Chapter 7

Implementation Issues

In this chapter we review issues relevant to the implementation of dynamically coupled
particle systems. Of importance are the issues of efficiently computing the forces for
large numbers of particles, computing the set of nearby neighbors for each particle,
the stable and efficient numerical integration of the computed forces over time, and
methods of interactively visualizing the system.

7.1 Efficient Force Computations

The state of a dynamically coupled particle system at a given time is described by
the set of particle positions, orientations, translational and angular velocities. Using
this state information, the forces and torques on each particle can be computed di-
rectly from the inter-particle force functions. By numerically computing a discrete
approximation of the force over the time interval, the system state can be updated
to the next time step.

The tractability of these computations is a limiting factor in the ability to interact
with these systems in real-time. With appropriate assumptions we can reduce the
complexity in both time and memory requirements. In this section we discuss the
computational problems, possible solutions, and our choices.

7.1.1 Direct Pairwise Computation

The definition of the force on a particle ¢ due to the other particles, is the sum of the
pairwise inter-particle forces

N
f; =) £,
J#i
where N is the number of particles. A straight forward computation of the forces for
the above equation is conceptually and computationally simple, but not necessarily
the most efficient. Such an evaluation will require O(N?) operations, making it rea-
sonable for small systems, yet prohibitively expensive for large values of N. Since we
may use on the order of several thousand particles we need a better solution.
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7.1.2 Mesh Methods

When individual inter-particle forces are small, yet the cumulative effects of inter-
particle forces are significant, then a mesh method may be useful in reducing the
amount of computation (Hockney and Eastwood, 1988). If the forces can be described
in terms of a continuous potential field, then a mesh approach is valid. The basis of
the approach is to approximate a field that is continuous in space by a set of discrete
values on a finite mesh covering of the space.

The total cost of the mesh approach is proportional to both the number of parti-
cles and the number of mesh points. Thus, for a coarse grid, the mesh method may
result in large gains of speed over the direct approach. One drawback is that the gain
in speed is traded for a loss of accuracy, as each step in the process introduces new
errors. In addition, the accuracy is highly dependent upon the relationship between
the continuous functions and the mesh spacing. In order for the mesh to adequately
approximate a system, the mesh spacing must be smaller than the important wave-
lengths of the system. That is, potential fields are poorly represented on the mesh
for distances less than the mesh spacing. Mesh techniques become useful when the
problem involves smoothly varying forces.

To approximate the Lennard-Jones force would require a mesh spacing signifi-
cantly smaller than the average inter-particle spacing, resulting in more mesh points
than particles. Thus, for our problem, the mesh approach will consume more time
than the direct O(N?) approach.

7.1.3 Combined Methods

The third approach combines features of the direct and mesh approaches, taking
advantage of their respective strengths (Hockney and Eastwood, 1988; Greengard,
1988). It is adequate for highly correlated systems with smoothly varying long-range
forces. The key of the approach is to split the inter-particle forces into two parts:

f=1f +1f (7.1)

a rapidly varying short range force f; which is nonzero for only a few inter-particle
distances, and the slowly varying long range force f; which is sufficiently smooth to
be accurately represented on a mesh. The direct method is used to find the total
short-range force contribution on each particle, while the mesh method is used to
find the total long-range contribution. The total cost is proportional to the number
of particles and the total number of mesh points. This is a reasonable approach for
the potential energies we are using.

7.1.4 Limited Force Range

The final approach is to compute the short range forces using the direct particle-
particle computation, and to ignore distant forces. This is a valid assumption in highly
correlated systems where there exists strong short range inter-particle forces and the
distant forces are insignificant. Assuming a reasonably distributed set of particles,
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there will be at most a small number of neighboring particles that contribute to the
total force of a given particle, resulting in O(N) computation time for the entire
system of N particles.

The drawback of this approach is that it is restricted to forces that decay to near
zero at the force cut-off boundary, otherwise discontinuities will be introduced into
the continuous force function. It is wise to avoid such discontinuities as they will
create instabilities when we numerically integrate the forces.

7.1.5 Discussion

From considering the choices available to us, the combined method and the direct
method! with a limited force range are the two computationally feasible approaches.
The mesh method is not suitable for highly correlated systems such as ours, and the
full direct method would require O(N?) operations per time step, thereby limiting
interactive shape modeling to small systems of particles.

The nature of our applications suggests the use of the direct method with lim-
ited force range as the best solution. We have designed our inter-particle potential
functions so that the forces decay as a function of distance, allowing distant forces
to be ignored. Still the potential discontinuity at the boundary introduces a force
discontinuity contributing to numerical instabilities. To alleviate this we can use the
weighting function (3.12) which goes to zero at the boundary, thus insuring a contin-
uous force function. In addition to computational efficiency considerations, limiting
the potential functions provides a consistent potential energy representation of the
merging and splitting characteristics of our dynamically coupled particle systems.
When two objects are separated by the force range distance, the potential energy
description of the two objects is also independent.

An important consideration, we have neglected so far in our analysis, is the com-
putational cost required to find the neighbors of each particle. We discuss this next.

7.2 Neighbor Computation

We now look at the problem of finding the set of neighboring particles for each particle.
This problem is formalized as the range search problem.

7.2.1 The Range Search Problem

An essential condition of computing the inter-particle forces is finding the neighbors of
each particle. This can be stated as finding an O(N) subset of particle pairs from the
O(N?) possible pairs, such that each selected pair is no farther apart than a specified
distance r. This type of search problem, known as the range search problem, has been
studied extensively in the computer science literature (Overmars, 1983; Preparata and

1The names “direct”, the “mesh”, and “combined” methods also go by the names of “particle-
particle”, “particle-mesh”, and “particle-particle-particle-mesh (P3M)” respectively(Hockney and
Eastwood, 1988).
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Shamos, 1985; Samet, 1989; de Berg et al., 1997; Goodman and O’Rourke, 1997).
Formally we state this as:

Given a set of three-dimensional points {z1,zs,...,2Zx}, and a sphere of
radius r, centered at position x,, which points x; satisfy the condition
|xs — x;|| < r, where ||xs — x;|| is the Euclidean distance measure?

A single range query is easily performed in linear time, by examining each of the
N points. Linear space will suffice as only the positions must be stored. However,
to compute the force of the system, we will need to find the nearby neighbors of
each particle, resulting in O(IN?) operations. In addition to the computing forces,
the range search problem appears in triangulation, particle creation heuristics, and
in the use of modeling tools. Similar to our desire to reduce the force complexity to
something tractable, we want to reduce the computational complexity of the range
search problem.

The approach to choose depends upon the application at hand and properties of
the data, such as: Are the range queries of a constant size search radius or variable
search radius? Is the data set fixed, or will points be added and deleted? Are the
data points uniformly distributed throughout space, or highly localized?

We consider the approach to use in light of the application areas of this thesis:
computer assisted animation, geometric modeling, and surface reconstruction. Below
we list the qualities of the various applications, while noting that the needs of specific
applications within these fields may vary. For all applications, the range queries
will generally be of a small range for the force, triangulation, and particle creation
heuristics. Likewise we can expect the use of modeling tools to range from including
all of the particles to only a few. For all applications the points will be uniformly
distributed in space at the local level, though non-uniform at the global level. Volumes
will have denser local grouping of particles than will surfaces. For all application areas
we can expect cases when we will want to add or delete particles from the system.
The basic search operation required, in order of frequency, are: (1) range search, (2)
insertion, (3) deletion, and (4) point existence. The last three operations assist in
interactively grabbing, moving, adding, and deleting particles.

In the remainder of this section, we review several types of spatial data structures
and comment on them in relation to our dynamically coupled particle system. Because
our points sets and queries will be relatively well behaved, we will focus our discussion
on simple data structures that will perform well on average, instead of focusing on
complex data structures optimized for worst case performance. We begin with the
hashing, followed by direct access grid structures, and end with multi-resolution tree
structures.

7.2.2 Hashing

Hashing is a process used to quickly distribute and retrieve data among a fixed number
of memory locations. Given a data point p;, a hash function H(p;) = A; can be used
to compute an address A; which is the address of a block of reserved memory, called
a bucket, in which the data point is stored for later reference. Frequently this is
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implemented using low level bit operations to provide fast index computation. It
has become common usage to define all indexing functions which use low level bit
operations as hash functions. An example of such a function? is given in Graphic
Gems (Glassner, 1993)[page 343]. Instead, we will use the theoretical definition of
hashing as given below.

The theoretical goal of hashing is to take highly structured and sparse data in the
domain, and provide a mapping into a uniformly distributed range, thus reducing the
amount of memory required while providing constant time access. This is normally
accomplished by defining the hash function to be a randomizing function with uniform
distribution. A given input to the hash function must always produce the same
output address in order to store and subsequently retrieve data values. Thus the
function cannot be truly random, but rather pseudo-random. A random and uniform
distribution of data, has the advantage of reducing the amount of memory required
to be of the same order as the size of the data set. A second advantage is the hash
function provides direct access to each data item for efficient insertion, retrieval, and
deletion. There are, however, two corresponding disadvantages (Samet, 1989). First,
it is difficult to find a suitable hash function that will map each data point to a unique
location. Second, since hashing functions randomize the data, the function destroys
the spatial relationships between data points. Destruction of the spatial relationships
makes such a hashing scheme unsuitable for solving the range search problem.

7.2.3 Fixed Grid

The fixed grid is a spatial data structure that partitions space into equal constant size
cells, with each cell storing the points falling within the cell volume. By partitioning
3D space along orthogonal planes, the mapping from a bounded R? volume to the
finite number of cells can be directly computed from each point’s x, y, and z values.
The extent of the 3D grid can be easily computed by finding the minimum and
maximum values of z, y, and z values. Provided the point set is uniformly distributed,
the fixed grid can provide constant time insertion, deletion, point existence, and range
search queries of small search radii. Thus it is an appealing solution to our problem.

The performance of the fixed grid depends on the ratio of the grid volume search
to the actual search volume, the bucket size, and the distribution of points in space.
As the cell width decreases, a smaller volume of the grid is searched, but at the cost
of accessing more cells. A standard cell width to choose is one equal to the search
radius. This requires testing the cell in which the center of the search radius falls, and
the adjoining cells, for 27 cells in all. Using half the cell width results in accessing five
times as many cells and approximately half the total volume. Using double the cell
width results in accessing only eight cells, but almost three times the total volume.
The most efficient search will result in a tradeoff between accessing more cells and
testing fewer points. The optimal balance between the cell width and search volume
depends on the relative costs of the accessing more cells and of testing a point for

2This function concatenates the high order bits of three integer indices together. The result is a
new integer index.
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inclusion. Both are implementation dependent. The number of points in an average
cell is also dependent on the distribution of particles. Due to the short range repulsive
and long range attractive forces, particles will be uniformly distributed at a local level,
in sheets for surfaces and in tightly packed clusters for volumes. At the global level,
the shape of the object determines the distribution. In general, we suggest using a
cell width equal to the search radius.

The amount of memory required to represent the grid is dependent upon the
number of cells. The number of cells is a function of the extent of the grid and the
cell width. We begin by considering a simple example, such as modeling a sphere.
If we model the sphere by volumetric particles, the number of cells in the grid will
O(N) where N is number of particles. If we model the sphere by surface particles,
the number of cells in the grid will be O(N®/2). This indicates that for large systems
of oriented particles the majority of the grid will not be used. A 2D example of this is
shown in Figure 7.1(a). Of course, we could construct cases where the solid model is
sparse in space, such as a long thin twisted wire. In this case the grid will grow faster
than linear in the number of volumetric particles. Likewise, we could construct cases
where a surface has numerous folds effectively filling space. In this case the number
of grid cells grows linearly with the number of surface particles. From a practical
perspective we will assume dense solid models and surfaces that do not tend to fill
space. Thus we will state that in general the amount of memory used will be of O(N)
for volume particles and O(N3/?) for surface particles.

The final consideration is the bucket size. When the bucket size is too large,
memory resources will be wasted. When the bucket size is too small, bucket over-
flows will occur requiring additional computation. To find a balance we consider the
distribution of the points in space. Let us consider the two simple cases: (1) when
particles are modeling a volume, and (2) when the particles are modeling a surface.

Volume Case

In the volume case, the particles are uniformly distributed throughout the volume of
the object model. Due to the Lennard-Jones force, at equilibrium the particles will be
separated by the equilibrium separation r,, and under external forces we will assume
no closer than the collision distance ¢. To find an upper bound on the number of
particles in a cell we will assume the cell is completely enclosed by the model volume,
with particles represented by tightly packed spheres of diameter . From the volume
packing density (Section 3.4.1) we can compute the number of tightly packed particles
that will be present in a given volume, thus resolving the issue of bucket size. The
upper bound on the number of particles in a cell is the integer ceiling of

- ()

) — =
Vs o

where P, is the volume packing factor for tightly packed spheres (3.20), V; is the
volume of a cubic cell of width w, and V5 is the volume of a sphere of diameter o.
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Surface Case

We now consider the uniform distribution of particles over the surface of a model. We
could consider the case of a planar section cutting through the cell, but to create a
better upper estimate we consider a surface of high curvature. Let us assume the cell
encloses a hemisphere with diameter equal to the cell width. From the area packing
density, we compute the number of particles in the cell as the integer ceiling of

pAi_ ™ (ﬂ)
A2 \/3 g
where P, is the area packing density for tightly packed circles (4.1.9), A; is the area
of the hemisphere of diameter w, and A, is the area of a circle with diameter o.

Summary

In summary, the grid provides fast constant time insertion, deletion, point existence,
and range search queries for our problem when the optimal cell and bucket sizes are
chosen as described above. We suggest a cell width equal to the search radius for
efficient range searching. When modeling surfaces, in general, the number of grid
cells will grow O(N'/?) faster than the number of particles, suggesting this is not the
best structure for surfaces. However when modeling volumes, in general, the grid
grows linearly with the number of particles making it a reasonable choice.

7.2.4 Reduced Grid

For certain classes of data, we can combine aspects of the fixed grid data structure
and hashing to create a “reduced grid” which limits the amount of memory required
while maintaining fast storage, retrieval, and range searching (Szeliski, 1998). For
this discussion we relax our definitions of the fixed grid and of hashing. We use the
definition of hashing as the ability to quickly compute an index value and instead
of randomizing the data, the hashing function will maintain the spatial structure
inherent in the data set. The definition of a grid is modified so that cells map to
multiple disjoint regions of the volume.

One reduces the number of cells in a grid of size M3 by a factor of D? by applying
a modulo based hashing function when computing the grid indices for each point. If
the fixed grid indices for a point are the integers i, j, and k, then the reduced grid
indices for this point would be i mod E, j mod FE, and k mod E, where E = M/D.
When E is a power of two, this is equivalent to masking out the high order bits
of the index. Omne can also think of this as a redistribution of points through a
modulo transformation of coordinate space. The result of this transformation is
being able to reduce the number of cells necessary for storage, while keeping the
original spatially close points in adjacent cells, where adjacency includes the concept
of “wrapping around” the grid. A range search on the reduced grid will be guaranteed
to return spatially close points, yet it may also returned distant points. A second
drawback, is that point sets which are aligned with the major axes or point sets with
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Figure 7.1: Storage of points in a grid.

(a) A 2D example a string of points stored in a 16x16 fixed grid. (b,c) Same points
stored in reduced grid using modulo based indexing. (b) Grid reduced to 8x8, (c)
Grid reduced to 4x4.

periodic structures may create high density regions in the reduced grid. Despite these
drawbacks, reducing memory requirements by several orders of magnitude may be a
sufficient reason for its use in certain applications. The reduced grid is illustrated in
Figure (7.1) with a hypothetical 2D curve formed by a string of points.

7.2.5 Hierarchical Structures

One way to reduce the total number of unused cells and avoid the the bucket overflow
problem is to adaptively vary the cell size through recursive subdivision (Samet,
1989). On overflow the volume of a cell is divided among a set of smaller cells, each
with its own bucket. The original cell becomes a parent cell, and the new cells are
children of the parent. As a child cell’s bucket becomes full, it will become a parent
cell, split, and create children. The relationship between the parents and children can
be described by a directed tree structure where the nodes of the graph correspond to
cells and the arcs between nodes correspond to the parent-child relationships.

Region-Based Tree Structures

A region quad-tree® is a directed tree-based data structure which recursively decom-
poses space based on the density of points. Initially, a quad-tree starts as a single

3In two dimensions, a quad-tree subdivides space into four quadrants. A three dimensional
quad-tree, commonly called a oct-tree, subdivides space into eight octants. The quad-tree easily
generalizes to higher dimensions. For generality we will use the term quad-tree to refer to such a
tree in any dimension.
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cell represented by the root of the tree. As data points are added, they are stored in
the root cell’s bucket until it is full. When full, the cell subdivides its space among
24 equal size children cells each with its own bucket (where d is the dimension of the
space), and then transfers each of its data points to the appropriate child. Applied
recursively, this creates a tree structure.

Similar to the region quad-tree, the region kd-tree recursively subdivides space.
At each level of the tree it subdivides space into two equal size regions, alternating
the axis along which space is divided. This gives the kd-tree a branching factor of
two at each node, compared to 2¢ for the quad-tree.

The region quad-tree and region kd-tree exhibit identical theoretical time com-
plexity and are suitable for our purposes. Building a tree of N points will take on
average O(N log N) operations and require O(N) memory. Point insertion, point
deletion, and point existence queries each require O(log N) operations on average,
where log N is the average distance from the root node to a leaf node. A range search
can be performed in O(F + N'~*/4) in the worst case, and in practice the query will
take O(F +log N), where F' is the number of points returned and d is the dimension.
Since we expect particles to be evenly distributed over an area, at the local level, it
is unlikely that the worst case time will actually occur.

Point-Based Trees

Point-based trees are spatial data structures used to encode a set of point data, by
recursively subdividing space based on the location of individual points. Each node
in the tree corresponds to a unique point in the data set. For a data set with N
points, this results in exactly N nodes in the tree.

According to Overmars (1983), such quad-trees were the first data structures
devised for solving the range search problem efficiently. In a point quad-tree* one of
the data points is taken to be the root, and based on the value of the data point,
a d-dimensional space is subdivided into 2¢ quadrants, thus splitting the data set
into 27 subsets. These subsets, minus the original data point, will be encoded in the
subtrees of the root node. This process is recursively applied until each quadrant
contains at most one data point.

The point kd-tree was introduced as an improvement over the point quad-tree.
While the quad-tree is a 2%-ary tree, the kd-tree is a binary tree. This reduces the
branching factor at each node and thus the overall storage requirements. At each
level down the tree, the point kd-tree divides the set of points in two, alternating the
dimensions along which space is split.

The theoretical computational complexity of the point quad-tree and point kd-
trees are the same as their region based counter-parts: O(log V) time for insertion,

Tt has been suggested that the region quad-trees and the region kd-trees be called quad-tries
and kd-tries, to differentiate them from the original point based tree structures they were derived
from. However this naming convention never became popular, and at least in computer graphics
the unqualified term “quad-tree” usually refers to a (region) quad-trie, and not the original (point)
quad-tree. To distinguish between the two data structures (quad-trees and quad-tries), We use the
term “quad-tree” preceded by the qualifiers “region” (a trie) and “point” (the original tree).



96 CHAPTER 7. IMPLEMENTATION ISSUES

and point existence queries, O(N log N) time to build the tree, and O(/N) memory.
A range search query takes O(N'71/%) in the worst case and O(F + log N) in the
average case. However deletion is more complex because the data points also serve
to partition the space from which they are drawn.

Range Trees

A third type of tree, the range tree, yields better worst-case range search times at
the expense of storage and a more complicated implementation (Overmars, 1983; de
Berg et al., 1997). A range tree query performs a 1-dimensional search along the
first dimension to select a subset of the data. The subset of data is then searched
using a 1-dimensional search along the second dimension to find a smaller subset of
the data. This procedure is recursively applied until all dimensions are exhausted.
Range trees require O(N log?~! N) storage, O(N log®~! N) operations to build, and
provide a worst case range search time of O(log? N + F). Layered range trees (de
Berg et al., 1997) use fractional cascading to reduce the search query time by a factor
of O(log N) to O(log’™ N + F), while maintaining the same storage requirements.
The worst case range search time is better than the quad-tree or kd-tree worst case,
but in practice the quad-tree and kd-tree will perform as well, or better (Overmars,
1983).

Summary

Region based and point based tree structures provide an elegant approach to solving
the range search problem. Point based trees tend to be simpler to code and maintain,
because:

e The partitioning of space is implicit in the data points rather than explicitly
specified as required by a region based tree.

e Leaf nodes and interior nodes can be the same data type.
e One does not have to maintain and search buckets of data.

However, when searching the tree for data points, a region based tree may require
slightly less computation. This is because the use of buckets reduces the depth of
the tree and thus the time required to find the relevant data points. One should
note, however, that for certain data sets the region based trees may result in highly
unbalanced trees. Kd-trees have the advantage that the algorithm is independent
of the dimensionality of data, allowing one to write a single kd-tree implementation
for both 2D and 3D simulations. Also a well designed implementation can be used
for searching arbitrary types of k-dimensional data, not just point based data. It
has also been argued that the kd-tree branching factor of two is preferable to the
2¢ branching factor of a quad-tree, because this reduces the memory cost of interior
nodes (Samet, 1989). From a theoretical point of view, the region based trees, the
point based trees, quad-trees, and kd-trees exhibit similar computation and memory
costs. Range trees provide better worst cast performance at the expense of memory
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and a more complicated implementation, but in practice the simpler tree based data
structures will perform as well or better.

7.2.6 Discussion

A fundamental problem encountered in the implementation of dynamically coupled
particle system is the problem of finding the neighbors for each particle. This problem
appears in the computation of forces, in the particle creation heuristics, in surface
triangulation, and in the use of modeling tools. The problem is formalized in Sec-
tion 7.2.1 as the range search problem. To solve the range search problem we have
compared the use of hashing, fixed grids, reduced grids, and hierarchical based data
structures.

Hashing, a technique for efficiently storing and retrieving data, is ineffective for
computing such spatial relationships. The fixed grid data structure, which partition
space in equal size cells, is a good choice for volume modeling, though inefficient
in memory for surface modeling. The reduced grid data structure overcomes the
memory problem of fixed grids, though search performance may be poor for data
sets aligned with the major axes and for data sets with spatially periodic structure.
Since our particles will be uniformly distributed with respect to the object being
modeled, hierarchical structures are good for both volume and surface based particle
systems. The uniform distribution will tend to create well balanced trees resulting
in efficient access. When the cell bucket size is chosen wisely, the region-based trees
maybe be faster than point-based trees, as the time needed to traverse farther down
a point-based tree will outweigh the extra distance tests that will be included in a
region-based tree search query. If we use uniform splitting of regions, a region-based
tree structure can produce the same partitioning of space as a fixed grid, but with
varying resolution. Thus, we can use arguments similar to those presented for the
fixed grid to select a leaf cell bucket size.

The best data structure to use will ultimately depend on the given application,
and whether one wants to favor generality or speed. In practice, we use a region kd-
tree with uniform splitting along each dimension. To further reduce computation, we
perform this operation occasionally and cache the list of neighbors for intermediate
time steps. We use the kd-tree for both our surface and volume modeling research.
Our implementation is independent of the dimension of the data, the size of the
data set, the data types, and the distribution of data. While we chose a kd-tree for
generality, a production system may wish to trade generality for a strategy finely
tuned to the problem at hand. For such a finely tuned systems, we would suggest
a region tree or reduced grid for surface modeling, and a region tree, fixed grid, or
reduced grid for volume modeling.

7.3 Numerical Integration

In this section we discuss methods for integrating the forces of our particle system
over time to arrive at a new system state consisting of a position and orientation for
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each particle.

7.3.1 Equations of Motion

Having resolved our method of efficiently computing the forces, torques, and the
neighbors for a system of particles, we now turn to the problem of integrating the
forces through time to compute the time-varying positions and orientations. To create
materials which behave as real-world materials, with momentum and the transfer of
momentum between objects, we integrate a second order dynamics system. This is
appropriate for applications such as physics-based animation where the motion of
the objects over time, is more interesting than the final energy minimum. On the
other hand, a first order dynamics system is more appropriate for many applications
which solve an optimization criterion, such as surface fitting to data samples, For
this case, it is adequate to assign the computed forces to the velocity vectors and
solve for the change in positions. This is a straight forward simplification and not
discussed further. We will discuss the more complex problem of integrating a second
order dynamical system.

An un-oriented particle system is governed by (3.1). An oriented particle system
is governed by (3.1) and (4.1). Including the model of heat, the inter-particle force
terms are functions of the form

fiint = fz'int(xh q1, ,(/Jla X2, 492, 1/)27 <o XN, AN, ¢N)

and the inter-particle torque terms are of the form

z:nt _ ant

T, =T, (XlathZana"':XN:qN)a

which is identical to equation (4.4). The external force and torque terms f¢** and 7¢**
are functions of individual particle positions, particle orientations, and external state
variables and are given by the Lagrangian equations of motion (4.3), and (4.5).

An optimal solution strategy depends on the type of equations we are trying to
integrate. Equations (3.1) and (4.1) are second-order non-linear ordinary differential
equations. The force and torque functions introduce highly non-linear terms making
this a difficult problem to solve. In addition, the torques are dependent on both
particle orientations and positions, thus coupling (3.1) and (4.1) together. We char-
acterize our problem as an initial value problem on two sets of coupled second order
non-linear differential equations, with the goal of determining the values of the de-
pendent variables x; and q;, for 7 =1,2,..., N, at a set of values in the independent
variable t.

The standard approach is to first reduce the second order system of differential
equations into two coupled sets of first order differential equations, and then numer-
ically approximate the unknown dependent variables using a finite difference based
scheme (Press et al., 1992). For example (3.1) can be rewritten as

dXi
dt
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de' fz
fi = fzmt — fie:ct — YiVi, (74)

where the velocity v; is a new state variable. An equivalent reduction exists for (4.1)
Using numerical techniques, the values of x; and v; can then be advanced from their
values at time ¢ to their new values at time t + At for some value At.

7.3.2 Overview of Integration Methods

To solve the initial value problem, all numerical techniques discretize the changes in
the dependent and independent variables as finite steps, e.g. At, Ax;, and Aq,;. Doing
so allows one to represent the differential changes as algebraic equations composed
of these finite steps. As the step size is made small, a good approximation to the
underlying differential equation is achieved. There are two approaches to constructing
such algebraic equations. Explicit schemes produce new dependent variable values
explicitly from the algebraic equations in terms of previous dependent variable values.
Implicit schemes produce the new values implicitly in terms of both previous and new
dependent variable values.

Implicit schemes applied to linear systems are guaranteed to be stable for any
step size, and for non-linear systems are known to generally exhibit good stability.
The computational complexity required at each time step is their major drawback.
Implicit formulations are easily solved by matrix factorization for linear systems of
equations. However, non-linear systems of equations have to be solved iteratively
at each step, which can be extremely slow compared to explicit methods. Semi-
implicit methods result when one linearizes a non-linear system of equations, and
then iteratively solves the linearized version. This still requires matrix factorization,
perhaps more than once per time step.

Writing the particle system dependencies as a matrix will result in an M x M
matrix, where M is the number of particles times the number of degrees of freedom
per particle. Assuming a particle system with nearby neighbor dependencies, the
corresponding matrix will be unstructured and sparse. In fact, the positions of the
non-zero elements will be continually changing due to the dynamic coupling inherent
in our system. While there exist specialized techniques for inverting certain subclasses
of sparse matrices, such as banded diagonal matrices, unstructured sparse matrices
will require more general techniques. One could use standard techniques such as
Gauss-Jordan elimination or LU decomposition, both requiring O(N?3) time®. Since
our sparsity pattern is irregular one may want to use matrix techniques designed
for sparse linear systems (Press et al., 1992), to reduce the fill-in that occurs during
matrix inversion. Such techniques have three steps: (1) An analyze step is done once
for each non-zero pattern, (2) a factorize step is computed for each matrix fitting
the pattern, and (3) an operate step is computed for each new right-hand side of
a matrix equation. Since our particle couplings will be dynamically changing, the

5Matrix inversion software solutions in general require O(N?) time, however it has been shown
that inversion can be computed in O(N'°827) (Press et al., 1992, page 104).
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analyze portion, the most computationally expensive of the three steps, will need to
be repeatedly computed along with the other two steps. Relaxation methods can also
be used to speed up the convergence of a solution to a matrix equation. Multigrid
relaxation methods (Terzopoulos, 1986) alone and combined with conjugate gradient
descent algorithms (Szeliski, 1990) have been shown to decrease the computational
time needed to find minimal energy states for optimal surface fitting problems in
computer vision.

Explicit schemes are popular because new values can be computed directly from
previous values. However, unless care is taken, they have a tendency to become
unstable or require a small step size. There are a variety of explicit schemes to choose
from depending on accuracy and efficiency. According to Hockney and Eastwood
(1988),

The compromise between accuracy and efficiency can be altered in two
ways - either by using a higher-order scheme and larger time step or by
using a lower-order scheme and smaller time step. The former approach
suffers because (1) the time step is limited by natural frequencies of the
system, (2) higher-order schemes often have more restrictive stability lim-
its on the time step, and (3) high-order schemes need force values at
several time levels. Usually, the best compromise between accuracy, sta-
bility, and efficiency in many-body calculations is found by using a simple
second-order accurate schemes (such as leapfrog) and adjusting the time
step accordingly.

7.3.3 Integration

We have chosen to integrate the system of particles using low order explicit schemes
primarily because our focus has been on applying our system to a variety of prob-
lems including interactive surface modeling. While explicit schemes have drawbacks,
implicit or semi-implicit scheme will generally be slower than linear time, making
these unsuitable for interactive applications. We have used both the Euler and the
leapfrog integration methods. Both approaches require a single evaluation of the force
equations for a given time step.

Explicit Euler

At each time step we sum the all of the forces acting on each particle and integrate
over the time interval. We solve our second order system of differential equations as
two coupled first order systems. We have used Euler’s method for its simplicity (Press
et al., 1988). However instead of using Euler’s method directly on both systems we
can make a better estimate for the second system by using the average of the old and
new velocities computed by the Euler step on the first system (Gould and Tobochnik,
1988). Both the Euler and the modified Euler method have local truncation error of
O(h?) at each step and are first order accurate integration schemes.

We designate time values by superscripts, defining ¢ as the current time and
integrate over the time interval h = At to time ¢+ h. We use the equations of motion
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from Appendix B that are simplified for our choice of inertia tensor. The translational
equations are

ft
a = —
m
vith — vt pat
xt-|-h, _ Xt+hvt+h+vt
2
and angular motion equations are
bt — I—l,rt
Wt = w4 hb
Wttt 1wt
0 = h7+
2
as = [cos (|6]l/2),8sin (6]/2)]
d™ = qaq.

For angular motion, the change in orientation 8 is computed from the angular ve-
locity w, where both are represented as vectors. The incremental rotation @ is then
converted to the quaternion qg (Shoemake, 1989), before updating the particle orien-
tation through quaternion multiplication®. To avoid a loss of accuracy, due to finite
floating point representation, we normalize the quaternion after each step.

Leapfrog
The leapfrog scheme is defined by the time centered finite differences
ot gt _ e
h

and
VI _ yth/2

h

defined here for a one-dimensional space. It is similar to the Euler method in that the
same amount of work is required and no auxiliary storage is needed, as is required in
higher order methods. The leapfrog scheme differs from the explicit Euler in that the
velocity values are defined at the midpoint between time steps. The result is a local
truncation error at each step of O(h?) making this a second order accurate integration
scheme. A differential equation is time-reversible if a particle integrated forwards in
time in a given force field will retrace its path and return to the starting point,
when integrated backwards in time. Time-reversible difference approximations are
obtained by defining time-centered derivatives, such as the leapfrog scheme (Hockney
and Eastwood, 1988).

= a/t’

6Note, the vector 9, in the vector to quaternion conversion, is the unit vector in the direction 8.
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Using the same notation as for the Euler equations, the leapfrog equations for
translational motion are

ft

al = —

m
VITRI2 = yth/2 gt
xtth = xt 4 hvith/2,

The equations for angular motion are

bt — Ifl,rt
wt—|—h/2 — wt—h/2+hbt

0 = hwt—l—h/?

as = [cos(||6]|/2),Bsin ([6]1/2)]
a™" = da

Unfortunately leapfrog does not compute v*+*_ but rather v**#/2. If v**" is needed,
such as to compute a damping force, an approximation can easily be computed as
follows. We construct the two formula

Vt—h/2 + vt+h/2

2

Vt:

and t t+h
vith/2 — v tv

2

to describe the velocity at times ¢ and ¢ + h/2 as average velocities. Solving for v'*
results in the extrapolation

h

Fytth/2 _ yt=h/2

2

VH—h

(7.5)

The same method can also be used to extrapolate the angular velocities.

Comparison

To provide a comparison between the various explicit integration schemes we prepared
two tests which we executed for all three integration schemes over a variety of time
steps. The first test is a simple two particle system without damping which allowed us
to compare the stability and accuracy of integration. Without damping the particle
system should conserve energy and thus we could measure the accuracy based on
the relative error in the system energy. The second test used a complex system of
800 particles with both global velocity damping and relative inter-particle velocity
damping. Since the energy in the system should decrease due to the damping terms,
this test does not allow us to measure the accuracy using the relative error in system
energy. However it does provide complex n-body interactions as we might expect in
modeling and animation.
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Figure 7.2: Empirical results of modified Euler integration

The axes of the plots are as follows. Left to right is time ¢ and ranges from 0 to 100.
Back to front is logarithmic in the time step h = 27° and ranges from 2° to 271¢. (a)
The vertical axis is particle separation 7 = ||x; — X»|| and ranges from 0 to 8. (b)
The vertical axis is relative error e in system energy and ranges from —25% to 175%.
For plotting, the data was reduced to 1601 samples for each simulation.
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(b) Relative error of total system energy expressed as a percentage

Figure 7.3: Empirical results of Leapfrog integration

The axes of the plots are as follows. Left to right is time ¢ and ranges from 0 to 100.
Back to front is logarithmic in the time step h = 27° and ranges from 2° to 271¢. (a)
The vertical axis is particle separation 7 = ||x; — X»|| and ranges from 0 to 8. (b)
The vertical axis is relative error e in system energy and ranges from —25% to 175%.
For plotting, the data was reduced to 1601 samples for each simulation.
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(a) Average relative error in system energy
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Figure 7.4: Relative error in system energy

The horizontal axis is logarithmic in the time step h. (a) The vertical axis is loga-
rithmic in the average relative system error over the simulation. (b) The vertical axis
is logarithmic in the maximum relative system error over the simulation. The Euler
method is displayed in red and labeled “E”. The modified Euler method is displayed
in green and labeled “M”. The Leapfrog method is displayed in blue and labeled “L”.
The unusual results for the leapfrog for small relative error values (e &~ 0.01%) we
believe are due to limited machine precision in calculating the error measure. The %
data points corresponds to the simulations with * symbols in Figure 7.3.
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Comparison: First Test

For the first test the particle system studied was as follows:

e Particles interact according to the unweighted Lennard-Jones potential.

e Lennard-Jones parameters of r, =1, n =4, m = 2, and e = 1.0.
e Two particles initially separated by 2 units.
e No neighborhood bounds, that is the particles are always coupled.

e No damping.
The system was integrated under the following conditions.
e For the Euler, modified Euler, Leapfrog explicit integration schemes.
e For times steps h = 27° where b = 0,1,2,..., 16.
e From time ¢ = 0 to ¢t = 100.

For each test case and for each time step executed we collected data on the particle
separation, kinetic energy, and potential energy. The results from these simulations
are displayed in Figures 7.2, 7.3, and 7.4.

In Figures 7.2(a) and 7.3(a) show the particle separation plotted as a height field
for the modified Euler and Leapfrog schemes respectively. Time runs linearly, left to
right. The time step is decreasing, back to front, on a logarithmic scale. The Euler
method is not shown as it is not substantially different than the modified Euler, except
for a factor of two as is explained shortly. Note that the modified Euler method is
still converging to a solution for the smallest time step. This can be noticed by
visually inspecting the right hand side of Figure 7.2 where differences in the period
of oscillation can be seen.

Figures 7.2(b), and 7.3(b) display the relative error in the total system energy.
The relative error e is computed as the percentage difference in system energy at time
t to original system energy

_ Es(t) — Es(0)
‘)= —"5:0)

x 100

where Eg(0) is the sum of kinetic and potential energies at time 0

Ep(0) = ¢p3(2) = —0.4375

and Es(t) is the sum of kinetic and potential energies at time ¢

1

Ex(t) = 5 (mlvi@I” +melva(0)I)

L ([[x1(t) = %2 (2)]])-

S|
s
=

|
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Figure 7.4(a) displays the average value of the relative error over the entire run of
each simulation. Figure 7.4(b) displays the maximum value of the relative error over
the entire run of each simulation. For both cases the absolute value of the relative
error is used.

The differences between the Euler method and the modified Euler is as expected.
Analysis using a Taylor series expansion shows that the second step of the modified
Euler method has half the local truncation error than does the second step of the
Euler method. This is noticeable in the results. The data shows the modified Euler
with a time step of 2h produces results almost identical to the Euler method with
time step of h. Both Euler methods have a local truncation error of O(h?) per step.

The Leapfrog method performed well in practiced. As the time step decreased,
it quickly converged to a stable solution. Analysis using a Taylor series expansion
shows Leapfrog exhibits a local truncation error of O(h?®) per step and thus global
truncation error of O(h?). The rate of decrease of error in the data, matches this
analysis.

When viewing the raw data for the various integration schemes, at stable time
steps, the Euler methods almost exclusively exhibited positive relative error, though
over small intervals it exhibited negative relative error. The Leapfrog exhibited both
positive and negative relative errors in nearly equal amounts. We speculate the differ-
ence is due to the nature of the potential energy function combined with the fact that
the Leapfrog is a time centered scheme, while the Euler methods are not. However,
the exact reason for these difference requires further study.

Comparison: Second test

For the second test the particle system studied was as follows:
e A particle system containing 800 particles.

e Particles interacting according to the weighted Lennard-Jones potential, global
velocity damping, viscous inter-particle damping, and limited particle interac-
tion.

e The parameters of the Lennard-Jones potential were r, =1, n =4, m = 2, and
e=1.

e The parameters of the weighting function were r, = r, and r, = 1.77,.
e Neighborhood range was set to 1.77,.

e Neighbors were recomputed after every time step.

e The global velocity based damping was —0.25%;.

e The inter-particle viscous damping was —0.125 (x; — %;).

e In the case of the Leapfrog integration scheme, extrapolated velocities defined
by (7.5) were used in the damping computations.
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We ran the test on a particle system of 800 particles that was initially positioned on
a hexagonal grid of 8 x 10 x 10 with particles separated by 1.5r,. The separation
value was picked to create a large initial system energy. To provide for more complex
behavior, the positions were slightly displaced by random amounts. This removed the
strong spatial symmetry of the initial placement. The displacement was computed
as a vector of three independent observations of a Gaussian random variable with
zero mean and a variance of 0.05. If the magnitude of the displacement was greater
than the variance, then the displacement vector was scaled to be of length equal to
the variance. This was to keep particles receiving a large random displacement from
deviating too far from their initial position.
The system was integrated under the following conditions:

e For the Euler, modified Euler, Leapfrog explicit integration schemes.

e For times steps h = 27% where b = 3,4,5,6,7. This is equivalent to the range
h =0.125 to h = 0.0078125.

e From time t = 0 to t = 20.

The initial configuration for the tests is shown in Figure 7.5. The particles are color
coded based on the number of interacting neighbors. Particles on the edge boundaries
have fewer neighbors and are darker in color. Some particles on the face have more
neighbors than others due to the initial random displacements. The lines drawn
between particles are the neighbor connections.

For each test case and for each time step executed, we collected data on the system
kinetic energy and system potential energy. The results from these simulations are
displayed in Figures 7.6, 7.7, 7.8, and 7.9. The system energies are plotted in the
left column and are labeled by (a), (c), and (e). Images from the final frame of each
animation are displayed next to the energy plots and are labeled by (b), (d), and (f).
The results for each time step are shown on the same page. The results are presented
in the order of increasing time step size.

The first set of results is for the time step of At = 277 (shown in Figure 7.6)
and show all three integration schemes as being stable. The initial cube of particles
collapses into a ball as the system energy is minimized. The plots of energy show
steadily decreasing potential energy (the lower line of each plot) indicating this is a
highly damped system. The difference between the total system energy (top line of
each plot) and the potential energy is the amount of kinetic energy in the system.
The negative total potential energy (and hence system energy) is due to the definition
of the Lennard-Jones potential. For the same time step in the two-particle undamped
system, the Euler method was unstable. The inclusion of damping has stabilized the
Euler method in this test, even though the interactions are more complex.

The second set of results (shown in Figure 7.7) is for the same initial configuration,
yet the a time step was twice as large. Both the Leapfrog and modified Euler method
produce similar stable results, but the Euler method exhibits instabilities. These are
seen as large spikes in the system energy plot. The large potential energy values
indicate that particles came closer than the collision distance. Finally, the flattening
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tine 0.21875

Figure 7.5: Initial particle system configuration

This is the initial particle system configuration of 800 particles arranged on an hexag-
onal grid with random displacements assigned to each particle.

of the potential energy curve to near zero energy indicates that only a few of the
particles are interacting with nearby particles.

The third set of results (shown in Figure 7.8) is for time step twice as large
again. Both Euler and modified Euler methods exhibit instabilities, with the Euler
method becoming unstable almost immediately. The modified Euler method became
unstable at about the same time that the Euler method became unstable in the
previous experiment. The Leapfrog method remained stable.

The fourth set of results (shown in Figure 7.9) is for a time step twice as large
again. In this case all three integration methods became unstable. In the two particle
system, the Leapfrog scheme was stable at this time step. Since the interactions in
this system are much more complex, this is not a surprising result.

In summary, although the Euler and modified Euler method performed better
with the inclusion of damping, the Leapfrog stability limit was still four times that
of the Euler method, and twice that of the modified Euler method.

Additional measures

To allow us to take larger time steps, then would be otherwise be allowable, we can
apply the following measures.

e We can introduce limits on the maximum velocity and maximum change in
velocity.

e We can place limits on the inter-particle forces, such as clipping the magnitude
of Lennard-Jones force for distances less than the collision distance to the value
at the collision distance.

These measures in effect reduce the natural frequencies of the system resulting in
stable integration at larger time steps.

From our testing it became obvious that the majority of error for the Euler method
was introduced when integrating over regions with large changes in force. Since the
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Figure 7.6: Integration with At =277,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (top/green) is the
total system energy Es = Ep + Fx and the lighter line (bottom/red) is the system
potential energy Ep. Note Eg(t) > Ep(t). For this time step, all the integration
schemes were stable.
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Figure 7.7: Integration with At = 276,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep 4+ FEx and the light line (red) is the system potential
energy Fp. Note Eg(t) > Ep(t). The spikes in the bottom energy plot indicate
instabilities in integration. The result was that the particle system exploded.
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Figure 7.8: Integration with At =272,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep + Ex and the light line (red) is the system potential
energy Ep. Note Eg(t) > Ep(t).
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Figure 7.9: Integration with At =24,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep + Ex and the light line (red) is the system potential
energy Ep. Note Eg(t) > Ep(t).




114 CHAPTER 7. IMPLEMENTATION ISSUES

repulsive force between particles, due to the Lennard-Jones potential, is stronger than
the attractive forces, more error tends to be introduced when particles are colliding
than when they are moving apart. This can be seen in the graph of the relative
error for the Euler method (Figure 7.2(b)) as “steps” of increasing error. It can
also be seen as spikes in the error plot (Figure 7.3(b)) of the Leapfrog method. The
net result is that the system energy increases and the system eventually explodes
as the accumulated error exceeds the binding (potential) energy of the system. For
modest time steps, the introduction of damping overcomes the accumulation of error,
reversing the process. From experience, both global velocity based damping and
viscous damping units are effective (Section 3.3.2). The viscous damping unit is
superior for stabilizing numerical errors because it is based on the relative velocity
between particles and is independent of rigid body motion.

7.3.4 Stability and Accuracy Analysis

Instead of empirically testing for a suitable time step, we can analytically derive
stability and accuracy criteria for the leapfrog integration scheme. For simplicity we
analyze a two particle system interacting according to the Lennard-Jones potential.
This provides a starting point for deriving the stability criteria of more complex
systems and thus choosing an appropriate time step.

Stability

Solving for error propagation, (Hockney and Eastwood, 1988, pp. 97-106) derives
the stability boundary
WAt < 2, (7.6)

where w is the highest oscillation frequency of the system: for the second-order dif-
ferential equation of motion for undamped motion between a pair of particles, when
approximated by the time-centered leapfrog scheme. There are two basic assump-
tions made in deriving the boundary: (1) the solution of the differential equation is
oscillatory in nature and (2) the solution is derived for the worst case. The worst case
is defined by the highest frequency w of the system, which occurs at the maximum
change in the magnitude of the force
2 1df

= ——— 7.7
v m dzx (7.7)

for negative forces.

The Frequency of Oscillation

For a general force f(z), equations (7.6) and (7.7) allow us to relate the force to
the highest oscillation frequency of the system and from that determine the stability
and accuracy for a given time step. We determine the time step for a system of
particles absent of any damping forces and interacting according to the Lennard-
Jones potential energy function. We choose the Lennard-Jones potential because of
all our inter-particle potentials it presents the largest magnitude in change of force.
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We follow a one-dimensional argument, similar to that given in (Hockney and
Eastwood, 1988, pp 461-465). We begin by estimating the highest frequency which
occurs when the maximum gradient of the force is present. For the case of the
Lennard-Jones potential, this occurs when the neighboring particles move towards
each other to a position of closest approach. The equations of undamped motion for
two such particles are

d?x

m dt; = —f(x2— 1) (7.8)
d2

ma dfj = flza— 1), (7.9)

where f is the magnitude of the repulsive force, x; and x5 are the positions of the
two particles, and m; and msy are the respective masses. We choose to analyze the
repulsive force of the Lennard-Jones function, over the attractive force, because the
repulsive force exhibits higher values of magnitude. Multiplying the first equation by
meo and the second equation by my, and subtracting yields

d2$2 d2$1
mimeo ( dt2 — dt2 = mlf — m2f. (710)
Reducing, we get the equation of relative motion
d*r

where 7 = x5 — 11 is the particle separation, and m* = mymsy/(mi+ms) is the reduced
mass. Since f(r) is non-linear, to obtain an effective frequency we consider a small
perturbation substituting r + ' for r, where 7’ is small

- d*(r +1")
dt?
We expand the right side as a Taylor series, keeping only the first two terms of the
series.
df

f(r+r')f:f(r)+7"5+...

= f(r+1r"). (7.12)

The left side expands to

m

(r+r') r &3
* o [ & )
pTE) m e T e

Expanding (7.12) and subtracting (7.11) gives

d*r' df
* =7, 7.13
A T dr (7.13)
Rewriting results in the linearized equation for the perturbation 7’
d2 i
— (7.14)

di?
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where

w= (—iﬂf (7.15)

m* dr

according to equation (7.7).

When df /dr is negative, as it is for the short-range Lennard-Jones repulsion, equa-
tion (7.14) is the differential equation for simple harmonic oscillation with frequency
w given by (7.15). From (7.7) we can see that the maximum frequency will occur for
small masses and steeper laws of repulsion between the particles. For the case of the
Lennard-Jones potential, the frequency is given by

1/ B*  A* \\?
v (_% (r"+2 B rm+2)> ’ (7.16)

where A* and B* are the constants

A* = enm(m + 1)r,™ B — enm(n + 1)r,"

n—m n—m

(7.17)

This expression for w indicates that as the minimum separation r goes to zero, the
frequency of oscillation goes to infinity. Since stability requires wAt < 2, all time
steps, in principle, are unstable. However let us assume that the particles do not
come closer than a given distance. For the purpose of this analysis we will assume
this distance to be the collision distance ¢ of the Lennard-Jones potential. In order to
prevent the few particles that might end up closer, from becoming unstable, one can
limit the force of repulsion for distances less than the collision distance to its value
at the collision distance.

We now compute the oscillation frequency for two cases: a worst case at the
collision distance, and an average case at the equilibrium spacing. We let the defining
parameters of the Lennard-Jones functions be m =2, n =4, e¢=1, and r, = 1. And
we let the mass for each particle be 1.0 so m* = 0.5. This results in a frequency for
the worst case of 15.0 and for the average case of 4.0.

Accuracy

We now consider the issue of accuracy. Let’s assume particles will have an oscillation
frequency w associated with the average separation of r,. If the leapfrog scheme is
used to integrate the equations of motion, then (7.14) is approximated as

r'(t + At) — 2r'(t) + r'(t — At)
(At)?

(At)2 dtr!

2 1
e
W) + 5 g

(7.18)

based on the Taylor series. For an oscillation at frequency w, we apply equation (7.14)

to find
d4 !
dtz = wr'. (7.19)
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The ratio of truncation error (last term on the right-hand side of (7.18)) to the true
force (first term on the right-hand side of (7.18)) is

(wAt)?
12

. (7.20)

Based on the above error measure, we again consider two cases: an average case
and a worst case. Recall that from equation (7.6), the product of the frequency and
time step should be less than 2 for stability. If we let the product equal 0.25 as a
condition for sufficient integration for average separation, by (7.15) we can compute w,
and the relative truncation error from (7.20) reduces to 1/2 of a percent. This appears
to be of reasonable accuracy for the average case. In the worst case, we assume that
few particles will be at the collision limit. Thus we favor a larger time step over
increased accuracy. By choosing a product of 1, we get a relative truncation error of
8 percent. A time step satisfying both accuracy and highest frequency constraints is
the minimum time step of the two computations.

Having computed the worst case and average case frequencies of the Lennard-
Jones function earlier, we now compute time steps. The conditions on the time step
can be summarized as follows

e Accuracy at the average separation:

r=r,=1, w =4, wAt = 0.25, error = 0.5%, At = 0.0625

e Stability at the highest frequency:

r=o0=1/V2, w = 15, wAt = 1.0, error = 8%, At = 0.0667

for the Lennard-Jones parameters m = 2, n = 4, and € = 1. Our analysis matches
the empirical results of Figures 7.2, 7.3, and 7.4. In Figures 7.3 and 7.4 the time step
of 0.0625 is marked with a x symbol. For this time step, the average error was 2.1%
over the entire simulation and the maximum error for any step was 24.7%.

7.3.5 Timing Results

To measure the speed at which one can currently calculate a simulation, we ran
several tests. Rather than quoting the speed in frames per second, we found it more
useful to quote the results in particle pair computations per second. Given a rate of
pairs per second, the frame rate for most scenes can be approximated by estimating
the number of time steps taken per rendered frame and the number of neighbors per
particle. The number of neighbors per particle is dependent both on the neighborhood
range and whether the model is using volume or surface particles. The system we
tested consisted of 1000 volume particles interacting with their nearest neighbors. The
weighting function parameters were r, = r, and r, = 1.4r,, and the neighborhood
range was 1.4r,. Neighbors were computed every 10 steps. The particles interacted
according to the Lennard-Jones potential, inter-particle viscous damping, and global
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velocity damping. Approximately 19,000 particle pair interactions were computed
per second when executing on an SGI O2. That amounts to 6000 pairs per time step,
or 3 steps per second 7. Using the same number of oriented particles would result in
approximately 4 to 6 steps per second, depending on the number of surface potentials
used. It should be noted that the code executed in this test was not optimized, but
rather written for generality. From prior experience, profiling and optimizing the
code should give a speed up factor on the order of 4 to 8 times the unoptimized code
speed. Such optimizations would result in 12 and 16 steps per second on the low end,
and 24 and 48 steps per second on the high end for particle systems of 1000 volume
and surface particles respectively.

7.3.6 Discussion

The equations of motion for a dynamically coupled particle system result in two sets
of coupled second order non-linear differential equations (3.1) and (4.1). To determine
the position and orientations of the particles at new time values, we need to solve
the initial value problem for these equations. To do this, we rewrite the second order
system of differential equations as sets of coupled first order differential equations
and then numerically integrate the first order equations through time using a finite
difference based scheme.

Implicit or explicit integration schemes can be used to integrate over a given time
step. When the system dependencies can be written in matrix form, the matrix will
be large, unstructured, and sparse. In addition, the non-zero values of the matrix
will be continually changing making optimizations more difficult. High order ex-
plicit schemes, such as Runge-Kutta (Press et al., 1988) or semi-implicit methods
(Terzopoulos et al., 1987) could be used, and for typical dynamic systems would re-
sult in good convergence and large time steps, but at the expense of a complicated
implementation and possibly slow interactive response. When considering these al-
ternatives we must keep in mind that the time step will be limited by the natural
frequency of the system and that the system in question is highly correlated and
oscillatory in nature. For the case of a damped non-linear oscillator, the explicit
leap-frog scheme, with stable time step, is more economical than the implicit Euler
scheme while yielding almost identical results (Greenspan, 1973). For most n-body
calculations, simple second-order accurate explicit schemes, such as Leapfrog, provide
the best compromise between accuracy, stability, and efficiency (Hockney and East-
wood, 1988). To maintain interactive update rates and simplicity of implementation,
we have used both the explicit Euler and Leapfrog integration schemes. Empirical
results correspond with analytical derivations showing the Leapfrog method to be
superior.

"The exact results were 5940 pairs per step, 18,978 pairs per second, and 3.19 steps per second.
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7.4 Visualization

7.4.1 Rendering

Rendering, as we know from the ray-tracing and radiosity literature, can be very time
consuming. In general, high quality rendering is based on determining the reflection
of light off of a continuous surface with associated material attributes. In Chapter 5
we discussed the generation of continuous surface descriptions and the rendering of
those surfaces.

However we need not assume that a continuous description surface is necessary
for high quality renderings. There are many cases when a surface description is not
necessary or desirable when rendering an object’s shape. If the object being modeled
is gas-like or of an amorphous nature without definite boundaries, then the particle
system can be rendered directly, thus bypassing the surface description phase. For
example, Reeves (1983b) and Sims (1990) have rendered particle systems as light
emitting points to simulate fire, water falls, and mist. Alternatively if one has assigned
a density field to each particle, one can integrate over the density fields as Stam (1995)
has done to create visually complex scenes of clouds, smoke, and fire. For rendering
similar types of fluid-like behavior, 4D texture maps could also be used to interesting
effect. Since the positions of an oriented particle model provide a uniform surface
sampling of the object, particle systems lend themselves very well to rendering with
paint strokes (Meier, 1996) resulting in a “painterly” rendering style.

7.4.2 Visual Cues for Real-Time Use

For interactive modeling, we prefer rendering techniques which maximize our under-
standing of the system. Except for the final stages of an animation, it makes more
sense to spend the computing power on providing informative displays for the user
instead of regenerating complete surface descriptions. The display should convey in-
formation we are interested in such as particle position, orientation, energy, neighbor
connections, and provide quick approximations of the final surface. Such real-time
visual cues are indispensable in debugging, scripting animations, and modeling. Here
we review some techniques we have found useful.

Light Emitting Points

Rendering each particle as light emitting points is the simplest and quickest method.
The result is an uncluttered scene in which all of the particles are visible. X-Y position
information is obvious and depth perception is enhanced by rotating the scene in real-
time. Additional information can be encoded in the color of the particle. For example
the heat energy of a particle is easily displayed as a variation from white (cold) to
red (hot).
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Figure 7.10: Visualization techniques

(a) axes, (b) discs, (c) wireframe triangulation (d) flat-shaded triangulation.

Wire Frame Particles

Wire frame representations of a particle are useful for approximating the volume or
surface area represented by a particle without obscuring the other particles. For
a solid modeling particle system, we draw the particle as a star: three mutually
perpendicular line segments. Oriented particles can be drawn with the positive Z axis
highlighted to indicate orientation. We have found displaying a wire frame hexagon
for each oriented particle results in an intuitive feel of the surface while still conveying
orientations (Figure 7.10).

Surface Approximations

To quickly approximate the surface of a solid model, the particles can be displayed
as spheres or cubes. Another simple approximation of the iso-surface is to render a
sphere for each particle and shade the sphere according to the gradient of the summed
fields at that point (Miller and Pearce, 1989). To approximate the surface resulting
from oriented particles, the particles can be displayed as filled hexagons. Displaying
the neighbor connections between particles as line segments is another method for
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quickly approximating the surface while at the same time conveying the structure of
the particle system. A slightly longer process is to display a wire triangulation of the
surface (Figure 7.10). The triangulation process is given in Section 5.2.3.

7.5 Summary

Our dynamically coupled particle system presents several computational challenges.
In particular, the continually changing spatial relationships between particles com-
plicates a variety of tasks. The computation of inter-particle forces, particle creation
heuristics, and the triangulation algorithm are defined over all particle pairs making
these O(NN?) problems that must be solved at each time step. Our solution is to con-
vert the problems from global problems involving all N particles, to local problems
involving at most a constant number of nearby particles. This effectively transforms
the problem to O(N) time plus the time needed to find the neighboring particles.

The nearby neighbors problem, or the range search problem, is the problem of
finding all particles within a given distance from a point in space. It computes the
spatial relationships between points, suggesting we should organize the data according
to the embedding space of the points. By using spatial subdivision techniques, which
allow one to focus on relevant subsets of data, the range search problem can be solved
on average in time O(N) time for volume modeling using a fixed grid, and O (N log N)
time for surface modeling using a region-based tree structure. To reduce computation
during a simulation, we cache the results of neighbor computations for several time
steps.

In order to compute the state of the system at new time values, we first calculate
the inter-particle and external forces. To compute the forces in linear time, we limit
the inter-particle force functions to a fixed distance bound, ignoring distant particles.
We use a weighting function to decay our potential energy fields to zero at a fixed
distance. In addition to reducing force computations, this approach provides a correct
energy based representation of the splitting and merging of objects.

The differential equations of motion describe how a system of particles will respond
to inter-particle and external forces. Equations (3.1) and (4.1) are second order non-
linear differential equations, making them difficult to integrate analytically. Instead,
numerical integration techniques, based on a Taylor series expansion, are used to ap-
proximate the solution by taking finite steps through time. To do this, we reduce the
second order set of differential equations of motion to two first order equations and
solve the initial value problem forward in time. We have used simple explicit integra-
tion methods rather than more complicated implicit methods. We have empirically
compared two low order explicit schemes. We also analyzed the leap frog method to
derive analytic equations of stability and accuracy. Our empirical results match well
with theoretical analysis. More sophisticated numerical high order explicit schemes,
semi-implicit, and implicit schemes could also be used but it is unclear whether they
would be fast enough for interactive applications. Physicists studying n-body prob-
lems have asserted that simple 2nd order time-centered explicit schemes work as well
or better than low order implicit schemes, thus supporting our decision.
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For interactive rendering of state we have suggested a variety of rendering styles
(Section 7.4). A discussion of generating continuous surface descriptions is given in
Chapter 5.

Through spatial subdivision of space and the use of explicit integration schemes,
we have been able to reduce the total computational complexity of our system to
expected computation times of () for volumes and O(N log N) for surfaces.



