Chapter 6

Thermal Energy

Due to the nature of the Lennard-Jones energy function, it can be used to model
both the limited flexible deformations of a solid and the rapidly varying geometry of
a liquid. By varying the dissociation energy of the Lennard-Jones function, we can
model a continuous range of materials. For rigid solids, we increase the magnitude
of the dissociation energy, and for flexible solids we decrease the magnitude. Further
decreases result in fluid like behavior. Thus by varying the dissociation energy as
a function of thermal energy, we can create models that “melt” and “freeze”. This
chapter describes in detail how we model the effects of thermal energy on the potential
energy function, and a model of the continuous heat equation in terms of discrete
particles.

6.1 The Heat Equation

At the macroscopic level, the thermal energy 7 in a body A is given by integrating

over the volume,
b = / pof dV = / / /A pob dzdydz, (6.1)
v

where V' is the volume, p(z,y,z) is the mass density of the body, o(z,y,2) is the
specific heat, and 0(x,y, z) is the temperature. The amount of heat leaving a body
per unit time is given by

/S ndS = / / /A V- (KV0) dodydsz, (6.2)

where S is the surface, n is the surface normal, and K is a 3 X3 symmetric matrix
known as the thermal conductivity matrix.

Setting the rate of decrease of thermal energy in the body equal to the amount of
thermal energy leaving the body, we arrive at the partial differential equation called
the heat equation
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V- (KVH). (6.3)
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For a homogeneous and isotropic material K = kI, where I is the identity matrix,
the equation reduces to the familiar form
Opat)
ot

= kV20, (6.4)

where V2 is the Laplacian.

6.2 Discrete Heat Equation

We use a discrete approximation of the general heat equation (6.3) to solve for the
thermal energy and temperature of each particle over time. The thermal energy of a
particle is related to the temperature as follows. We assume the specific heat ¢ and
temperature 6 are constant for a given particle. The mass m of an object is equal to
integrating the mass density p over the object’s volume. Since we already know the
mass, we do not need to specify the mass density or volume of a particle. From (6.1)
the thermal energy 1; for a particle reduces to

Yy = oybm;. (6.5)
The change in thermal energy of particle ¢ over a time interval At
t—|—At wt
6.6
—x (6.6)

approximates the left side of the heat equation.

To approximate the right side of the equation, the V - (K'V) term, we introduce
a thermal conductivity variable k;; between each pair of particles ¢ and j. The ther-
mal conductivity is a measure of the rate of thermal energy transfer within a given
material. Insulators, such as Styrofoam, will have a lower thermal conductivity than
conductors, such as steel. We compute the approximation on a pairwise basis

Lk (0, —6;
V- (KVO)~ 3 % (6.7)
JEN; 41
where r;; is the distance between particles ¢ and j, N is the set of nearest neighbors
for particle 4, and n; is the cardinality of V.

The approximation is based on the finite difference method. To see this, we look at
the 2D hexagonal configuration of particles shown in Figure 6.1. Let us consider the
case of the center particle, numbered 0, which has 6 neighboring particles, numbered
1 through 6. The Laplacian of the temperature at the center particle z = 0 is

9—90
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when approximated by finite differences (Vitasek, 1969). By combining (6.6) and
(6.7), we arrive at a discrete version of the heat equation over a three dimensional
hexagonal grid. Heat dissipation into the external environment can easily be modeled
by adding a term such as —3,60; to the discrete heat equation.

020 A 5 (01 + 03+ 03+ 0, + 05+ 05) — 6,
0~ 1
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Figure 6.1: Finite difference grid for the Laplacian

6.3 States of Matter

Having laid the basic ground work, we now consider the physical states of matter as
a discrete system. Liquids are qualitatively different from solids and the difference is
a matter of geometry (Barton, 1974). At the molecular level, when external forces
are insignificant, molecules arrange into closely packed structures to minimize their
total energy. For spherically symmetrical potential energy functions in 2-D, particles
arrange into hexagonal orderings (Figure 3.5). In 3-D, the molecules arrange into
hexagonal ordered 2-D layers.

As thermal energy is added to the system, the molecules begin to vibrate and
the entropy in the system increases. This movement is quantified at the molecular
level as kinetic energy. It is the relationship between molecular kinetic energy and
inter-molecular binding energy that determines the amount of entropy, and thus the
state of the ensemble. At low temperatures, the mean binding energy is greater
than the mean kinetic energy, and the material is highly ordered as a solid. At high
temperatures the mean kinetic energy is much greater than the mean binding energy
and the material is in total disorder as a gas. In the liquid state the molecules are
sufficiently close together for there to be local ordering, with only a small amount of
compressibility, but the kinetic energy is large enough to prevent long-range ordering.
It is the ability to provide such fluid changes in structure that we which to capture
in our approach to modeling.

6.4 Thermal Energy

As an object heats up, we do not increase the kinetic energy of the particles as
Greenspan does in his simulations of solids (Greenspan, 1973) or as in the molecular
model (Trevena, 1975). Instead, we collapse the mean kinetic energy (thermal energy)
of a small volume into a change in potential energy between volumes. We model
thermal energy and the inter-particle potential energies together by a continuous
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Figure 6.2: Family of inter-particle potential functions.

The weighted Lennard-Jones potential function plotted for m = 2, n = 4, r, = 1,
Ta =T, Ty = V379, and e = 1...14. The potential is weighted to include only nearest
neighbors.

family of inter-particle potential energy functions. Figure 6.2 shows several functions
from a family of functions. “Cold” temperatures map to functions with low potential
energy minima (deeper energy wells), while “hot” temperatures map to functions
with higher potential energy minimal (shallow wells). As thermal energy is added to
a system the total energy increases accordingly.

It is instructive to compare the differences between the typical molecular dynamics
model using particles and our particle approach. In the molecular dynamics model,
the addition of thermal energy increases the kinetic energy and the inter-molecular
potential energy function is fixed. The average speed of a volume of molecules corre-
sponds to a measure of thermal energy. The average velocity of a volume corresponds
to the rigid body motion of that volume.

In our model, the addition of thermal energy decreases the inter-particle potential
energy while the kinetic energy is unchanged. The velocity of a single particle directly
parallels the rigid body motion of a small volume of material, i.e. the average velocity
of a molecular volume. The dissociation energy of the Lennard-Jones potential cor-
responds to the combination of the binding properties and thermal energy. Addition
of thermal energy increases the total energy of the system without directly changing
particle velocity, thus avoiding the numerical instabilities, and possible visual arti-
facts, that would be introduced by increasing kinetic energy. We next discuss how we
modify the binding potential. We discuss the practical consequences in the summary
(Section 6.7).

6.5 The Thermoelastic Lennard-Jones Function

We now derive a thermoelastic version of the Lennard-Jones potential energy. To
insure conservation of energy, we impose the following condition on our system: the
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addition of an amount of thermal energy to a particle system should increase the
total energy of the system by that amount of energy, while leaving the kinetic energy
of the system constant. Let us consider some given particle system in two different
states, an unheated state Sy and in a heated state S;. We let Egq be the energy of
the system with zero thermal energy, and Es; be the energy of the same system with
the addition of E'y thermal energy. We write the energy conservation condition as

ESO + EH = ESl'

Expanding the system energies into kinetic and potential components by (3.9) we
have

EKO + EPO + EH — EKI + EPI' (69)

To derive thermal energy in terms of potential energies, we must formulate the
problem in terms of particle pairs. Toward this end, we make several simplifying
assumptions. These are:

e particle-particle interaction is limited to nearest neighbors,
e the system is at equilibrium,
e and thermal energy in F; is uniform throughout the system.

The first assumption can be easily enforced by setting our weighting function to go
to zero at the range of the second nearest neighbor, a distance of v/3r,. The second
assumption is equivalent to saying the system begins at absolute zero, and thus it
must be in equilibrium. Because it is at equilibrium and interaction is including only
nearest neighbors, the particles will be separated by the equilibrium spacing.

We begin by rewriting the potential energies Ep, and Fp; in terms of dissociation
energy and thermal energy. The term Ep( is equal to the summation of the pairwise
potential energies of an unheated system

N
Epg =) > wijdij, (6.10)

i JEN;

where ¢;;, is potential defined for zero thermal energy. The magnitude of dissociation
energy of the Lennard-Jones function for zero thermal energy is equal to some constant
value, say ey. Since the system is near equilibrium, neighboring particles are separated
by the equilibrium separation r,, the weighting function w;; evaluates to unity, and
the potential energy ¢;;, evaluates to —ey. Thus the inner summation reduces to a
product of the average number of neighbors A times the dissociation energy e,

Y widijo = Y (1)(—eo) = —heo.

JEN; JEN;

and (6.10) reduces to
Epo = —Nhey. (6.11)
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Now let e; be the dissociation energy between a pair of particles in the heated system
S;. Similar to above, the potential energy of S; is

Ep, = —Nhe;. (6.12)

We can now compute a formula for the unknown dissociation energy e;. Combin-
ing (6.9), (6.11), and (6.12) results in

EKO - Nhe() + EH = EKl — Nhel.
By noting that the kinetic energy is constant, that is Exy = Ex, this reduces to
EH = —Nh(61 — 60).

Since we assume thermal energy is added uniformly to the system, we divide the
thermal energy F'y among the N particles assigning each particle ¢ thermal energy

Nl/) = —Nh(61 — 60).

The dissociation energy for zero thermal energy e is constant and we solve for ey,

€1 = € A .
This describes a method to vary the Lennard-Jones dissociation energy allowing us
to account for thermal energy.

To allow for heat transfer throughout the system, we remove the assumption of
uniform addition of thermal energy and allow the particles to have differing amounts
of thermal energy. We modify the dissociation energy defined between two particles
to be a function of the average of both particles, and two constants; the dissociation
energy between a pair of particles with zero thermal energy e,, and the average
number of neighbors h (6 for a surface, and 12 for a volume).

vty

6z‘j(¢ia¢j) =€ oh

The final form of the thermoelastic Lennard-Jones potential is as follows:

_ -1 ¢Z+¢ To " To "
olrslovor) = o (e U2 (m () = (i) ) o0

where ||r;;|| = |[x; — x;|| is the magnitude of separation between particles 7 and j.
This formulation is valid for all values of ¢y < e,h. Note that negative values of
temperature are equivalent to increasing the stiffness of the material, i.e. increasing
the magnitude of e,.
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Figure 6.3: Neighborhood Interactions

6.6 Thermal Expansion

When the temperature of a body is raised or lowered, the material will expand or
contract. Thermal linear expansion is described by the following formula (Case, 1938)

lz = ll (1 + a(@bg - ’le)) (614)

where [; is the length of a rod at temperature vy, l5 is the length at temperature s,
and « is the linear expansivity. That is, the rod will expand by the amount /;aA.
If the expansion is opposed, then the resulting stress El;aAy will be determined by
Young’s modulus (3.19). Linear volume expansion is described by

Vo =Vi(1+ B2 — 1))

where V] is the volume at temperature 11, V5 is the volume at temperature 15, and (3
is the volume or bulk expansivity. For values of less than 2%, the volume expansivity
is approximated well by 8 = 3a. In general, solids and liquids expand upon heating,
and contract upon cooling [CRC mathbook pg. 317]. The expansivity coefficients for
liquids tend to be much larger than for solids. Water is a notable exception in which
the expansivity depends on temperature and has a negative value over the range of
0°C and 4°C.

The thermal energy model for our particle system maintains a common equilibrium
separation and collision distance, to avoid unwanted side effects. The expansion or
contraction of the particle model due to temperature changes is dependent on the
neighborhood range. We consider two cases for which the system is at minimum
energy.

In the first case, the neighborhood range is such that a given particle only inter-
acts within the first shell of neighboring particles as shown by the smaller circle in
Figure 6.3. At equilibrium, each neighboring particle will be separated by the equi-
librium separation 7, and the inter-particle forces will be zero. As the object heats,
the equilibrium separation will remain constant and the object neither expands nor
contracts. To tailor the equilibrium separation to specific materials, one could vary
the equilibrium separation according to (6.14), rewritten here as

ro(2) = 7o(1h1) (1 + a(th2 = ¢1)) (6.15)
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where « is the linear expansivity, r,(1);) is the equilibrium separation at 1, and r,(15)
is the equilibrium separation at 1y. Coeflicients of expansion for a wide variety of
solids and liquids can be found in (Miner and Seastone, 1955).

In the second case, the neighborhood range is expanded to include particles beyond
the nearest neighbors, i.e. particles within the larger circle shown in Figure 6.3. At
equilibrium, there will be compression of the solid due to the long range attractive
forces between the center particle and the distant neighbors. As the temperature
decreases, these attractive forces will become stronger and the particle system will
contract further. In this case, the model mimics the general rule of decrease in volume
when the temperature decreases and expansion of volume when the temperature
increases.

6.7 Summary

The contributions of this chapter are the introduction of a particle based thermoelastic
model with energy conservation and the introduction of a discrete heat transfer model
derived from the macroscopic heat equation. Our thermoelastic model states that the
elastic force of the Lennard-Jones potential is linearly related to the thermal energy
(and thus temperature), as is the thermoelastic model presented by (Terzopoulos,
Platt and Fleischer, 1989) for spring-mass systems. It extends their model to particle
systems and adds the constraint of conservation of thermal, kinetic, and potential
energy over the system. Heat transfer is based on the continuous heat equation
at the macroscopic level, which is implemented as a finite difference scheme over a
hexagonal grid.

The model includes the physical quantities of thermal energy, volume, mass den-
sity, mass, specific heat, temperature, and thermal conductivity. For each particle
we need to add only one new variable of state, the thermal energy of the particle,
and one variable to accumulate the heat transfer between neighbors. A thermal con-
ductivity variable could also be added to each particle to model non-homogeneous
materials. The remaining physical quantities can be defined as constants or derived
from existing state variables.

Our model focuses on variations in malleability and does not model a variety
of more complex phenomena found in real world materials. For example, it does
not necessarily model the changes in volume found in some materials such as the
expansion of water upon freezing, the shrinking of many metals when cooled and
some plastics upon heating. Instead, the model encourages conservation of volume.
Such volumetric changes could be added to the model by defining the equilibrium
separation parameter r, as a function temperature, as given in equation (6.15). Our
model is valid for the range ¥ < he, which accounts for solid and fluid behavior. It
is invalid when v > he,. That is, we do not model gaseous behavior.!

'When 9 = e,h, the Lennard-Jones potential evaluates to zero, and when ¢ > e,h the potential
inverts, resulting in long range repulsive forces and short range attractive forces. The long range
repulsive forces mimic the nature of a gas. The short range attractive forces encourage nearby
particles to occupy the same position, unlike a gas. Thus if we wanted to mimic gaseous behavior,
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Figure 6.4: Beam colliding and melting

The first two frames shows the initial rigid structure of the beam colliding with an
object and coming to rest on the ground plane. It is highly ordered and maintains it’s
structure even under external forces and collisions. As heat is transferred from the
ground plane into the object, the inter-particle bonds weaken and the beam exhibits
fluid like behavior with quickly changing structure.
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A simple example of melting is shown in Figure 6.4. A solid beam is dropped,
colliding with a sphere and the ground plane. After coming to rest, it is “heated”
by the ground plane. Heat is transferred through the beam according to the discrete
heat transfer model. The resulting weakening of the inter-particle bonds causes the
solid to “melt”, thus losing its initial structure. Other applications of heat are shown
in Figures 8.11 and 8.12, where heat is used to locally modify the properties of a
surface, making it more malleable than the surrounding material.

we would need to replace the attractive force with a repulsive force for all values ¥y > e,h. One
possible solution would be to replace the Lennard-Jones with a purely repulsive force at these values.



