. For every l ≥ 1, every element x in Jl may be uniquely expressed as x = a
√

b/2n

where n ≥ 0, a is an integer, odd when n ≥ 1, and b is a square-free positive integer.

The validity of this conjecture has been checked with a computer algebra system for 1 ≤ l ≤ 40.
Furthermore, a special case will be proven below.

2 The block structure of Jl

For odd l, l = 2k+1 with k, l integers, denote by Exyz,k the k-dimensional subspace of El generated
by Sl

−l+2i−1, i = 1, . . . , k. Basis functions of Sl divisible by xyz may be expressed as homogeneous
polynomials in x, y, z and thus Exyz,k is the subspace of El of functions divisible by xyz. Of course
Exyz,k is invariant under Jl. Let us denote by Axyz,k the multiplication matrix by Jl in the basis
Exyz,k.
In a similar way, defining three k + 1-dimensional subspaces of El, denoted by Ez,k+1, Ey,k+1 and
Ex,k+1 for those functions divisible par z, y and x respectively, the appropriate bases are given in
table 2

Name Basis Div. by Dimension Image under J2k+1

Exyz,k Sl
−l+2i−1, i = 1, . . . , k xyz k Exyz,k

Ez,k+1 Sl
2i−2, i = 1, . . . , k + 1 z k + 1 Ey,k+1

Ey,k+1 Sl
−l+2i−2, i = 1, . . . , k + 1 y k + 1 Ez,k+1

Ex,k+1 Sl
2i−1, i = 1, . . . , k + 1 x k + 1 Ex,k+1

Table 1: Orthogonal subspaces of E2k+1.

The subspace Ex,k+1 is invariant under Jl, its matrix representation being denoted by Ax,k+1.
On the other hand Jl is an isometry of Ez,k+1 onto Ez,k+1. Let us denote by Az,k+1 its matrix
representation in the previously defined basis.
Therefore, E2k+1 is the direct sum of the four orthogonal subspaces

E2k+1 = Exyz,k ⊕ Ez,k+1 ⊕ Ey,k+1 ⊕ Ex,k+1 . (22)

Now, the permutation σ of [1, 2, . . . , 4k+3] is introduced, defined by σ([1, 2, . . . , 4k+3]) = [{2∗i, i =
1, . . . , 2k+1} , {2∗i−1, i = 1, . . . , 2k+2}] (even indices and then odd indices) and its corresponding
permutation matrix Q2k+1 defined by [Q2k+1]i,j = 1 if j = σ(i) and 0 elsewhere.

6

In the permuted basis, J2k+1 has a block structure as follows

J2k+1 = QT
2k+1

Axyz,k 0 0 0

0 0 Ay,k+1 0

0 Az,k+1 0 0

0 0 0 Ax,k+1

Q2k+1 , (23)

where the block matrices satisfy the following identities

A2
xyz,k = Ik, AT

xyz,k = Axyz,k , (24)

A2
x,k+1 = Ik+1, AT

x,k+1 = Ax,k+1 , (25)

Ay,k+1A
T
y,k+1 = Ik+1, AT

z,k+1 = Ay,k+1 . (26)

For even l, l = 2k, four subspaces of El are also introduced, comprising functions divisible by zy ,
xz, xy or indivisible by x,y or z. The name, basis and dimension of these subspaces are given in
table 2.

Name Basis Div. by Dimension Image by J2k

Eyz,k Sl
−l+2i−1, i = 1, . . . , k yz k Eyz,k

Exz,k Sl
2i−2, i = 1, . . . , k xz k Exy,k

Exy,k Sl
−l+2i−2, i = 1, . . . , k xy k Exz,k

E1,k+1 Sl
2i−1, i = 1, . . . , k + 1 — k + 1 E1,k+1

Table 2: Orthogonal subspaces of E2k.

The following decomposition is obtained

E2k = Eyz,k ⊕ Exz,k ⊕ Exy,k ⊕ E1,k+1 . (27)

and the permutation matrix Q2k for the permutation σ([1, 2, . . . , 4k+1]) = [{2∗i, i = 1, . . . , 2k} , {2∗
i − 1, i = 1, . . . , 2k + 1}] allows the block structure of J2k to be obtained, as follows:

J2k = QT
2k

Ayz,k 0 0 0

0 0 Axy,k 0

0 Axz,k 0 0

0 0 0 A1,k+1

Q2k , (28)

where the block matrices satisfy the following identities

A2
yz,k = Ik, AT

yz,k = Ayz,k , (29)

A2
1,k+1 = Ik+1, AT

1,k+1 = A1,k+1 , (30)

Axy,kA
T
xy,k+ = Ik, AT

xz,k = Axy,k . (31)

With a view to pre-computing the matrices Jl, the properties of the blocks allow storage of the
upper (or lower) triangular parts including the diagonal, of the symmetric diagonal blocks and only
one of the two non diagonal blocks. That is 2k2 + 2k + 1 = 1

2 l2 + l + 1 elements for l = 2k and
2(k + 1)2 = 1

2(l + 1)2 elements for l = 2k + 1. This is highly efficient.

Up to a value of l = 40, the computation of the blocks of Jl is a straight forward job using a
linear algebra package in any algebra computer system. Exact values for the coefficients of J l are
obtained in this way. A similar method would be less appropriate within a numerical program and
may be prone to numerical instabilities. It is also possible to compute matrices Jl by recurrence
on l as seen in the next paragraph.

7

3 Computing Jl by recurrence

The decomposition theorem, for l ≥ 1,

S1,sSl,m =
l+1
∑

µ=−l−1

[

l + 1 l 1
µ m s

]

IR
Sl+1,µ +

l−1
∑

µ=−l+1

[

l − 1 l 1
µ m s

]

IR
Sl−1,µ , (32)

where s ∈ {−1, 0, 1} and the real Gaunt coefficients are given by
[

l1 l2 l3
m1 m2 m3

]

IR
=

∫

Sl1,m1
Sl2,m2

Sl3,m3
dΩ . (33)

They are given a matrix form for each s in {−1, 0, 1} by:

v Bl = Bl+1 Gl
v + Bl−1 [Gl−1

v]T , (34)

where Bl is the row matrix of the 2l + 1 real spherical harmonic basis Sl,−l−1+i, i = 1..2l + 1, v
belongs to the set {x, y, z} and the (2l + 3) × (2l + 1) matrix Gl

v is defined by

[Gl
v]i,j = (−1)s(v) 2

√
π√
3

[

l + 1 l 1
i − l − 2 j − l − 1 s(v)

]

IR
, (35)

where s(y) = −1, s(z) = 0 and s(x) = 1.
This is because

S1,−1 = −
√

3

2
√

π
y, S1,0 =

√
3

2
√

π
z, S1,1 = −

√
3

2
√

π
x . (36)

As an example, l = 2, gives:

G2
x =

−
√

42
14 0 0 0 0

0 −
√

7
7 0 0 0√

70
70 0 0 0 0

0 0 0
√

105
35 0

0 0 −
√

210
35 0

√
70

70

0 0 0 −
√

7
7 0

0 0 0 0 −
√

42
14

(37)

G2
y =

0 0 0 0 −
√

42
14

0 0 0 −
√

7
7 0

0 0 −
√

210
35 0 −

√
70

70

0
√

105
35 0 0 0√

70
70 0 0 0 0

0
√

7
7 0 0 0√

42
14 0 0 0 0

(38)

8

G2
z =

0 0 0 0 0√
7

7 0 0 0 0

0 2
√

70
35 0 0 0

0 0 3
√

35
35 0 0

0 0 0 2
√

70
35 0

0 0 0 0
√

7
7

0 0 0 0 0

(39)

Using the conditions that lead to vanishing Gaunt coefficients and an explicit expression for non-
zero coefficients such as given in [1], a simple explicit expression for matrices Gl

x, Gl
y and Gl

z

results.

Lemma 2.– For l ≥ 1, the non-zero elements of Gl
x and Gl

y are given by :
[

Gl
x

]

2+k,k
=

[

Gl
x

]

2l+2−k,2l+2−k
=

[

Gl
y

]

2l+2−k,k
= −

[

Gl
y

]

2+k,2l+2−k
=

√

k(k + 1)

2
√

(2l + 1)(2l + 3)
, 1 ≤ k ≤ l − 1 ,

[

Gl
x

]

k,k
=

[

Gl
x

]

2l+4−k,2l+2−k
=

[

Gl
y

]

k,2l+2−k
= −

[

Gl
y

]

2l+4−k,k
=

−
√

(2l + 2 − k)(2l + 3 − k)

2
√

(2l + 1)(2l + 3)
, 1 ≤ k ≤ l ,

[

Gl
x

]

l+2,l+2

=
[

Gl
y

]

l+2,l
=

√

2l(l + 1)

2
√

(2l + 1)(2l + 3)
,

[

Gl
x

]

l+3,l+1

=
[

Gl
y

]

l+1,l+1

= −
√

2(l + 1)(l + 2)

2
√

(2l + 1)(2l + 3)
.

Lemma 3.– For l ≥ 1, Gl
z is given by :

[

Gl
z

]

k+1,k
=

√

k(2l + 2 − k)
√

(2l + 1)(2l + 3)
, 1 ≤ k ≤ 2l + 1 ,

[

Gl
z

]

i,j
= 0 elsewhere.

Theorem.– For l ≥ 2, the following equations are satisfied

Gl
xJl = Jl+1G

l
x , (40)

Gl
zJl = Jl+1G

l
y , (41)

Gl
yJl = Jl+1G

l
z . (42)

Proof.– For x = s, (34) is

x Sl = Sl+1 Gl
x + Sl−1 [Gl−1

x]T . (43)

Applying the operator Jl (for exchange of y and z) on both sides of this equation gives

x SlJl = Sl+1 Jl+1 Gl
x + Sl−1 Jl−1[G

l−1
x]T . (44)

9

Expanding the left-hand side of this equation again using (43) gives
[

Sl+1 Gl
x + Sl−1 [Gl−1

x]T
]

Jl = Sl+1 Jl+1 Gl
x + Sl−1 Jl−1[G

l−1
x]T . (45)

Now identify right-hand factors of Sl+1 and Sl−1 on both sides which gives (40) and

[Gl−1
x]TJl = Jl−1 [Gl−1

x]T , (46)

which is equivalent to (40) with l − 1 instead of l.

Identities (41) and (42) are proven in a similar way.

As proven in lemma 3, Gl
z without its first and last rows is a diagonal matrix, denoted Ĝ

l

z of

dimension 2l + 1. By equation (42), Gl
yJl[Ĝ

l

z]
−1 is just Jl+1 without its first and last columns.

Since Jl+1 is a symmetric matrix, all the elements of the first and last columns (except the corners)

may be recovered in the first and last rows of Gl
yJl[Ĝ

l

z]
−1.

Values in the corners of Jl+1 are given by the following lemma.

Lemma 4.– For l ≥ 1

[Jl]1,1 = [Jl]1,2l+1 = [Jl]2l+1,1 = 0, [Jl]2l+1,2l+1 = 21−l . (47)

Proof.– For l = 2k (resp. l = 2k + 1), the first element of Sl belongs to Exy,k (resp. Ey,k+1) and,
as Exy,k ∪ Jl(Exy,k) = {0} (resp. Ey,k+1 ∪ Jl(Ey,k+1) = {0}), gives Jl]1,1 = 0.
A similar argument leads to [Jl]1,2l+1 = [Jl]2l+1,1 = 0.

For l ≥ 1, we have

Sl,l = K sinl θ cos lφ with K =
(−1)l

2ll!

√

(2l + 1)!

2π
. (48)

Therefore

Sl,l = K <[sinl(cos lφ + i sin lφ)] = K <[sinl θ(cos φ + i sinφ)l] = K <[(x + iy)l] . (49)

Applying operator J gives

J(Sl,l) = K <[(x + iz)l] = K <[(sin θ cosφ + i cos θ)l] . (50)

So

[Jl]2l+1,2l+1 =

∫

Sl,lJ(Sl,l) dΩ

= K2
∫ 2π

0

∫ π

0
sinl+1 θ cos lφ <[(sin θ cos φ + i cos θ)l] dθ dφ .

In the binomial expansion inside the real part, only the term in cosl φ gives a non-zero contribution
because

∫ 2π

0
cos lφ cosk φ d phi = 0 for 0 ≤ k < l . (51)

So

[Jl]2l+1,2l+1 = K2
∫ 2π

0
cos lφ cosl φ dφ

∫ 2π

0
sin2l+1 θ dθ . (52)

10

The result then follows from identity (21) and
∫ 2π

0
cos lφ cosl φ dφ =

π

2l−1
, l ≥ 1 . (53)

A sketch of the recurrence algorithm for computing Jl is given in figure 1.

^ lGy
l J z=

−1
[]

−l0 2

l

0 0

GJl+1

Figure 1: Sketch of the recurrence algorithm for Jl.

4 Programs

Three main tasks have been assigned to a computer algebra system for achieving the goals of this
study :

1. Check the correctness of all formulae in this document,

2. Generate a file to be used by numerical C functions that contains the exact values of entries
in matrices Jl for 1 ≤ l ≤ lmax for a given maximum value lmax of l.

3. Test the precision of the implemented C function that computes rotation matrices by pro-
ducing exact expected results.

The Maple system was used here but certainly any other general computer algebra system would
also be suitable.

As pointed out below, for a given value of l, the number of coefficients to be stored is 1
2 l2 + l + 1

for even l and 1
2(l + 1)2 for odd l. Following the conjecture, checked indeed for used values of l,

each coefficient in Jl has a canonical form a
√

b/2n. The values of a, b and n are sequentially stored
in a file as integers, thus without any loss of information. Appendix programs may now produce
files with numerical values of the coefficients with the chosen precision (usual double precision or
extended precision) to be read by C functions.

One convenient method of computing rotation matrices with exact entries is to used rotation angles
α, β, γ with rational sines and cosines. Given a rational number t, an angle θ ∈ [0, π) is well defined

by tan θ
2 = t, cos θ = 1−t2

1+t2
, sin θ = 2t

1+t2
. As polynomials in cos θ and sin θ, the values of cos kθ

and sin kθ, for any integer k, are also rational numbers and thus every element in any J l has a

11

closed form representation. However this method is very time-consuming and it may be efficiently
replaced by simply computing Jl using floating point numbers with arbitrarily large, but fixed,
extended precision within the computer algebra system.

For a given dimension n ≥ 3, let us denote by M(n, IR) the set of real n × n matrices and by
O(n, IR) its subset of orthogonal matrices. Let A ∈ O(n, IR) and B ∈ M(n, IR) an approximation
of A obtained by a numerical procedure. The error may be estimated by considering the distance
||A − B|| between A and B where ||.|| is a norm on M(n, IR). The Frobenius norm is used here,
defined by

||A||2F =
n

∑

i=1

n
∑

j=1

A2
i,j = Tr(AT A) . (54)

For A ∈ O(n, IR), ||A −B||F = ||ATB− In||F .
When A = ∆l(α, β, γ), the number e = ||A − B||F is related to quadratic mean σ of the absolute
errors on the entries of the C-computed matrix B by the relation e = (2l + 1)σ. As an example,
figure 4 shows the histogram of absolute errors on the entries of B for l = 20, α = 0.1, β = 0.2 and
γ = 0.3. The mean is m = 1.527 × 10−19 and the quadratic mean σ = 4.636 × 10−17.

1

75

0

−2−3

50

100

25

2

125

0−1

Figure 2: Histogram for absolute errors on the 1681 entries of ∆20(0.1, 0.2, 0.3) computed by the C
function. The unit along the x-axis is 10−16.

Figures 3 and 4 show the values of the error distance e when computing ∆l(α, β, 0) with the C
function for l = 10 and −π ≤ α ≤ π, 0 ≤ β ≤ π. A total of 1000 trials have been done by choosing
α and β at random with an uniform distribution in their definition interval with the extra condition
that they must be exactly representable numbers in usual double precision format.
Although suspected in [5], no numerical instability is observed when the angles correspond to a
point near the poles on the unit sphere, that is when β is close to 0 or π.

12

lmax 5 10 15 20

Time 3.010 sec. 20.31 sec. 70.58 sec. 181.2 sec.

Table 3: Computation time for 105 calls of C rotation function.

Table 4 shows the time for 105 calls of the rotation C function to compute R̂l(α, β, γ), 1 ≤ l ≤ lmax
for different values of lmax and random values of angles α, β, γ. The program was run on a
workstation equipped with an Intel Pentium 4 processor at 3.40 GHz.

5 Discussion

A well-established procedure for rotation of real spherical harmonics in space-fixed axes is that
using so-called Wigner rotation matrices. This work investigates alternative techniques, based on
successive axial rotations about the cartesian axes and suitable permutations of these axes. An
efficient method, due to Kautz [2] used in the field of image rotation has been improved and made
more systematic in the present work. The result is a highly compact form for the rotation matrices
which have a very simple structure. In fact, it is the simplest possible and each element of the
upper triangle may be stored in the form of three integers. Furthermore, the entire matrix may be
pre-calculated for a given maximum l value of the spherical harmonics. This is clearly advantageous
compared with the Wigner matrix strategy and tests have shown the resulting algorithm to be very
fast. Indeed, with so few instructions to execute it is difficult to imagine a faster procedure for a
given precision.
Rigorous relationships are also given to the Gaunt coefficients and there is a section describing
recursive procedures for generating the matrices from previously calculated elements for lower l
values. This obviously enables a progressive construction of matrices with no superfluous evalua-
tions. Furthermore, this matrix evaluation is carried out once and for all and simultaneously for
all the values of l contrary to previous two-term recurrence approaches for one l value at a time
(see [4]).
The structure of the rotation matrices presented here has been completely characterized. They are
shown to comprise blocks of non-zero elements of a simple exact form.

6 Conclusion

A new technique for evaluating, storing and implementing rotation matrices in a real spherical
harmonic basis has been put forward. The relationship to previous work is emphasized, as are the
advantages of that described herein.
This work paves the way for highly efficient algorithms required in the rotation of atomic orbitals
in space-fixed axes for molecular electronic calculations in quantum chemistry. Indeed, the rotation
matrix structure evidenced here has been checked using computer algebra and a program written in
C generated to evaluate the elements and carry out the rotations to high accuracy. The structural
information (regarding matrix elements) allows the storage of the upper triangle of rotation matrix
elements in the form of three integers per element. These matrices and the requisite integers are
generated once and for all when the atomic orbitals are input, since the maximum value of l involved
is known at this stage. A table of timings for hundred thousand calls of the rotation matrix shows
how fast this is for the high precision and numerical stability studied in the closing sections of this
work.

13

 0

 5e−16

 1e−15

 1.5e−15

 2e−15

 2.5e−15

 3e−15

 3.5e−15

 4e−15

 4.5e−15

 5e−15

 5.5e−15

−3 −2 −1 0 1 2 3

e

α

Figure 3: Error distances of C-computed ∆l(α, β, 0) for l = 10 – Projection on α-axis.

 0

 5e−16

 1e−15

 1.5e−15

 2e−15

 2.5e−15

 3e−15

 3.5e−15

 4e−15

 4.5e−15

 5e−15

 5.5e−15

 0 0.5 1 1.5 2 2.5 3

e

β

Figure 4: Error distances of C-computed ∆l(α, β, 0) for l = 10 – Projection on β-axis.

14

References

[1] D.A. Varshalovitch, A.N. Moskalev, and V.K. Khersonskii. Quantum theory of Angular mo-
mentum techniques. World Scientific, 1989. 514 p.

[2] J. Kautz, P.-P. Sloan, and J. Snyder. Fast, arbitrary BRDF shading for low-frequency light-
ing using spherical harmonics. In Proc. 13th Eurographics Workshop on Rendering, Nicosia,
Cyprus, 2002, 2002. 7 p.

[3] J. Ivanic and K. Ruedenberg. Rotation matrices for real spherical harmonics.Direct determi-
nation by recursion. J. Phys.Chem., 100:6342–6347, 1996.

[4] M. A. Blanco, M. Flórez, and M. Bermejo. Evaluation of the rotation matrices in the basis of
real spherical harmonics. J. Mol. Struc. (Theochem), 419:19–27, 1997.

[5] J. Křivánek, J. Konttinen, S. Pattanaik, and K. Bouatouch. Fast approximation to spherical
harmonic rotation. Technical Report 1728, IRISA, Rennes, France, 2005. 14 p.

[6] Y. Kosmann-Schwartzbach. Groupes et symétries. Ed. École Polytechnique, 2003. 141 p.

[7] E.O. Steinborn and K. Ruedenberg. Rotation and translation of regular and irregular solid
spherical harmonics. Adv. Quant. Chem., 7:1–81, 1973.

[8] C.H. Choi, J. Ivanic, M.S. Gordon, and K. Ruedenberg. Rapid and stable determination of
rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys., 111:8825–
8831, 1999.

[9] V. Devanathan. Angular momentum techniques in quantum machanics. Kluwer Acad. Publ.,
2002. 242 p.

[10] J. Křivánek, J. Konttinen, K. Bouatouch, S. Pattanaik, and J. Zára. Fast approximation to
spherical harmonic rotation. In Proc. SCCG’06, 22nd Spring Conf. on Computer Graphics,
Čast-Papiernička, Sloviaka. ACM Press, New York, NY, USA, 2006.

[11] J.R. Ivarez Collado, J. Fernández Rico, R. López, M. Paniagua, and G. Ramı́rez. Rotation of
real spherical harmonics. Comput. Phys. Commun., 52:323–331, 1989.

15

Appendix – Maple verification programs

A first Maple commands file gives the definition of complex and real spherical harmonics.

spherical.mpl

spherical.mpl

Authors: DP & PH

Copyright (c) CNRS, 2006

Integration on the unit sphere

intSpherik := proc(f)

local g;

g := int(f,phi=0..2*Pi);

simplify(int(g*sin(theta),theta=0..Pi));

end:

Associated Legendre functions of the 1st kind

associatedLegendre := proc(l,m)

if l=0 then RETURN(1); fi;

if m<0 then ERROR("m should be non negative!"); fi;

(-1)^m*1/(2^l*l!)*(sin(theta))^m*

subs(x=cos(theta), diff((x^2-1)^l ,seq(x,i=1..(l+m))));

end:

Complex spherical harmonics

YY := proc(l,m)

local mm,x,res;

if l=0 and m=0 then RETURN(1/(4*Pi)); fi;

mm:=abs(m);

res :=I^(m+mm)*

simplify(sqrt((2*l+1)*(l-mm)!/(l+mm)!/4/Pi)*1/2^l/l!)*

sin(theta)^mm*subs(x=cos(theta), diff((x^2-1)^l,x$(l+mm)))*

exp(I*m*phi);

end:

Real spherical harmonics

SS := proc(l,m)

local cte;

if m=0 then

RETURN(sqrt((2*l+1)/(4*Pi))*P(l,cos(theta)));

fi;

cte := sqrt((2*l+1)*(l-abs(m))!/(l+abs(m))!/2/Pi);

if m>0 then

RETURN(cte*associatedLegendre(l,m,theta)*cos(m*phi));

fi;

cte*associatedLegendre(l,-m,theta)*sin(-m*phi);

end:

16

Only the mathematical definition of real Gaunt coefficients will be used below.

gaunt.mpl

real Gaunt coefficients

mathematical definition

realGaunt := proc(l1,l2,l3,m1,m2,m3)

intSpherik(SS(l1,m1)*SS(l2,m2)*SS(l3,m3));

end:

The main functions to deal with rotation matrices have been collected in the following Maple
command file.

rotation.mpl

rotation.mpl

MEPOM - Didier Pinchon

Version 1.0 , 1 September 2006

rotation matrices for real spherical harmonics

with(linalg):

read("spherical.mpl"):

read("gaunt.mpl"):

with(linalg):

real spherical harmonics with variables x,y,z

Sxyz := proc(l,m)

local leq,res;

leq := {cos(theta)=z/r,sin(theta)=sqrt(x^2+y^2)/r,cos(phi)=x/sqrt(x^2+y^2),

sin(phi)=y/sqrt(x^2+y^2)};

res := simplify(r^l*subs(leq,expand(SS(l,m))));

res := simplify(subs(r=sqrt(x^2+y^2+z^2),res));

end:

Sbasis := proc(l) [seq(Sxyz(l,m),m=-l..l)] end:

complex spherical harmonics with variables x,y,z

Yxyz := proc(l,m)

local leq,res;

leq := {cos(theta)=z/r,sin(theta)=sqrt(x^2+y^2)/r,cos(phi)=x/sqrt(x^2+y^2),

sin(phi)=y/sqrt(x^2+y^2)};

res :=simplify(r^l*subs(leq,expand(convert(YY(l,m),trig))));

res := simplify(subs(r=sqrt(x^2+y^2+z^2),res));

end:

Ybasis := proc(l) [seq(Yxyz(l,m),m=-l..l)] end:

setCoeffs := proc(f,lv)

local g,lc;

Maple "coeffs" does not work

lc := {seq(coeff(f,lv[1],i),i = 0..degree(f,lv[1]))};

if nops(lv)=1 then RETURN(lc); fi;

{seq(op(setCoeffs(g,lv[2..-1])), g = lc)};

end:

17

linCoeffs := proc(f,basis)

local g,leq,i,sol,dim;

dim := nops(basis);

g := add(c[i]*basis[i],i=1..dim)- expand(f);

leq:= setCoeffs(g,[x,y,z]);

sol := solve(leq,{seq(c[i],i=1..dim)});

[seq(combine(subs(sol,c[i])),i=1..dim)];

end:

Matrix of a linear operator in a space given a base

opMatrix := proc(opf,basis)

local mat,i,j,dim,lco;

dim := nops(basis);

mat := matrix(dim,dim,0);

for j to dim do

lco := linCoeffs(opf(basis[j]), basis);

for i to dim do

mat[i,j] := simplify(lco[i]);

od;

od;

mat;

end:

Matrix of a linear operator between two spaces given two bases fam and basis

opMatrix2 := proc(opf,fam,basis)

local mat,i,j,dim,dim2,lco;

dim := nops(basis);

dim2 := nops(fam);

mat := matrix(dim,dim2,0);

for j to dim2 do

lco := linCoeffs(opf(fam[j]), basis);

for i to dim do

mat[i,j] := simplify(lco[i]);

od;

od;

mat;

end:

Change of base matrix

changeBase := proc(bas1,bas2) opMatrix2(a -> a, bas1,bas2); end:

Permutation matrix

permutationMat := proc(ll)

local dim,mat,i;

dim := nops(ll);

mat := matrix(dim,dim,0);

for i to dim do

mat[i,ll[i]]:=1;

od;

mat;

end:

18

The elementary rotations

rotXY := proc(f,alpha) subs({x=cos(alpha)*x+sin(alpha)*y,y=-sin(alpha)*x+cos(alpha)*y},f) end:

rotXZ := proc(f,alpha) subs({x=cos(alpha)*x+sin(alpha)*z,z=-sin(alpha)*x+cos(alpha)*z},f) end:

rotYZ := proc(f,alpha) subs({y=cos(alpha)*y+sin(alpha)*z,z=-sin(alpha)*y+cos(alpha)*z},f) end:

Symmetry z <-> y and its matrix in S-basis

symYZ := proc(f) subs({y=z,z=y},f); end:

mkMatJ := proc(l) opMatrix(symYZ, Sbasis(l)); end:

The special permutation matrix

mkMatQ := proc(l) permutationMat([seq(2*i,i=1..l),seq(2*i+1,i=0..l)]); end:

Invariant subspaces and symmetric subspaces of E^l by symYZ and block matrices

mkBxyz := proc(k) [seq(SS(2*k+1,-2*k-2+2*i),i=1..k)]; end:

mkExyz := proc(k) [seq(Sxyz(2*k+1,-2*k-2+2*i),i=1..k)]; end:

mkAxyz := proc(k) opMatrix(symYZ, mkExyz(k)); end:

mkBx := proc(k) [seq(SS(2*k-1,-1+2*i),i=1..k)]; end:

mkEx := proc(k) [seq(Sxyz(2*k-1,-1+2*i),i=1..k)]; end:

mkAx := proc(k) opMatrix(symYZ, mkEx(k)); end:

mkBz := proc(k) [seq(SS(2*k-1,-2+2*i),i=1..k)]; end:

mkEz := proc(k) [seq(Sxyz(2*k-1,-2+2*i),i=1..k)]; end:

mkAz := proc(k) opMatrix2(symYZ, mkEz(k), mkEy(k)); end:

mkBy := proc(k) [seq(SS(2*k-1,-2*k+2*i-1),i=1..k)]; end:

mkEy := proc(k) [seq(Sxyz(2*k-1,-2*k+2*i-1),i=1..k)]; end:

mkAy := proc(k) opMatrix2(symYZ, mkEy(k), mkEz(k)); end:

mkByz := proc(k) [seq(SS(2*k,-2*k+2*i-1),i=1..k)]; end:

mkEyz := proc(k) [seq(Sxyz(2*k,-2*k+2*i-1),i=1..k)]; end:

mkAyz := proc(k) opMatrix(symYZ, mkEyz(k)); end:

mkBxz := proc(k) [seq(SS(2*k,2*i-1),i=1..k)]; end:

mkExz := proc(k) [seq(Sxyz(2*k,2*i-1),i=1..k)]; end:

mkAxz := proc(k) opMatrix2(symYZ, mkExz(k), mkExy(k)); end:

mkBxy := proc(k) [seq(SS(2*k,-2*k+2*i-2),i=1..k)]; end:

mkExy := proc(k) [seq(Sxyz(2*k,-2*k+2*i-2),i=1..k)]; end:

mkAxy := proc(k) opMatrix2(symYZ, mkExy(k), mkExz(k)); end:

mkB1 := proc(k) [seq(SS(2*k-2,2*i-2),i=1..k)]; end:

mkE1 := proc(k) [seq(Sxyz(2*k-2,2*i-2),i=1..k)]; end:

mkA1 := proc(k) opMatrix(symYZ, mkE1(k)); end:

Gaunt matrices

s*E^l == E^{l+1} C_s^{l} + E^{l-1} D_s^{l} with s in {x,y,z}

mkGauntMat := proc(l,symb)

local fam, bas, mat,m1;

if not(symb=‘x‘ or symb=‘y‘ or symb=‘z‘) then

ERROR("bad second argument!");

fi;

fam := Sbasis(l);

bas := [op(Sbasis(l+1)), seq(f*(x^2+y^2+z^2), f=Sbasis(l-1))];

19

mat := opMatrix2(f -> symb*f, fam, bas);

m1 := submatrix(mat,1..2*l+3,1..2*l+1);

evalm(m1);

end:

Equivalent definition with real Gaunt coefficients

mkGauntMat2 := proc(l,symb)

local s,mat,i,j;

mat := matrix(2*l+3,2*l+1,0);

if symb=‘x‘ then s:=1; elif symb=‘y‘ then s:=-1; elif symb=‘z‘ then s:=0; else

ERROR("bad second argument!");

fi;

for i to 2*l+3 do

for j to 2*l+1 do

mat[i,j] := (-1)^s*2*sqrt(Pi)/sqrt(3)*realGaunt(l+1,l,1,i-l-2,j-l-1,s);

mat[i,j] := simplify(combine(mat[i,j]));

od;

od;

mat;

end:

Rotation with z-axis

mkMatZ := proc(l,a)

local mat,i;

mat := matrix(2*l+1,2*l+1,0);

for i to l do

mat[i,i] := cos((l+1-i)*a);

mat[i,2*l+2-i] := sin((l+1-i)*a);

mat[2*l+2-i,i] := - sin((l+1-i)*a);

mat[2*l+2-i,2*l+2-i] := cos((l+1-i)*a);

od;

mat[l+1,l+1]:=1;

mat;

end:

The worksheet rotation.mws that follows is for checking the main formulas of the paper.

20

Rotation matrices for real spherical harmonics: general rotations
of atomic orbitals in space-fixed axes

Verifications

Didier Pinchon and Philip E. Hoggan

October 16,2006

> restart;

> read("spherical.mpl");

> read("rotation.mpl");

Example: matrices of Jl in basis Yl and Sl (16),(17)

> l:=3:

> basY := Ybasis(l):

> basS := Sbasis(l);

basS :=

[

1/8

√
70y

(

−3 x2 + y2
)

√
π

, 1/2

√
105zyx√

π
, 1/8

√
42y

(

−4 z2 + x2 + y2
)

√
π

,

−1/4

√
7z

(

−2 z2 + 3 x2 + 3 y2
)

√
π

, 1/8

√
42x

(

−4 z2 + x2 + y2
)

√
π

,

−1/4

√
105z

(

−x2 + y2
)

√
π

, 1/8

√
70x

(

−x2 + 3 y2
)

√
π

]

> mC := evalm(changeBase(basS,basY));

mC :=

−1/2 i
√

2 0 0 0 0 0 −1/2
√

2

0 1/2 i
√

2 0 0 0 1/2
√

2 0

0 0 −1/2 i
√

2 0 −1/2
√

2 0 0

0 0 0 1 0 0 0

0 0 −1/2 i
√

2 0 1/2
√

2 0 0

0 −1/2 i
√

2 0 0 0 1/2
√

2 0

−1/2 i
√

2 0 0 0 0 0 1/2
√

2

21

> matJY := evalm(opMatrix(f-> subs({y=z,z=y},f), basY));

matJS := evalm(opMatrix(f-> subs({y=z,z=y},f), basS));

map(f->simplify(f), evalm(mC &* matJS &*

transpose(map(f -> conjugate(f),mC))-matJY));

matJY :=

1/8 1/8 i
√

6 −1/8
√

15 −1/4 i
√

5 1/8
√

15 1/8 i
√

6 −1/8

−1/8 i
√

6 1/2 1/8 i
√

10 0 1/8 i
√

10 −1/2 −1/8 i
√

6

−1/8
√

15 −1/8 i
√

10 −1/8 −1/4 i
√

3 1/8 −1/8 i
√

10 1/8
√

15

1/4 i
√

5 0 1/4 i
√

3 0 1/4 i
√

3 0 1/4 i
√

5

1/8
√

15 −1/8 i
√

10 1/8 −1/4 i
√

3 −1/8 −1/8 i
√

10 −1/8
√

15

−1/8 i
√

6 −1/2 1/8 i
√

10 0 1/8 i
√

10 1/2 −1/8 i
√

6

−1/8 1/8 i
√

6 1/8
√

15 −1/4 i
√

5 −1/8
√

15 1/8 i
√

6 1/8

matJS :=

0 0 0 1/4
√

10 0 −1/4
√

6 0

0 1 0 0 0 0 0

0 0 0 1/4
√

6 0 1/4
√

10 0

1/4
√

10 0 1/4
√

6 0 0 0 0

0 0 0 0 −1/4 0 −1/4
√

15

−1/4
√

6 0 1/4
√

10 0 0 0 0

0 0 0 0 −1/4
√

15 0 1/4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

22

Block structure of Jl

> checkBlocks := proc(l)

local k,matJ, matQ, mA;

k := iquo(l,2);

matJ := mkMatJ(l);

matQ := mkMatQ(l);

matJ := evalm(matQ &* matJ &* transpose(matQ));

if type(l,odd) then # equation (23)

mA := mkAy(k+1);

if equal(mkAxyz(k), submatrix(matJ, 1..k, 1..k)) and

equal(mA, submatrix(matJ,k+1..2*k+1,2*k+2..3*k+2)) and

equal(transpose(mA), submatrix(matJ,2*k+2..3*k+2,k+1..2*k+1)) and

equal(mkAx(k+1), submatrix(matJ, 3*k+3..4*k+3, 3*k+3..4*k+3))

then RETURN(true);

else

RETURN(false);

fi;

else # l even, equation (28)

mA := mkAxy(k);

if equal(mkAyz(k), submatrix(matJ, 1..k, 1..k)) and

equal(mA, submatrix(matJ,k+1..2*k,2*k+1..3*k)) and

equal(transpose(mA), submatrix(matJ,2*k+1..3*k,k+1..2*k)) and

equal(mkA1(k+1), submatrix(matJ, 3*k+1..4*k+1, 3*k+1..4*k+1))

then RETURN(true);

else

RETURN(false);

fi;

fi;

end:

> for l from 2 to 9 do print(l, checkBlocks(l)); od;

2, true

3, true

4, true

5, true

6, true

7, true

8, true

9, true

23

Matrix Gz (lemma 3)

> checkGz := proc(l)

local mat,k,mat0;

mat := matrix(2*l+3,2*l+1,0);

mat0 := matrix(2*l+3,2*l+1,0);

for k to 2*l+1 do

mat[k+1,k] := sqrt(k*(2*l+2-k))/sqrt((2*l+1)*(2*l+3));

od;

mat := map(f -> simplify(f),evalm(mat - mkGauntMat(l,z)));

equal(mat,mat0)

end:

> seq(checkGz(l),l=1..6);

true, true, true, true, true, true

Matrix Gy (lemma 2)

> checkGy := proc(l)

local mat,mat0,k;

mat := matrix(2*l+3,2*l+1,0);

mat0 := matrix(2*l+3,2*l+1,0);

for k from 1 to l-1 do

mat[2*l+2-k,k] := sqrt(k*(k+1)/((2*l+1)*(2*l+3)))/2;

od;

mat[l+2,l] := sqrt(2*l*(l+1)/(2*l+1)/(2*l+3))/2;

mat[l+1,l+1] := -sqrt(2*(l+1)*(l+2)/(2*l+1)/(2*l+3))/2;

for k from 1 to l do

mat[k,2*l+2-k] := -sqrt((2*l+2-k)*(2*l+3-k)/((2*l+1)*(2*l+3)))/2;

od;

for k from 1 to l do

mat[2*l+4-k,k] := sqrt((2*l+2-k)*(2*l+3-k)/(2*l+1)/(2*l+3))/2;

od;

for k from 1 to l-1 do

mat[2+k,2*l+2-k] := - sqrt(k*(k+1)/(2*l+1)/(2*l+3))/2;

od;

mat := map(f -> simplify(f),evalm(mat - mkGauntMat(l,y)));

equal(mat,mat0);

end:

> seq(checkGy(l),l=1..6);}

true, true, true, true, true, true

24

Matrix Gx (lemma 2)

> checkGx := proc(l)

local mat,mat0,k;

mat := matrix(2*l+3,2*l+1,0);

mat0 := matrix(2*l+3,2*l+1,0);

for k from 1 to l do

mat[k,k] := -sqrt((2*l+2-k)*(2*l+3-k)/(2*l+1)/(2*l+3))/2;

od;

mat[l+2,l+2] := sqrt(2*l*(l+1)/(2*l+1)/(2*l+3))/2;

mat[l+3,l+1] := -sqrt(2*(l+1)*(l+2)/(2*l+1)/(2*l+3))/2;

for k from 1 to l-1 do

mat[2*l+2-k,2*l+2-k] := sqrt(k*(k+1)/((2*l+1)*(2*l+3)))/2;

od;

for k from 1 to l-1 do

mat[2+k,k] := sqrt(k*(k+1)/(2*l+1)/(2*l+3))/2;

od;

for k from 1 to l do

mat[2*l+4-k,2*l+2-k] := - sqrt((2*l+2-k)*(2*l+3-k)/(2*l+1)/(2*l+3))/2;

od;

mat := evalm(mat - mkGauntMat(l,x));

equal(mat,mat0);

end:

seq(checkGx(l),l=1..6);

true, true, true, true, true, true

25

Gaunt matrices for l=2. Equation (37), (38), (39).

> Gx := mkGauntMat(2,x);

Gx :=

−1/14
√

42 0 0 0 0

0 −1/7
√

7 0 0 0

1

70

√
70 0 0 0 0

0 0 0 1/35
√

105 0

0 0 −1/35
√

210 0 1

70

√
70

0 0 0 −1/7
√

7 0

0 0 0 0 −1/14
√

42

> Gy := mkGauntMat(2,y);

Gx :=

0 0 0 0 −1/14
√

42

0 0 0 −1/7
√

7 0

0 0 −1/35
√

210 0 − 1

70

√
70

0 1/35
√

105 0 0 0

1

70

√
70 0 0 0 0

0 1/7
√

7 0 0 0

1/14
√

42 0 0 0 0

> Gz := mkGauntMat(2,z);

Gx :=

0 0 0 0 0

1/7
√

7 0 0 0 0

0 2

35

√
70 0 0 0

0 0 3

35

√
35 0 0

0 0 0 2

35

√
70 0

0 0 0 0 1/7
√

7

0 0 0 0 0

26

Recurrence algorithm for Jl

> nextJl := proc(mJ, mnextJ)

local l, mJ1, mat0, Ghatz,Gy, mat, i, j;

l := iquo(rowdim(mJ),2);

mJ1 := matrix(2*l+3, 2*l+3, 0);

mat0 := matrix(2*l+3, 2*l+3, 0);

Gy := mkGauntMat(l,y);

Ghatz := submatrix(mkGauntMat(l,z),2..2*l+2,1..2*l+1);

mat := map(f- -> simplify(f), evalm(Gy &* mJ &* inverse(Ghatz)));

for i from 1 to 2*l+3 do

for j from 1 to 2*l+1 do

mJ1[i,j+1] := simplify(mat[i,j]);

od;

od;

for i from 1 to 2*l+1 do

mJ1[i+1,1] := mJ1[1,i+1];

mJ1[i+1,2*l+3] := mJ1[2*l+3,i+1];

od;

mJ1[2*l+3,2*l+3] := 1/2\symbol{94}l;

equal(map(f -> simplify(f), evalm(mJ1 - mnextJ)), mat0);

end:

> mJ := mkMatJ(1):

for i from 1 to 9 do

mJ1 := mkMatJ(i+1):

print(i, nextJl(mJ,mJ1));

mJ := mJ1:

od:

1, true

2, true

3, true

4, true

5, true

6, true

7, true

8, true

9, true

27

