
Rendering Generalized Cylinders

with Paintstrokes

Ivan Neulander� Michiel van de Panney

Dynamic Graphics Project, University of Toronto

Abstract

We present an e�cient technique for dynamically
tessellating generalized cylinders. We make direct
use of the generalized cylinder's screen-space projec-
tion in order to minimize the number of polygons
required to construct its image. Used in conjunction
with our A-Bu�er polygon renderer, our technique
strikes a good balance between speed and image
quality when used at small to medium scales, gen-
erally surpassing other methods for rendering gener-
alized cylinders.

R�esum�e

Nous pr�esentons une technique e�cace pour la tes-
selation dynamique des cylindres g�en�eralis�es. Nous
utilisons la projection sur l'�ecran pour minimiser
le nombre de polygones n�ecessaires pour construire
l'image.Utilis�ee avec un algorithmeA-bu�er, la tech-
nique est un bon compromis entre l�e�cacit�e et la
qualit�e.

1 Introduction

A generalized cylinder is the surface produced by ex-
truding a circle along a path through space, allowing
the circle's radius to vary along the path. This paper
presents an e�cient method for rendering this sur-
face in a polygon-based projective rendering system,
using a primitive called the paintstroke.

Paintstrokes can serve as inexpensive building
blocks for many types of complex geometry. Com-
bined in large numbers, they can be used to e�-
ciently render a variety of detailed natural phenom-
ena such as fur, hair, branches, twigs, and pine nee-
dles. Simpler structures like wires, hoses, and pipes
are equally suitable. Using their view-dependent tes-
sellation, paintstrokes can also easily approximate
volumetric opacity e�ects. This makes them useful
in rendering objects such as water streams, icicles,
and wisps of smoke, which has traditionally been dif-
�cult to accomplish with other projective-rendering

�ivan@dgp.toronto.edu
yvan@dgp.toronto.edu

methods, necessitating the expensive solution of ray-
tracing.
Paintstrokes employ a multiscale dynamic tessel-

lation of generalized cylinders. While this technique
incurs some overhead as compared to a �xed tessel-
lation scheme, it capitalizes on important symme-
tries and view-invariances of the generalized cylin-
der, whose screen projection can be accurately tiled
with only a small number of relatively large polygons.
The resulting savings in vertex transformations, ras-
terization overhead, and edge antialiasing more than
compensate for the tessellation cost. Furthermore,
by automatically adjusting the granularity of their
tessellation, paintstrokes smoothly adapt their level
of detail to the scale at which they are rendered.

2 Related Work

A variety of methods have been used in rendering
generalized cylinders and similar tubular objects.
Traditional polygonal models, using dynamic spline
surface tessellation [SC88, Sil90, AES94] or polyg-
onal simpli�cation/re�nement [Hop97] are e�ective,
but still require relatively many polygons to ensure a
smooth silhouette, a consistent projected tube thick-
ness, and unwavering specular highlights. Moreover,
the overhead of transforming and tessellating a spline
surface at small scales can be high.
Jim Blinn [Bli89] describes a view-adaptive tes-

sellation scheme for Gouraud-shaded cylinders that
he calls optimal tubes, and an extension to han-
dle constant-radius generalized cylinders. Blinn's
approach is similar to ours, also applying view-
dependent tessellation. However, the inability to
handle specular reection and radius variations lim-
its the scope of applications for optimal tubes.
A variety of particle system approaches have also

been applied, most notably the brush extrusion
method proposed by Turner Whitted [Whi83], the
cone-spheres of Nelson Max [Max90], and the poly-
line primitive that is often used in rendering hair
[LTT91, RCI91]. The �rst two methods potentially
require a large number of primitives to render a
curved tube without discontinuities in the silhouette



or shading. Polylines, on the other hand, are highly
e�ective|but only at very small scales, since they
cannot display any breadthwise shading variation.
Moreover, the pre-integrated shading model they
typically employ, based on the cylindrical Phong in-
tegral introduced by Kajiya and Kay [KK89], is only
intended for small-scale rendering.

At smaller scales, the use of textured impostors
and volumetric textures to represent large numbers
of tubular objects becomes viable. Because a tex-
tured impostor lacks the true geometry of the model
it represents, it cannot faithfully capture the paral-
lax, occlusion, and shading e�ects that one would
expect to see at larger scales. Volumetric textures
do capture these e�ects, but they require the con-
siderable overhead of a ray-traced volumetric ren-
derer. Despite the use of multiresolution models
to speed up this rendering, as presented by Fabrice
Neyret [Ney95], volumetric textures usually render
much more slowly than projective rendering primi-
tives.

3 Paintstroke Representation

The essential properties of a paintstroke can be de-
scribed with a one-dimensional piecewise paramet-
ric function psm(t) with the real t�[0; 1]. psm(t)
is de�ned using a set of n � 2 control points,
fcp0; cp1; : : : ; cpn�1g, such that psm(0) = cpm and
psm(1) = cpm+1, where 0 � m � n. As a notational
shorthand, we omit the subscript m and simply write
ps(t) when this does not introduce ambiguity. When
discussing paintstrokes, we use the term section to
denote the portion of a paintstroke between two ad-
jacent control points. The term segment refers to a
subset of a section.
The components of ps(t) are visual attributes

that vary along the length of the paintstroke: po-
sition (x; y; z), radius, colour (r; g; b), opacity, and
reectance. We respectively symbolize these as:
pos(t), rad(t), colour(t), op(t), re(t). The �rst
two are interpolated using Catmull-Rom splines,
while the rest are interpolated linearly. Another term
we shall refer to is the view vector, de�ned as the unit
vector from the viewer (at the origin) to a point on
the paintstroke. Thus, view(t) = pos(t)=kpos(t)k.

4 Paintstroke Tessellation

Traditional tessellation schemes subdivide a surface
into a set of world-space or eye-space polygons, based
on surface curvature criteria. The paintstroke in ef-
fect directly polygonizes the screen-projection of a
generalized cylinder|not the full eye-space surface.

Paintstroke
Preprocessing

paintstroke polygons

Section
Preprocessing

Lengthwise
Subdivision

Breadthwise
Subdivision

Figure 1: Stages of paintstroke tessellation.

This is what makes the name \paintstroke" appro-
priate to our primitive: an artist drawing a three-
dimensional tube with a single stroke of the paint-
brush capitalizes on the simplicity of this object's
screen projection, as does our tessellation scheme.
Figure 1 summarizes the basic steps of paintstroke
tessellation that we are about to discuss. Some of
the minor steps and algorithmic details, such as the
construction of a paintstroke's endcaps, are omitted
in this paper for brevity, but can be found in [Neu97].

4.1 Paintstroke and Section Preprocessing

The �rst step in the tessellation process trans-
forms all the geometric data stored in the control
points fcp0; cp1; : : : ; cpn�1g from world-space to
eye-space. This data consists of the pos and Ngl

components. The latter is called the global normal

vector and is used for global shading e�ects, dis-
cussed in x5.3.

Each section of the paintstroke, bounded
by control points fcp0; cp1g; fcp1; cp2g;
: : :,fcpn�2; cpn�1g, is rendered individually.
The polynomial coe�cients of the interpolants
pos(t) and rad(t) are computed, as well as for their
derivatives and antiderivatives.

4.2 Lengthwise Subdivision

Once the piecewise interpolants have been generated,
the section between each pair of adjacent control
points is recursively subdivided until the constraints
discussed below have been satis�ed. Whenever a seg-
ment is subdivided, the split occurs at the paramet-
ric midpoint, i.e. at ps(0:5). The two halves are then
recursively subdivided in the same manner until no
further subdivisions are required.

Whether paintstroke segment ps(t) for
t � [a; b]; a < b is subdivided depends on the
behaviour of its pos(t) and rad(t) components. If
it is approximately linear in pos(t) and rad(t), it
is not subdivided, being subsequently drawn as a
truncated cone. If there are inection points in any
component of pos(t) or in rad(t), these need to be
dealt with, as described in x4.2.3.



4.2.1 Position Constraint I

θ

cpm

oa

ob

cpm+1

pos'scr(a)

posscr(a)

posscr(b)

d pos'scr(b)

Figure 2: The elements of Position Constraint I.

The �rst position constraint is based on the an-
gle � between the two-dimensional tangent vectors
pos0scr(a) and pos

0

scr(b). These are the (x; y) screen-
space projections of pos0(t) at the segment's end-
points, t = a and t = b. If � exceeds a threshold value
denoted by �max, the constraint forces a subdivision.
�max � (00; 900) is a function of the segment's maxi-
mum length, as de�ned below, and a user-adjustable
tolerance parameter tol� > 0.
The vectors pos0scr(a) and pos

0

scr(b) are obtained
by analytically di�erentiating the function posscr(t),
the screen-projection of the paintstroke's path. The
dot product of the normalized vectors yields cos �. If
this value is negative, we know that � exceeds the
maximum value of �max, so we immediately subdi-
vide the segment. Otherwise, we need to determine
�max. We begin by �nding the segment's maximum
length d, de�ned as the distance between the two
outside points oa and ob, which are the points lying
on the outside boundary of the segment at t = a
and t = b, respectively (see Figure 2). The outside
point oa is computed by displacing the position point
posscr(a) by one of the two vectors perpendicular to
pos0scr(a), namely

�
posscr

0

y(a)

�posscr
0

x(a)

�
or

�
�posscr

0

y(a)

posscr
0

x(a)

�
(1)

which has been normalized and scaled to the screen-
projected radius. The choice between the two is
based on pos00scr(a), since the second derivative vec-
tor always points toward the centre of curvature.
The same algorithm is applied to obtain ob. Once
the outside points have been determined, we use d2,
the square of the distance between them, and the pa-

rameter tol�, to compute cos2 �max = d2

d2+tol2
�

. This

formula forces the lengthwise subdivision granular-
ity to adapt to the screen-projected length of the

paintstroke segment, in a manner that can be modi-
�ed by tuning tol�.

θmax tolθ

d

Figure 3: Geometric interpretation of �max.

4.2.2 Position Constraint II and Radius

Constraint

The second position constraint maintains a desired
degree of linearity in the z-component of pos(t).
This is necessary to ensure that a curved segment
is adequately subdivided even when viewed from an
angle that makes its screen projection close to linear.
To implement this constraint, we compute over the

interval [a; b] the exact average values of posz(t) and
its linear interpolant, using the integrals shown in
Figure 4. The absolute di�erence between the aver-
age values is a measure of posz(t)'s nonlinearity. The

di�erence is then scaled by dproj
posz(a)

, a factor represent-

ing the foreshortening e�ect of the perspective trans-
formation at pos(a), given the projection distance
dproj . Finally, this value is bounded by the user-
speci�ed tolerance tolz , which yields the inequality
dproj

posz(a)

���
R
b

a
posz(t)dt

b�a
�

posz(a)+posz(b)
2

��� < tolz .

t a b

posz(t)

(a) OK (b) Problem

Figure 4: Position Constraint II.

The radius constraint ensures a smooth lengthwise
variation in the radius of a segment. It is precisely
analogous to Position Constraint II, relying on the
perspective-adjusted average di�erence between the
rad(t) function and its linear interpolant.

4.2.3 Inection Point Constraints

Position Constraint II and the Radius Constraint
both require that the spline interpolants to which
they apply have monotonic derivatives over the entire
segment t � [a; b]. Hence, must ensure that posz(t)



and rad(t) have no inection points in the open inter-
val t � (a; b). Since the interpolants are cubics, �nd-
ing an inection point amounts to �nding the zero of
the interpolant's second derivative within the inter-
val (a; b). If one is found, a subdivision is carried out
at the value of t where it occurs, producing a pair of
subsegments that do not contain the inection point
in their open intervals.
Inection points may also occur within the screen-

projected path of a segment. This can cause a nonlin-
ear path segment to have equal tangents at the end-
points, thereby erroneously satisfying Position Con-
straint I. Locating this type of inection point is ex-
pensive, but if we approximate the curve's perspec-
tive projection with a simple orthonormal one, the
problem becomes more tractable. For a more de-
tailed discussion of inection points, refer to [Neu97].

4.3 Breadthwise Subdivision

Breadthwise subdivision divides a segment into a
ring of polygons which tile the truncated cone that
the segment represents. The subdivisions occur rel-
ative to the centre and edges of the segment, which
are view-dependent. The speci�cs of this tessella-
tion depend on the paintstroke's quality level. Each
paintstroke bears one of three possible quality levels,
numbered 0, 1, and 2. This quantity is determined at
an early preprocessing stage, indicated in Figure 1.
As shown in Figure 5(a), the number of each quality
level represents log2N , where N is the number of
polygons tiling the side of the segment that is closest
to the viewer. Hence, a quality-zero segment is tes-
sellated into a single polygon that always faces the
viewer, a quality-one segment into two on each side
(the viewer's side and the side opposite to it), and a
quality-two segment into four on each side.
For quality-one and quality-two paintstrokes, the

side opposite the viewer is often hidden, and can thus
be safely ignored, saving considerable rendering time.
This optimization takes into account the values of
pos0(t), rad0(t), and view(t), at a segment's end-
points. If the side opposite the viewer is hidden or
nearly hidden, its tellessation is suppressed. More
detail is provided in [Neu97].

4.3.1 Rendering Quality

The tessellation of quality-zero segments is the sim-
plest: the entire segment becomes a single quadrilat-
eral with vertices along the edges of the paintstroke,
corresponding to the silhouette of the generalized
cylinder. This scheme yields the smallest number
of polygons, and the greatest savings over a general-
purpose tessellation method. However, it also yields

Original Quality 0 Quality 2Quality 1

(a) Tessellation Meshes

(b) Rendered Images

Figure 5: Paintstrokes generated at the three render-
ing quality levels.

the poorest rendering quality in several regards: (1)
The shading is inaccurate, being based on the linear
(x; y; z)-componentwise interpolation of high curva-
ture over a single polygon. (2) A quality-zero seg-
ment disappears when viewed head-on, i.e. when the
tangent of its path, pos0(t), is collinear with the
view vector. (3) The self-occlusion e�ect accompa-
nying high screen-space curvature|seen as a fold
in the surface|is inaccurate. (4) Paintstrokes of
this quality level do not support breadthwise opac-
ity variation. Despite their limitations, quality-zero
paintstrokes are still very useful at a small scale,
where the above de�ciencies are largely irrelevant.

In quality-one paintstrokes, each side of the seg-
ment is divided into two equal-sized quadrilaterals
sharing a common edge along the middle. Interpo-
lating normals across two polygons rather than one
greatly improves the appearance of a shaded seg-
ment, and also improves the screen-space fold at high
curvature. Furthermore, paintstrokes of this qual-
ity level no longer disappear when viewed head-on,
although they may reveal their quadrilateral cross-
section if their path is su�ciently straight.

Quality-two paintstrokes produce the highest qual-
ity images, both in their shading and in their appear-



ance when viewed head-on. However, because they
generate four polygons per side, their savings over
a general tessellation scheme are less pronounced.
They are best suited to rendering at larger scales,
where high image quality is essential.

4.3.2 Determining the Polygon Vertices

To obtain a paintstroke polygon's vertices, we �rst
determine their displacements from a point on the
central path of the segment. These displacements are
view-dependent vectors which all originate at pos(t),
radiating outward as shown in Figure 6. We refer
to them as the out vectors: outedge(t) points to
one of the segment's two lengthwise silhouette edges,
while outcentre(t) reaches the breadthwise centre of
the segment. The other two vectors, outmid1(t) and
outmid2 (t) are linear combinations of outedge(t) and
outcentre(t) that point to the angular midpoint be-
tween the centre and each edge.

pos'(t)

outcentre(t)

outedge(t)

view(t)

outedge(t)

outcentre(t)

-outedge(t)

-outmid1
(t)

-outmid2
(t)outmid1

(t)

outmid2
(t)

pos(t) -outcentre(t)

Figure 6: The view-dependent out vectors.

Vertices along the edges are computed as pos(t)+
outedge(t) and pos(t) � outedge(t). For quality-
zero paintstrokes, these are the only vertices used.
For higher quality levels, the centre vertex on the
viewer's side is given by pos(t)+outcentre(t), and the
one one on the opposite side by pos(t)�outcentre(t).
For quality-two paintstrokes, the remaining four ver-
tices are determined in the same manner. The ver-
tices are computed at both endpoints of the segment,
yielding a ring (or semi-ring, if only the viewer's side
is visible) of quadrilaterals.

4.4 Computing the Normals

Each normal vector is equal to its corresponding
out(t) vector plus an adjustment vector adj(t) in
the direction of pos0(t), whose norm is determined
by the derivatives of the radius and position. 1 The

1Note that our calculation is based on an orthonormal pro-
jection of the paintstroke, a reasonable simpli�cation for fairly
small-scale rendering.

out(t) vectors de�ne the breadthwise normal varia-
tion of a paintstroke (which is equivalent to that of
a plain cylinder), while the adj(t) vector represents
the lengthwise normal variation, determined by the
behaviour of the paintstroke's radius.

adj(t) = �
rad0(t)

kpos0(t)k
2 pos

0(t) (2)

The normals within the interior of a polygon are
derived by bilinearly interpolating the (x; y; z) com-
ponents of the vertex normals across the polygon's
screen-space projection. Consequently, the rate of
change of an interpolated normal with respect to
interpolation distance is smallest at the edges and
greatest somewhere in the interior of a polygon. As
Figure 7 illustrates, this is a very poor approxima-
tion of a generalized cylinder's breadthwise normal
distribution. When a large amount of curvature is in-
terpolated over a single polygon, the resulting image
appears to have a ridge at the centre (see Figure 5)
because the normals at that point are varying most
rapidly. But when the curvature is expressed over
multiple polygons (as with quality-one and quality-
two paintstrokes), the approximation becomes much
better.

x
y

(0,0)

(a) Cylinder

x
y

(0,0)

y=a

(b) Polygon

Figure 7: Breadthwise normals of a true cylinder and
a linearly interpolated polygonal representation.

For segments of quality zero, the normals along the
lengthwise edges of a polygon are \nudged" toward
the normals of the centre vertices. This is needed be-
cause the true edge normals are co-planar (given the
orthonormal projection used in determining them),
so the subsequent interpolation between the edges
would never have the required perpendicular com-
ponent in the central direction|at the middle of
the polygon, the normal would simply vanish. The
amount by which the edge normals are shifted to-
ward the centre normal, speci�ed by the nudge fac-
tor, determines both the range and distribution of
the normals.



5 Special Rendering E�ects

5.1 Lengthwise Opacity Variation

The lengthwise opacity of a paintstroke segment
varies according to the values of opmin(t) and
opmax(t). The former opacity is applied when the
segment is viewed head-on, whereas the latter is used
when it is viewed orthogonally to its path. For inter-
mediate cases, an opacity value is interpolated be-
tween these extremes, based on the dot product of
the normalized tangent vector and the view vector.
The interpolated lengthwise opacity, oplen, is given
by the following equation:

oplen(t) = �opmax(t) + (1� �) opmin(t)

� =

����view(t) � pos0(t)

kpos0(t)k

���� (3)

view(t)

pos'(t)
pos'(t)

Figure 8: Lengthwise opacity model.

By exploiting this opacity interpolation, it is possi-
ble to simulate volume opacity, which varies accord-
ing to the distance that penetrating light rays travel
through a material. However, since we are basing
the opacity on just a tangent vector, rather than the
true distance, this e�ect is only an approximation.
Nevertheless, as Figure 15(a) illustrates, the results
are usually quite good.

5.2 Breadthwise Opacity Variation

The surface normals spanning the breadth of a
paintstroke provide a simple and useful way of mod-
ulating the opacity across its breadth. This e�ect
is achieved in each ring of polygons comprising a
paintstroke segment by storing a dot product of the
normal at each viewer-facing vertex with the view
vector. All the dot products within the segment are
then divided by the maximum dot product, which
occurs at the centre vertex. The quotient is stored
for each vertex vi as the parameter si. Given the
vertex normal Ni, the equations for si and for the
breadthwise opacity, oi, are

si =
Ni � view

maxj(Nj � view)
(4)

oi = (1� si)opedge + si opcentre (5)

This value of oi is then multiplied by the lengthwise
opacity value, oplen, to yield �nal opacity at each
vertex.

Breadthwise opacity variation can be used to pro-
duce fuzzy paintstrokes (by using a high value for
opcentre and a low value for opedge) or to simulate
the Fresnel e�ect for streams of water or icicles (by
doing the reverse). Examples of both are shown in
Figure 15(b).

5.3 Global Shading Algorithm

The surface normals derived in x4.4 enable us to
apply accurate local shading to each individual
paintstroke. However, this by itself fails to take into
account the shadows that paintstrokes can cast onto
themselves and other paintstrokes. While the prob-
lem could be recti�ed by explicitly computing shad-
ows for all paintstrokes, as with shadow bu�ering
[Wil78], this approach would signi�cantly increase
rendering time and memory requirements. Our so-
lution, while not as general as true shadow calcula-
tion, produces good results for homogeneous layers
of paintstrokes covering a roughly convex shape (see
Figure 14). It is similar in spirit to the one proposed
by Reeves and Blau [RB85].

Each control point of a paintstroke has associated
with it a global normalNgl and a global depth value
dgl. The former indicates the direction of the global
surface to which the control point belongs, and the
latter the relative depth from that surface, expressed
as a value between zero (on the surface) and one
(maximally distant from the surface). At any con-
trol point, the estimated amount of light penetration,
p�[0; 1], relative to a light direction L is used to scale
down the control point's reectance using a negative
exponential based on p.

dgl

Ngl

p=0.3
p=0.2

p=0.6

p=0.7

Figure 9: Penetration values at various light angles.



Figure 9 provides a geometric interpretation of p:
We construct a unit sphere centred at the origin.
The position of the control point in this model is
de�ned to be (1 � dgl)Ngl, which always lies within
the sphere. Now we extend a line segment in the
direction of the light vector L, joining some point on
the surface of the sphere to the control point within.
Assuming thatNgl and L are normalized, the length
of this line segment equals 2p, where

2p =
p
(��)2 � �2 + 1 � �� (6)

� = 1� dgl

� = Ngl � L

6 Results

Pro�ling tests on a 200 MHz PowerPC 604e system
indicate that paintstroke tessellation consumes be-
tween 5 and 10 percent of the total rendering time,
depending on the amount of screen coverage. This
statistic is, of course, based on the speed of our
high-quality software-based polygon renderer, which
is more than an order of magnitude slower than the
hardware-based systems found in graphics worksta-
tions.
In order to provide a comparison between

paintstrokes and e�cient static models of general-
ized cylinders, we have implemented an algorithm
that translates a paintstroke description into the fol-
lowing static model: an orthogonal extrusion along a
given path of an n-sided regular polygon of varying
size (see Figure 10). The algorithm is similar to one
used by Jules Bloomenthal in [Blo85] for polygoniz-
ing tree branches, although ours is adaptive to the
lengthwise curvature of the tube.

lengthwise segment

path of extrusion

Figure 10: Extrusions of regular polygons.

We constructed a cluster of 27 of paintstrokes, and
rendered a set of animations of it, comprising 50
frames in total. The animations were carried out
at three di�erent constant distances from the centre
of the matrix, so as to simulate rendering at a large,
medium, and small scale, as shown in Figure 12. At
each scale, two animations were made, one using a
higher (\conservative") quality level and the other
using a lower (\aggressive") one.

We converted this paintstroke-based scene descrip-
tion into three static polygonal models, di�ering only
in tessellation granularity, as depicted in Figure 11.
Each of these was optimized for the large, medium,
or small scale of the animation, respectively, by using
the minimum number of polygons required to main-
tain reasonable image quality at its corresponding
scale. Each polygonal model was then rendered in
the same animations used with the paintstrokes, one
at each scale.

(a) Quality-2
Paintstroke

(b) Fine Static Model

(558 polygons)

(c) Quality-1
Paintstroke

(d) Medium Static Model

(200 polygons)

(e) Quality-0
Paintstroke

(f) Coarse Static Model

(96 polygons)

Figure 11: Paintstroke-based and static models of
the benchmarked tube.

In calibrating the static tessellation algorithm,
we sought the same level of image quality as was
achieved in the aggressive paintstroke animations: no
silhouette discontinuities or abrupt transitions in the
shading. This was an empirical process that involved
repeated trials in reducing the polygon count, while
maintaining the quality of the entire animation se-
quence.



Paintstroke Static Polygonal Model
Scale Avg. per Tube

Conservative Aggressive Fine Medium Coarse

Breadthwise Quality 2 1 9-gon 5-gon triangle
Total Polygons 268.4 135.0 558 200 96

Large Polygons Rendered 238.3 118.2 275.9 98.6 46.5
Pixel Area 1186.6 1188.0 1190.6 1182.0 1155.1
Rendering Time (s/60) 11.01 7.48 12.19 6:78� 5:91�

Breadthwise Quality 1 0 9-gon 5-gon triangle
Total Polygons 100.6 46.5 558 200 96

Medium Polygons Rendered 87.6 43.1 277.5 99.3 47.4
Pixel Area 292.7 292.6 295.1 293.0 286.2
Rendering Time (s/60) 4.00 2.59 9.61 4.78 2:71�

Breadthwise Quality 0 0 9-gon 5-gon triangle

Total Polygons 36.4 36.4 558 200 96

Small Polygons Rendered 33.6 33.6 278.3 99.7 47.8

Pixel Area 72.4 72.4 73.6 73.1 71.4

Rendering Time (s/60) 1.48 1.48 8.52 3.45 1.88

Table 1: Comparison of paintstrokes with statically tessellated polygonal models.

(a) Large (b) Medium (c) Small

Figure 12: Models of the tube used in our compari-
son.

6.0.1 Benchmark Results

The results of these benchmarks appear in Table 1.
Statistics were gathered for all 1,350 tubes rendered
(27 tubes/frame � 50 frames) and then divided by
1,350 to provide a per-tube average. At each scale,
the most interesting comparisons are between the
paintstrokes and the polygonal model that is best
suited to the scale. Figures describing the latter form
a diagonal of boldfaced entries in Table 1.
The Breadthwise Quality in the �gure refers to the

quality level for paintstrokes, or the degree of the reg-
ular polygon that was extruded for the static models.
The di�erence between Total Polygons and Polygons

Rendered is due to clipping and backfaceculling. The
Rendering Time, measured in sixtieths of a second,
is on a 200 MHz PowerPC 604e system with 32 MB

of RAM and 1 MB L2 cache. Asterisked entries in-
dicate an unacceptably poor image quality, resulting
from using an overly coarse static model relative to
the scale.

6.1 Results Summary

Our comparison shows that paintstrokes can provide
a faster and more e�cient means of rendering gen-
eralized cylinders than statically tessellated models,
even at the latter's optimal scale. This implies that
even a dynamic polygonal model, which consistently
maintains appropriate tessellation granularity, is un-
likely to outperform paintstrokes in rendering gen-
eralized cylinders, unless it takes advantage of their
symmetry and view-invariant properties as do the
paintstrokes.
While these results are encouraging, they come

with a few caveats. Hardware-based polygon ren-
derers, with their pipelined architectures, tend to
work faster (on a per-polygon basis) with static
tessellations than with dynamic ones. Moreover,
most hardware-based Phong shading systems can-
not adequately cope with polygons containing a large
amount of normal variation [BW86], which is gen-
erally the case with paintstroke polygons. Finally,
although the image quality of paintstrokes is quite
good, our present implementation lacks texture-
mapping and true shadow generation, which would
be useful at larger scales.

7 Conclusions

A wide variety of models used in computer graph-
ics can be reasonably approximated by generalized
cylinders. An e�cient technique for rendering the



latter is therefore of considerable utility. While a
number of traditional rendering methods have been
applied to the task, they generally fail to achieve a
good balance of speed and image quality at small to
medium scales. The purpose of this paper was to
provide an e�cient means of rendering generalized
cylinders at precisely these scales. This was achieved
through the paintstroke primitive and its supporting
A-Bu�er-based projective rendering architecture.
By applying a view-adaptive tessellation algo-

rithm that exploits the simplicity and symmetry
of the generalized cylinder's screen-space projection,
paintstrokes are able to accurately approximate this
surface using much fewer polygons than competing
methods, producing savings in both rendering speed
and memory consumption. In addition, paintstrokes
provide view-dependent rendering e�ects that would
be di�cult to achieve with traditional polygonal
models.

References

[AES94] S. S. Abi-Ezzi and S. Subramaniam. Fast
dynamic tessellation of trimmed NURBS
surfaces. In Computer Graphics Forum,
volume 13, pages 107{126. Eurographics,
Basil Blackwell Ltd, 1994.

[Bli89] James F. Blinn. Jim Blinn's corner: Opti-
mal tubes. IEEE Computer Graphics and

Applications, September 1989.

[Blo85] Jules Bloomenthal. Modeling the mighty
maple. In SIGGRAPH '85 Proceedings, vol-
ume 19, pages 305{311. ACM SIGGRAPH,
Addison Wesley, July 1985.

[BW86] Gary Bishop and David M. Weimer. Fast
Phong shading. In SIGGRAPH '86

Proceedings, volume 20, pages 103{106.
ACM SIGGRAPH, Addison Wesley, Au-
gust 1986.

[Hop97] Hugues Hoppe. View-dependent re�ne-
ment of progressive meshes. In SIGGRAPH
'97 Proceedings, pages 189{198. ACM SIG-
GRAPH, Addison Wesley, August 1997.

[KK89] James T. Kajiya and Timothy L. Kay. Ren-
dering fur with three dimensional textures.
In SIGGRAPH '89 Proceedings, volume 23,
pages 271{280.ACM SIGGRAPH, Addison
Wesley, July 1989.

[LTT91] Andre M. LeBlanc, Russell Turner, and
Daniel Thalmann. Rendering hair using

pixel blending and shadow bu�ers. The

Journal of Visualization and Computer An-

imation, 2:92{97, 1991.

[Max90] Nelson L. Max. Cone-spheres. In SIG-

GRAPH '90 Proceedings, volume 24, pages
59{62. ACM SIGGRAPH, Addison Wesley,
August 1990.

[Neu97] Ivan Neulander. Rendering generalized
cylinders using the A-Bu�er. Mas-
ter's thesis, University of Toronto, 1997.
http://www.dgp.toronto.edu/~ivan/

research/thesis.pdf.

[Ney95] Fabrice Neyret. A general multiscale model
for volumetric textures. In Proceedings of

Graphics Interface '95, pages 83{91, 1995.

[RB85] William T. Reeves and Ricki Blau. Ap-
proximate and probabilistic algorithms for
shading and rendering structured particle
systems. In SIGGRAPH '85 Proceedings,
volume 19(3), pages 313{322. ACM SIG-
GRAPH, Addison Wesley, July 1985.

[RCI91] Robert E. Rosenblum, Wayne E. Carlson,
and Edwin Tripp III. Simulating the struc-
ture and dynamics of human hair: Mod-
elling, rendering and animation. The Jour-
nal of Visualization and Computer Anima-

tion, 2:141{148, 1991.

[SC88] Michael Shantz and Sheue-Ling Chang.
Rendering trimmed NURBS with adap-
tive forward di�erencing. In SIGGRAPH

'88 Proceedings, volume 22, pages 189{198.
ACM SIGGRAPH, Addison Wesley, Au-
gust 1988.

[Sil90] M. J. Silbermann. High-speed implemen-
tation of nonuniform rational B-splines. In
Curves and Surfaces in Computer Vision

and Graphics, pages 338{345. The Interna-
tional Society for Optical Engineering, Au-
gust 1990.

[Whi83] T. Whitted. Anti-aliased line drawing using
brush extrusion. SIGGRAPH '83 Proceed-

ings, 17:151{156, July 1983.

[Wil78] Lance Williams. Casting curved shad-
ows on curved surfaces. In SIGGRAPH

'78 Proceedings, volume 12, pages 270{274.
ACM SIGGRAPH, Addison Wesley, Au-
gust 1978.



Figure 13: An example of high geometric detail that is e�ciently captured with paintstrokes.

Figure 14: Image rendered with (left) and without (right) global shading.

(a) lengthwise (b) breadthwise

Figure 15: Opacity variation.


