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Abstract
Light transport is often characterized within a high-dimensional space although practitioners have long known
that it commonly behaves as a much lower-dimensional phenomenon. We study the effective dimension of light
transport over a neighborhood on the scene manifold and show that under plausible assumptions the dimensionality
is characterized by the spectrum of the spatio-spectral concentration problem. This allows us to improve existing
estimates for the dimension in computer graphics using a more insightful derivation and for the first time we obtain
optimal representations. The relevance of our results for existing rendering applications is discussed.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—[Color, shading, shadowing, and texture]

1. Introduction

In many applications the light transport problem must be
solved not at a single location but over a neighborhood on
the scene manifold. We study the local structure of light
transport and characterize the coherence of the computations
dependent on the neighborhood and the signal complexity.

Consider a radially symmetric transport operator T with
axis c(x), mapping distant incident radiance E(ω) to exitant
radiance B(x),

B(x) =
∫
H2

E(ω)T (c(x) ·ω)dω. (1)

For T being bandlimited in the Spherical Harmonics domain,
we determine optimal linear K-term approximations T̃ such
that the approximation error

‖B− B̃‖2
U ′ = ‖TE− T̃E‖2

U ′ (2)

over a convex neighborhood U ′ on the scene manifoldM
is minimized, cf. Fig. 1. For sufficiently large K, with the
original size M of the problem much larger than K, the error
in Eq. 2 becomes vanishingly small. K will then be referred
to as the effective dimension and K/M provides a measure
for the coherence of light transport in the neighborhood U ′.

The above assumptions on T are satisfied for example
by the diffuse shading kernel (n(x) ·ω) where the axis of
symmetry is the local normal n(x) and L = 2 [RH02]. Specu-
lar transport can be studied with our framework when only
a single outgoing direction ω̃ is of interest, in which case
B(x) = B(x, ω̃), and the Spherical Harmonics representation

Figure 1: We study the effective dimension of the exitant radiance
B(x) over the region U ′ ⊂M when the scene manifoldM is locally
approximated by a subset of the sphere U ⊂ S2

M.

is restricted to a bandlimit L, chosen in accordance with the
application of interest. We will analyze partial occlusion by
assuming that the lighting is also radially symmetric.

The local coherence of light transport has been exploited
in precomputed radiance transfer for some time [SHHS03,
LSSS04]. A theoretical analysis was recently undertaken by
Mahajan et al. [MSRB07]. There, the problem was consid-
ered in flatland and results were obtained by estimating the
spectrum of a discretized transport operator using a varia-
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Figure 2: Spectrum of the spatio-spectral concentration problem on the sphere for spherical caps with θ ≤ Θ and L = 5 (left) and L = 20
(right). The eigenvalue index is shown on the X axis and the magnitude |λi| of the eigenvalues on the Y axis. Shown are also the Shannon number
N (dotted) and generalized Shannon number Ng(ε) (dash-dotted), the latter one computed with B(∂U) = lg ((L+1)2|∂U|2)/ lg (2π). Note the
importance of the second term in Ng(ε) when the region of spatio-spectral concentration is small.

tion of Szegö’s eigenvalue theorem. The extension to three
dimensions was sketched by these authors. Using the same
assumptions as Mahajan et al. [MSRB07], we study the ef-
fective dimension of light transport by reducing Eq. 2 to the
spatio-spectral concentration problem on the sphere, obtain-
ing a derivation which provides greater insight and improves
their results [MSRB07].

In Sec. 2 an introduction to spatio-spectral concentration
theory will be presented and in Sec. 3 we study the effective
dimension of light transport. We conclude with a discussion
of our results and their relevance for practical settings.

2. Spatio-Spectral Concentration on the Sphere

LetH≤L(S2) be the (L+1)2-dimensional space of L-band-
limited functions on the two-sphere S2. Legendre Spherical
Harmonics ylm(ω) afford in many applications an effective
representation forH≤L. For signals localized in a region U ⊂
S2, however, these are inefficient. Slepian functions provide
in this case optimal L-bandlimited representations with K�
(L+1)2 basis functions. The complete set of (L+1)2 Slepian
functions is additionally orthogonal over U and orthonormal
over S2, thus providing an alternative basis forH≤L.

Slepian functions gi are the solution to the spatio-spectral
concentration problem on the sphere [SDW06, SHB09]. Let

λi =
‖gi‖2

U
‖gi‖2

S2

=

∫
U g2

i dω∫
S2 g2

i dω
(3)

be a measure for the concentration of the L-bandlimited func-
tion gi ∈H≤L in an arbitrary but fixed region U ⊂S2. By the
Fourier uncertainty principle on the sphere [FGS98, Theorem
5.5.1] no bandlimited function in H≤L can be localized on
a subset of the sphere. Hence λi < 1. Functions gi ∈ H≤L
which are optimally localized according to Eq. 3 are given by
the eigenfunctions of the integral equation∫

U
D(ω̄ ·ω)gi(ω)dω = λi gi(ω̄) (4)

whose kernel D(ω̄ · ω) = ∑
L
l=0((2l + 1)/4π) Pl(ω̄ · ω) is

formed by the Zonal Harmonics Pl(ω̄ ·ω); numerical solu-
tions for the gi can be obtained in the Spherical Harmon-
ics domain where Eq. 4 reduces to an (L + 1)× (L + 1)
dimensional matrix eigenvalue problem. The integral oper-
ator D(ω̄ ·ω) is symmetric and positive. Hence there are
n = (L+1)2 eigenvalues 1 > λ1 ≥ . . .≥ λn > 0 and the asso-
ciated eigenfunctions gi can be chosen to be orthogonal. The
first eigenfunction g1 is the L-bandlimited function which is
optimally concentrated in U and by construction its localiza-
tion is λ1. Subsequent eigenfunctions gi are the maximally
concentrated functions inH≤L orthogonal to all g j with j< i.

Of practical interest is the number K of Slepian functions
which is needed to accurately represent a signal localized
in U ⊂ S2. It follows from the definition of the concentra-
tion measure in Eq. 3 that basis functions gi with very small
eigenvalues |λi| ≈ 0 practically vanish over U and their con-
tribution to a representation of a U-localized signal is neg-
ligible. An accurate approximation can hence be obtained
by considering only Slepian functions gi whose eigenval-
ues λi differ significantly from zero. The magnitude of the
eigenvalues is described by the localization spectrum of the
spatio-spectral concentration problem. For the real line it has
been shown [Sle65, Lan65, LW80] that the number N(ε) of
eigenvalues greater than ε > 0 satisfies

N(ε) =
C̃
π
+ log

(
1− ε

ε

)
log(C̃)

π2 +o(log(C̃)), (5)

where C̃ = L̃Ũ is the spatio-spectral region of concentration
for bandlimited L̃ and an interval of size Ũ . The three terms
in Eq. 5 are characteristic for the localization spectrum: The
first term counts the number of eigenvalues close to unity,
the second term determines the size of a region where the
eigenvalue magnitude decays exponentially from one to zero,
and the last term represents eigenvalues close to zero. For a
sufficiently large region C̃ the first term is dominant and it pro-
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Figure 3: Spectrum of the spatio-spectral concentration problem (full) and for empirical transport operators (dashed, obtained using
singular value decomposition) for spherical caps with θ≤ Θ. Left, diffuse transport T (n(x),ω) = (n(x) ·ω) for L = 2; right, Phong transport
T (r(x),ω) = (r(x) ·ω)128 for L = 10, r(x) is the local reflection direction. Formatting as in Fig. 2. Differences in the spectra arise from the
non-uniform energy distribution for the empirical transport operators across bands.

vides an accurate estimate for the number of non-vanishing
eigenvalues. For small C̃ both the first and the second term
have to be considered. Unfortunately, for the sphere no results
analogous to Eq. 5 have been established to date. However,
the analogy to Eq. 5 and a setting studied by Slepian [Sle64]
as well as experimental evidence [SDW06] suggest [Sim10]

N(ε) =
C
4π

+ log
(

1− ε

ε

)
B(∂U) log(C)+o(logC), (6)

where B(∂U) is a function which depends on the boundary
∂U of the region U , and the spatio-spectral region of concen-
tration is C = (L+1)2A(U) with area A(U). The three terms
in Eq. 6 correspond again to the three characteristic parts
of the localization spectrum. The first term is known as the
spherical Shannon number N and we will refer to the first
two terms as the generalized spherical Shannon number Ng.
A restricted setting which will be of interest in the following
is when U is a spherical cap of co-latitude Θ and only radially
symmetric Slepian functions are considered. The spectrum is
then again described by Eq. 6 but the spatio-spectral region
of concentration is in this case C = 4(L+1)Θ, cf. [WS05].

Sample spectra of the spatio-spectral concentration prob-
lem are shown in Fig. 2. Additional spectra and visualizations
of the basis functions are available in [LF10, SDW06].

3. The Effective Dimension of Light Transport

We will now return to our study of the effective dimension of
light transport. Consider Eq. 1 and let the transport operator
be L-bandlimited. Furthermore, assume that c(x) is the local
normal n(x); we will discuss generalizations in the sequel. By
its radial symmetry, T (n(x) ·ω) is then naturally represented
using Zonal Harmonics Pl(n(x) ·ω) centered at n(x),
T (n(x) ·ω) =

L

∑
l=0

tl Pl(n(x) ·ω) =
L

∑
l=0

tl
l

∑
m=–l

ylm(n(x))ylm(ω),

where the right hand side follows from the Spherical Har-
monics addition theorem. By expanding the incident radiance

E(ω) in Spherical Harmonics and with the domain of inte-
gration extended to S2, the domain of orthonormality of the
ylm, we can rewrite Eq. 1 in a global coordinate frame as

B(x) =
∫
S2

(
L

∑
l′=0

l′

∑
m′=–l′

el′m′ yl′m′(ω)
L

∑
l=0

tl Pl(n(x) ·ω)

)
dω

=
L

∑
l′=0

l′

∑
m′=–l′

el′m′

L

∑
l=0

l

∑
m=–l

tl ylm(n(x))
∫
S2

yl′m′ ylm dω

=
L

∑
l=0

l

∑
m=–l

elm tl ylm(n(x)). (7)

For a convex region U ′ onM which is well approximated
by a subset U ⊂S2

M of the sphere S2
M, the local normal n(x)

coincides with the direction vector ω̄ of S2
M, cf. Fig. 1. Eq. 7

can then be written as

B(x)≈B(ω̄)=
L

∑
l=0

l

∑
m=–l

elm tl ylm =
L

∑
l=0

l

∑
m=–l

blm ylm(ω̄) (8)

where B(x) defined over M is approximated by the L-
bandlimited signal B(ω̄) represented in Spherical Harmonics
ylm(ω̄) defined over S2

M. In the following we will be con-
cerned with an optimal K-term approximation of B(ω̄) and
demonstrate that it is given by Slepian functions.

Let {ϕi}M
i=1 with M = (L+ 1)2 be an arbitrary basis for

H≤L(S2
M). A linear K-term approximation of Eq. 8 is ob-

tained when K ≤ M basis functions ϕi(ω̄) with i ∈ Λ are
employed to represent B(ω̄) and the index set Λ is chosen
irrespective of the signal. Assuming the ϕi are orthogonal
over U , the approximation error for the exitant radiance B(ω̄)
over U in Eq. 2 can be written as

‖B(ω̄)− B̃(ω̄)‖U =
M

∑
i=K+1

b̄2
i 〈ϕi,ϕi〉U =

M

∑
i=K+1

b̄2
i ‖ϕi‖2

U .

For arbitrary E and T, the error is thus minimized by basis
functions ϕi(ω̄) whose squared norm ‖ϕi‖2

U is minimal over
U . However, the K bandlimited functions in H≤L whose
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norm is minimal over U are the last M−K Slepian functions.
An optimal K-term approximation for B(ω̄) is hence provided
by the first K Slepian functions and these naturally satisfy
our previous orthogonality assumption. The sought estimate
for the effective dimension of T in a neighborhood U ′ is
then provided by the Shannon number N and the generalized
Shannon number Ng.

To study the effective dimension of light transport in par-
tially occluded environments we will assume that E(ω) =
E(h ·ω) is radially symmetric with axis h ∈ S2 and consider
the setup in Fig. 4. In the hemisphere above the origin the
lighting is then symmetric around the up axis and we assume
that the neighborhood U is sufficiently small so that devia-
tions from this assumption are negligible for all x∈ U . With a
derivation analogous to those which led to Eq. 7 one obtains

B(x) =
L

∑
l=0

el tl Pl(h ·n(x)).≈
L

∑
l=0

el tl Pl(h · ω̄). (9)

where we again identified n(x) and ω̄ ∈ S2
M. i It follows

that the best K-term approximation for B(ω̄) over all of U
is given by the L-bandlimited and radially symmetric func-
tions which are optimally concentrated in U . Slepian function
hence once again provide the optimal representation. If we
furthermore assume that U is a spherical cap of co-latitude
Θ, then by the radial symmetry of the Pl(h · ω̄) in Eq. 9 the
spatio-spectral region of concentration is C = 4(L+1)Θ. For
radial symmetric lighting and a region of concentration which
is a spherical cap the dimensionality hence depends directly
on the co-latitude Θ instead of the area A(U).

Experimental results are presented in Fig. 3. Note the im-
portance of the second term of the generalized Shannon num-
ber for accurate estimates of the dimensionality. Differences
between the theoretical and empirical spectra arise from mag-
nitude variations of the basis function coefficients for real
transport operators which we do not model.

4. Discussion

We showed that the effective dimension of a bandlimited and
radially symmetric transport operator in a local neighborhood
on the scene manifold can be studied using spatio-spectral
concentration theory. An estimate for the dimensionality is
given by the Shannon number N and a more refined analysis

Figure 4: To study partial occlusion we consider the interior of a
hemispherical cap (shown is a cut) and a neighborhood U (blue) cen-
tered at the pole, similar to the setup by Ramamoorthi et al. [RKB05].

leads to the generalized Shannon number Ng. This demon-
strates that there exists both a linear and a logarithmic depen-
dence on the region of concentration. The logarithmic term
was not obtained in previous work [MSRB07] although it is
of particular importance for the settings considered in com-
puter graphics where very low bandlimits L are employed.
For radially symmetric lighting and a neighborhood U which
is a spherical cap, a setting which allows one to study par-
tial occlusion, we showed that the spatio-spectral region of
concentration depends linearly on the co-latitude Θ of the
spherical cap instead of the area A(U), paralleling the result
by Mahajan et al. [MSRB07]. In addition to the refined es-
timates for the effective dimension, the results available in
spatio-spectral concentration theory are more general than
those obtained previously; for example, they hold for arbi-
trarily shaped regions U ⊂ S2 and provide insight into the
eigenfunctions associated with the problem. Our results also
do not rely on a discretization of the transport operator. Un-
fortunately, the eigenvalue distribution for the spatio-spectral
concentration problem on the sphere in Eq. 6 remains a con-
jecture and the true boundary function B(∂U) is unknown.
However, our experimental results demonstrate the usefulness
of our novel boundary term and we believe it will have appli-
cations in other areas where Slepian functions are employed.

We studied the effective dimension of light transport by
approximating the local neighborhood U ′ ⊂M on the scene
manifold by a subset U ⊂ S2 of the sphere. Other choices
for U are conceivable and a subset U ⊂ R2 of the plane is
sensible in particular for regions U ′ ⊂M where curvature
is negligible. In the plane the spectrum of the spatio-spectral
concentration problem consists again of the three charac-
teristic parts [Sle64]. Furthermore, Simons et al. [SDW06]
showed that asymptotically for A(U)→ 0 the spatio-spectral
concentration problem on the sphere reduces to that in the
plane. The consistency of these results is important since any
estimate for the effective dimension should be independent
of the details of the approximations.

In Sec. 3 we derived our result with the axis of radial sym-
metry being the local normal n(x). Our derivation is more
generally applicable as long as c(x) can be identified uniquely
with a point on the sphere. For example for the Phong op-
erator considered by Mahajan et al. [MSRB07], with the
reflection direction as the axis of symmetry, the required
identification is (θ,φ) = (2θ,φ). Most physically motivated
bidirectional reflection distribution functions are not strictly
radially symmetric as we assumed in our derivation. The
phenomenological success of the Phong model suggests how-
ever that radial symmetry is a useful first order assumption,
and for the Torrance-Sparrow model it is known that radial
symmetry holds for small outgoing angles [RH04]. Further
investigations would be a valuable addition to the literature.

The work by Mahajan et al. [MSRB07] was an important
contribution to the literature. However, we believe that our
ansatz, which states the objective as an approximation prob-
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lem, is more amenable to extensions. For example, Spherical
Harmonics are well-suited for the representation of smooth
signals. The signals encountered in rendering are however
only piece-wise smooth and hence wavelet-like constructions
provide optimal representations [Mal09]. An analysis of the
present problem using such bases and nonlinear approxima-
tion strategies is an exciting area for future work.

Mahajan et al. [MSRB07] employed their results for in-
stance to guide transport matrix compression for precom-
puted radiance transfer and to develop object representations
suited for efficient rendering. These are also possible ap-
plications for our work and our improved estimates might
afford increased efficiency. In contrast to previous work, our
derivation yields expressions for the basis functions and a
representation using Slepian functions can be used to ex-
ploit the coherence of light transport without a costly princi-
pal component analysis. The experimental results in Fig. 3
moreover demonstrate that substantial efficiency gains can
be expected with this ansatz. The required mapping from the
neighborhood U ′ ⊂M on the scene manifold to a region
U ⊂ S2

M on the sphere can be accomplished using normal
directions or the isometric embedding provided by the expo-
nential map. A comparison to clustered principal component
analysis, which was employed in previous work, is an in-
teresting area for future work. We believe Slepian functions
will also prove useful for the effective representation of local-
ized signals such as functions defined over the hemisphere
where alternatives to Spherical Harmonics have already been
explored [Mak96, GKPB04, RKB05] but these often do not
provide orthogonality over U and S2 and closure under rota-
tion. For example, in precomputed radiance transfer Slepian
functions would make it possible to increase the bandlimit of
the signals without degrading visual quality or performance.
Rotation of Slepian functions would be possible with a vari-
ation of a rotation algorithm recently developed by us for
Spherical Harmonics [LdWF10]. For sampling based tech-
niques the coherence of light transport has not been exploited
systematically in the past. We believe that the understanding
gained in this note will be useful to improve the efficacy of
these techniques by facilitating the development of rigorous
algorithms which exploit coherence between samples.
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