Chapter 5

Continuous Descriptions

While a particle system representation of shape is sufficient for many applications,
continuous surface descriptions are the standard method of describing shape in com-
puter graphics. This chapter focuses on generating continuous surface descriptions
from particle systems. First, we discuss methods used to generate surface descrip-
tions from volumetric particle systems. Second, we discuss methods used to generate
surface descriptions from particle systems of surface elements. These are different
problems requiring different solutions.

5.1 Surface Descriptions Based on Volume Sam-
plings

5.1.1 Implicit Representation

For volume based particle samplings, an implicit formulation of the surface provides
a compact mathematical description. An implicit surface is defined as the locus of
points that obey a point classification function, such as f(z,y,2) = 0. Assuming
there exists a scalar field function that varies throughout space, an iso-surface is the
locus of points in space whose scalar field value equals a given constant. When the
field function varies continuously in space and without discontinuities, the function
defines a set of closed continuous 3D surfaces. An iso-surface of threshold 7 is easily
defined by an implicit function f as

f(x,y,z):F(x,y,z)—T:O,

where F(z,y, z) is the value of the field in space.

To define an iso-surface equation for a particle system, we assign a continuous field
to each particle. The field is maximum at the particle’s center and monotonically
decreases as a function of distance from the particle. The surface comprises all points
in space for which the sum of the particle fields equals a threshold constant. Formally
we write the iso-surface equation f as

flz,y,2) = Zg,-(ac,y, z) =T =0, (5.1)
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where g; is the field function for particle ¢+ and 7" is the threshold value.

Blinn (1982) introduced such a class of algebraic surfaces based on control points
and exponential field functions. The exponential field function results in smooth
surfaces, but because the individual fields extend to infinity, it is expensive to compute
the field for a given point in space. To reduce the computational effort, bounded
polynomial functions of a similar shape have been used instead (Wyvill, McPheeters
and Wyvill, 1986b). However, to maintain C' or C? surface continuity, one must be
careful when choosing the polynomial to use.

5.1.2 Explicit Representation

By sampling the field function in space we can generate a C° continuous explicit
description of the surface. The description is a polygonal approximation of the im-
plicit surface representation, with the benefit of being easily imported into almost all
commercial and public domain software rendering packages. Most iso-surface polygo-
nization techniques are based on four steps. First, sampling points in space. Second,
categorizing the points as inside or outside of the surface. Third, determining the sur-
face intersection points between pairs of adjacent inside/outside points. And fourth,
fitting polygons to the surface intersection points.

The well known Marching Cubes algorithm of (Lorensen and Cline, 1987) sam-
ples space on a cubic grid and polygonizes each cell independently. Unfortunately,
ambiguous polygonizations occur since more than one possible plane will match cer-
tain combinations of in/out vertices for a given cube. These cases can be resolved
by testing additional points (Wyvill, McPheeters and Wyvill, 1986b), by applying
surface coherence between adjacent cells (Baker, 1988), or by sampling and testing
the vertices of a tetrahedron instead of a cube (Bloomenthal, 1988; Velho, 1990).

Higher resolution polygonal approximations come at the cost of a finer grid sam-
pling. The majority of these samples fall in empty space and provide no direct benefit.
This can be observed by looking at what happens when we double the sampling rate
along each axis. The number of samples in space grows by O(N?) while the number of
polygons grows at only O(N?). Adaptive polygonizations benefit from concentrating
polygons in areas of high curvature while reducing the number of polygons in areas
of low curvature to produce a more accurate approximation for a limited number of
polygons (Bloomenthal, 1988; Velho, 1990; Hall and Warren, 1990). Alternatively,
methods that spread across the surface from a known surface point minimize cost by
restricting computation to sample points near the surface.

5.1.3 Direct Surface Sampling

If specific points on the iso-surface are required, one can directly sample the surface
by computing ray-surface intersections. The surface points are found by combining
the ray equation with the implicit surface equation (5.1) and solving for the roots.
The problem is complicated by the fact that for a system of N particles, in the
worst case, there may be as many as 2N intersections with a given ray and thus 2NV
roots to the equation. For example, imagine all of the particles lying on the X axis
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Figure 5.1: Ray tracing particle iso-surfaces

(a) A particle field function, defined as a scalar algebraic function of distance from
the particle. (b) Ray intersecting field function bounding spheres. In this example
the ray is split into seven non-overlapping intervals.

and spaced such that the resulting iso-surface of the field is N distinct spheres. A
more likely case, and one that the potential energies encourage, is the clustering of
particles into volumes, with each particle approximately r, distance from its nearest
neighbors. In this case a ray will pass through N 5 of the particle fields on average. If
only the first intersection of the ray with the surface is needed, such as for rendering
opaque surfaces, the problem becomes less complex. Assuming each particle field
function is monotonically decreasing, one can guess an interval along the ray where
the first intersection will occur (Blinn, 1982). The intersection is then isolated using
an iterative root solver.

For particle fields restricted to polynomials of bounded range, there exists an al-
gorithm to find all of the intersections of the iso-surface with a ray in time linear in
the number of particles (Tonnesen, 1989; Wyvill and Trotman, 1989). The key idea
is to split the ray into non-overlapping intervals such that each interval is represented
by a single continuous algebraic equation. Figure 5.1(a) shows the graph of particle’s
field function as a function of distance from the particle position. A scalar field F'
in R? is defined as the summation of individual particle field functions. Since the
individual field functions decay to zero at a fixed distance each separate particle field
is bounded by a sphere. Figure 5.1(b) shows a simple 2D example of particles, their
bounding circles, and a ray. In the 3D case, the iso-surface must lie within the union
of all bounding spheres. The intersection of the bounding spheres partition space into
regions, such that in each region the scalar field F' is defined by the summation of
a subset of the algebraic equations defining the particle fields. The intersection of a
ray and the bounding spheres split the ray into non-overlapping intervals. Solving
for the roots of the combined ray-field equation, over the interval, yields the inter-
section points of the ray and surface within that interval. For low order polynomials,
computing the analytical solution is considerably faster than an iterative root finding
approach. Another benefit of this approach is that it is suitable for constructive solid
geometry modeling systems, which require all ray/surface intersections.
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5.2 Surface Descriptions Based on Surface Sam-
plings

We now consider the problem of generating surface descriptions from particle systems
of surface samples. This is the surface reconstruction problem. In particular we want
the surface function to interpolate the data, passing through the data points. This is
in contrast to a surface function which approximates the data, passing close to but
not necessarily through the data points. The latter functions are appropriate when
the data points may not necessarily be lying on the surface, such as when there is
noise in the sampling process, and the desire is to hide the noise through a smoothing
process.

Reconstruction methods are classified as either global or local in nature. In a
global technique, any given surface patch is dependent upon all of the data. In a local
technique, any given surface patch is only dependent on nearby data points. In highly
structured data, such as data sampled over a grid, the neighborhood relationships are
known a priori. In our case, the case of unstructured point data, we must determine
the neighboring particles. Franke (1982) observes if the data are scattered, one must
inspect, in some way, all of the data to determine which points are nearby. The
question arises as to whether there is such a thing as a “local” method for scattered
data. Since the nature of a local surface fitting or interpolation function does not
depend on how the neighbors are found, only that they are found, we may consider
this to be a rhetorical question. However it reminds us that nearest neighbors must
be found. The calculation of nearest neighbors is discussed in Chapter 7.2.

We have designed our particle systems so that areas of surface will be represented
by collections of evenly spaced sheets of particles. Our first reconstruction goal is
to reconstruct a surface which interpolates the particle positions. Our second re-
construction goal is to limit surface reconstruction to areas where the particles are
sufficiently close, where closeness is defined by a distance measure. In other areas,
where particles are sufficiently far apart, the goal is for the reconstructed surface to
be discontinuous, with breaks or holes.

Surface reconstruction is simplified from the general case if the structure of the
original surface is known. By surface structure we mean the geometric relationship
between points on the surface. For example, if a set of position or point data maps
uniquely to a parameterized surface such as a plane or sphere, that surface imposes
a global structure over the data, and the reconstruction problem reduces to finding
the best local structure that matches the global structure.

The reconstruction problem is much harder when the topology and genus is un-
known, as in our case. Neither are we assuming an open or closed or surface, but
which ever matches the given surface samples the “best”. Since we cannot assume
a global structure, we must instead be able to derive the structure from properties
intrinsic to the data. One approach is to use divide and conquer, solving for local
structure everywhere over subsets of the data and then combining the results to cre-
ate the global structure. By choosing sufficiently small regions of shape with respect
to the curvature, we can assume a locally planar structure thereby reducing the sub-
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Figure 5.2: Voronoi diagram and Delaunay triangulation

(a) Voronoi diagram in 2D. (b) Delaunay graph (triangulation) as the straight line
dual of the Voronoi diagram.

problem to the two dimensional case. We start by considering structure over localized
areas of the shape.

5.2.1 Local Structure

An obvious property of a continuous surface is that points over a small patch are in
close spatial proximity to each other. Thus it is natural to define structure based on
the spatial proximity relationship between points. We consider the two dimensional
problem first. The Voronoi diagram! can be used to solve a number of proximity
problems. In particular, it solves the “loci of proximity problem”. For two dimensions
this is defined as (Preparata and Shamos, 1985):

Given a set S of N points in the plane, for each point p; in S, find the
locus of points (x,y) in the plane that are closer to p; than to any other
point of S.

The solution is a partitioning of the plane into regions of spatial proximity to the orig-
inal data points (Figure 5.2a). Computing the Voronoi diagram requires O (N log N)
optimal computation time.

While the Voronoi diagram provides a structure over the data, it is not suitable as
a surface description, since it contains unbounded edges in 2D. A better solution is to
define a triangulation over the points which encodes the same proximity information.
Such a triangulation is the Delaunay triangulation, the dual of the Voronoi diagram.
A Delaunay triangulation is the graph embedded in the plane obtained by adding
a straight-line segment between each pair of points whose Voronoi polygons share

1Voronoi diagrams also go by the names Dirichlet regions, Thiessen polygons, Wigner-Seitz cells,
and proximal polygons.
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an edge?. It is also defined as the unique triangulation such that the circumcircle?
of each triangle does not contain any other point of S in its interior. Figure 5.2(b)
shows such a triangulation constructed from the Voronoi diagram in Figure 5.2(a).
The Delaunay triangulation can be computed from the Voronoi diagram in O(N)
time, or directly in O(N log N) optimal time. Computationally, both approaches are
equivalent (Preparata and Shamos, 1985, pg. 217).

Other suggested criteria for producing good two dimensional triangulations are:

e maximizing the minimum interior angle,
e minimizing the roughness measure over a height field, and
e minimizing the total length of edges.

Intuitively, a good triangulation should avoid long thin triangles in favor of trian-
gles that are “more or less equilateral”. More formally, the criterion is to mazimize
the minimum interior angle of the triangles over all possible triangulations (Lawson,
1977). Lawson goes on to show that the max-min angle criterion, the circle criterion,
and the straight-line dual of the Voronoi diagram produce equivalent triangulations
in the plane.

Related to 2D triangulation is the triangulation of height field data. Rippa (1990)
has suggested that a good triangulation of height field data is one that corresponds
to the intuitive concept of the “smoothest surface”. He defines a roughness measure
as the L2 norm squared of the gradient of the triangulation. If g; is the planar
interpolating surface for a triangle 7; then the roughness measure of 7T; is

G )+ (5 )] oo

and the roughness measure of the entire triangulation is the sum of the roughness
measures of all triangles. He then goes on to show that minimizing the roughness
measure of the triangulated height field is equivalent to the Delaunay triangulation
in the plane. It is interesting to note that while the triangulation minimizes the
roughness, it is also independent of values defining the height of the surface.

Another criterion for 2D triangulation is to select triangles of short edge length
over longer edges. The minimum-weight triangulation is the triangulation that ex-
hibits the minimal total length over all triangulation edges. At one time it was
conjectured that the Delaunay triangulation was a minimum-weight triangulation,
until this was disproved by Lloyd (Preparata and Shamos, 1985). Our particle sys-
tems do not present the general case of random point samples, because they naturally
arrange into hexagonal configurations of nearly equal spacing and nearly equal angles
between neighboring points. Thus for our systems, we expect the minimum weight
and the Delaunay algorithms to generate similar if not identical triangulations.

2 As stated this is true when there are not four or more co-circular points. However, the triangu-
lation of these cases is straightforward.

3The circumcircle of a triangle is the circle such that each vertex is on the perimeter of the circle.
There is exactly one circumscribing circle for a given triangle.
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Two graphs related to the Delaunay triangulation are the Euclidean minimum
spanning tree and the Gabriel graph. Given N points {p1, ps, ps, - . ., P} in the plane,
the Fuclidean minimum spanning tree is the tree of minimum total edge length whose
vertices are the given points. The Gabriel graph is the graph such that there is an
edge between p; and p; if and only if the circle with diameter ||p;, p;|| centered midway
between p; and p; does not contain any other point. These graph structures have the
following hierarchy (Preparata and Shamos, 1985; Goodman and O’Rourke, 1997).

MST C GG C DT

For surface reconstruction of 3D point sets, Hoppe et. al. (1992) propagate orientation
information by traversing the MST embedded in the graph generated by the k-nearest
neighbors of each point. The constrained Delaunay triangulation has been used for
triangular mesh refinement over curved surfaces (Chew, 1993). Chew extends the
circumcircle test to points embedded in a curved surface, thus generating a closed
space curve embedded in the surface. If no points lie inside this loop then the triangle
in question is a valid triangle.

The spatial proximity defined the Voronoi diagram would appear to be a natural
basis on which to form a surface interpolating our particle system. The 2D Delaunay
triangulation encodes information found in the Voronoi diagram as triangles, 2D
geometric simplices, and thus can provide such a surface description. In addition
the Delaunay triangulation has been shown to provide well shaped triangles and
minimizes the roughness of surfaces defined as height fields. It also has an elegant
description, the circumscribing circle test. For our purposes, the main drawback of
2D triangulation algorithms is that they are limited to reconstructing surfaces that
uniquely map to the plane.

5.2.2 3D Structure

The Voronoi diagram and Delaunay graph naturally extend to higher dimensions.
The dual of an D-dimensional Voronoi diagram is the D-dimensional Delaunay graph
which partitions space into volumes bounded by D-dimensional simplices*. For N
points, there are N regions in the Voronoi diagram. Unfortunately the number of
items necessary to describe the Voronoi diagram (and the Delaunay triangulation)
grows exponentially with the dimension (Preparata and Shamos, 1985, pg. 246).
In the three dimensional case, the Voronoi diagram partitions space into N regions
which are bounded by O(N?) edges and vertices in the worst case. Its dual, the
three dimensional Delaunay graph is an O(N?) collection of tetrahedra tessellating
the interior of the convex hull®.

4A simplex in D dimensions is a spatial configuration determined by D + 1 points. A three
dimensional simplex is a tetrahedron, a pyramid with four triangular faces.

5The convex hull is the smallest polyhedron such that all the points are contained within the
volume. As a physical analogy, the convex hull can be thought of as applying shrink wrap plastic
around a set of points. After the plastic shrinks to be a tight surface, the plastic surface is the
convex hull.
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While the 3D Delaunay triangulation defines a complete set of proximity rela-
tionships for a set of points, it does not provide a surface description, but rather a
volumetric description of the data. We know that embedded in the Delaunay trian-
gulation is a polyhedron which passes through all of the data points and is thus an
interpolating surface. The problem now becomes: “How can we extract from this
full set of proximity relations, a set of relationships which describe the surface?”. If
all points are on the convex hull, the convex hull is the surface. If not, one can re-
move simplexes from the set of tetrahedrons until all the points are on the boundary.
Boissonnat (1984) solved this for surfaces of genus 0 (without holes) by providing
a set of rules to iteratively remove simplices with a face on the boundary. The re-
maining tetrahedrons describe the shape’s volume and the boundary faces define the
surface. To my knowledge, this approach has not been extended to the general case
of manifolds of arbitrary genus.

Alpha shapes were designed to allow scientists to explore the spatial structure of
points sets, by extracting subsets of the Delaunay triangulation (Edelsbrunner and
Miicke, 1994). Given a omnipresent ball with radius «, a polytope (a face or edge)
of the triangulation is removed when the ball can enclose the polytope without en-
closing any of the vertices. The resulting triangulation is the alpha shape. Surfaces
can be reconstructed from point sets by extracting surfaces embedded in a-shapes
(Guo, Menon and Willette, 1997), though there is a trade off between reconstruct-
ing over sparsely sampled areas and maintaining details in densely sampled areas.
Unfortunately all of these techniques are based on first generating the 3D Delaunay

triangulation, at a worst case time cost of O(N?) and expected cost of O(N) (Dwyer,
1991).

5.2.3 Triangulation of Particles

Applying two dimensional surface reconstruction solutions suffice for small areas, but
does not solve the larger three dimensional problem. Generating three dimensional
proximity information does not simplify the problem, but transforms the problem into
one of extracting a surface description from a volumetric description. Conceptually
we would like the favorable qualities of a 2D triangulation to extend to triangulat-
ing our shape in 3D. One approach would be to locally compute a 2D triangulation
by projecting the subsets of data onto a plane, triangulating the data points, and
then projecting the triangulation back onto the original data set. Difficulties arise
in determining what are appropriate subsets of points to consider and how to merge
the resulting triangulations together. The real problem is that our data defines full
three-dimensional shapes of unknown structure and not special cases which reduce
to the two-dimensional domain. The N-dimensional Delaunay triangulation tests for
inclusion or exclusion of N-dimensional simplices. In 2D it tests triangles. In 3D
it tests tetrahedrons. We propose a test that takes the criterion of a two dimen-
sional Delaunay triangulation and extends it into the three dimensional domain while
preserving the two dimensional test.

In 2-D, a triangle is part of the Delaunay triangulation if no other vertices are
within the circle circumscribing the triangle. To extend the circumscribing circle idea
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to 3-D, we check the smallest sphere circumscribing each triangle. This is also the
3D analogue of the 2D Gabriel graph. Given any three points, if no other points
fall within the smallest circumscribing sphere, then these three points define a valid
triangle. If another point lies within the sphere, the triangle is not part of the surface
triangulation. Note that the smallest sphere circumscribing three points has embed-
ded in it the smallest circle circumscribing the three points, which is the 2D Delaunay
test. This circle is a great circle of the sphere.

To avoid computing triangles in areas without particles, we limit the length of valid
triangle edges (to 2 units of inter-particle spacing, by default). This also has the side
effect of pruning the number of triplets to test from O(N?) to O(N). The total cost
of the triangulation is O(N log N); O(N log N) to search for all nearest neighbors and
O(N) to test for valid triangles. The reconstruction heuristic works well in practice
when the surface is adequately sampled with respect to the curvature. To better
visualize the resulting surface, Gouraud, Phong, or flat shading can be applied to each
triangle. The results of using our triangulation algorithm are shown in Figure 5.3,
where the original point set is shown along with the resulting triangulation displayed
in wireframe and randomly colored filled triangles. Figure 8.17(e) is an example of a
Gouraud shaded triangulation.

5.2.4 Undesirable Triangulations

The goal of the triangulation algorithm is to compute surface connectivity based on
the spatial proximity of particles. However, the arrangement of the particles may
not suggest a “reasonable” surface. For example, consider the four vertices of a
regular tetrahedron (i.e. a tetrahedron made of equilateral triangles). From this set
of vertices, there are four combinations of three vertices that one can choose. Each
of these triplets corresponds to the face of the tetrahedron and each of these triplets
will pass the minimum sphere test. Thus, given these four vertices, the triangulation
algorithm will generate the faces of a regular tetrahedron. For this case, this is a
reasonable surface to generate.

Now let us consider the case of two spherical arrangements of particles, say V;
and V,. Suppose that when V; and V, are far apart, the triangulation algorithm
generates two triangulated spherical surfaces. Now further suppose Vi and V, are
moved closer together, such that two vertices from V; and two vertices from V,
correspond to the vertices of a regular tetrahedron. It is possible that the triangulation
algorithm will generate two spherical arrangements of triangles, plus the faces of
a tetrahedron and hence connect the two sets of triangles together. This may be
considered an “undesirable” triangulation of the points. We should note that generally
such an arrangement of particles would not be a minimum energy configuration for
an oriented particle system, unless there are external forces acting on the system.

As the two sets of particles are brought even closer together it is likely (depending
on the full set of circumstances) that the two spherical arrangements of particles will
merge, much like two soap bubbles will join with a wall between the two bubbles.
For particles interacting under the influence of the Lennard-Jones, co-circularity, and
co-planarity potentials, this would be a valid minimal energy configuration. Barring
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Figure 5.3: Triangulation of points

(a) A subset of points taken from a sphere of particles at equilibrium. (b) Triangula-
tion displayed as wireframe. (c) Triangulation displayed as filled triangles of various
colors.
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large external forces, the co-normality potential could be used to prevent collections
of particles with opposing normals from merging together. Such arrangements of
particles are the collision of two spheres (as above) and the folding of a sheet of
particles onto itself. With an appropriate choice of maximum triangle edge length,
this may prevent the generation of triangles between the two sheets.

Since our triangulation algorithm imposes no constraints on the possible positions
of the particles, we do not guarantee that the triangles generated will appear as a
“reasonable” or “properly” connected surface. Given a set of samples from a known
surface, it would be interesting to prove the limits of surface curvature and sampling
density over which our triangulation algorithm can correctly reconstruct the surface.
We leave this as an open problem.

We end this section on a philosophical note. The real question facing us is not,
“Does the triangulation algorithm guarantee reasonable surfaces?”, but rather the
more general question, “What is reasonable surface connectivity for arbitrary sets of
points?”.

5.2.5 C' Continuity

For generating smooth surfaces from polygonal meshes, one can apply surface subdi-
vision methods to replace the original polygon mesh with successively finer polygon
meshes, which in the limit results in a curvature continuous smooth surface (Catmull
and Clark, 1978; Peters and Reif, 1997) except at a number of extraordinary points
(Doo and Sabin, 1978). Many subdivision schemes produce meshes which are a com-
bination of quadrilaterals and convex polygons, with extraordinary points introduced
for polygons which are not quadrilaterals and at vertices with edge valence not equal
to four. Unfortunately, when applied to our triangulations, these approaches will
introduce a high number of extraordinary points: approximately 2N for Peter and
Reif’s scheme and 3N for Catmull and Clark’s scheme. Also, many of the polygons
are slow to refine. Luckily there exist subdivision surfaces designed for triangulated
surfaces of arbitrary topology. For example, Loop (1987) defines an approximating
subdivision schemes specifically for triangular meshes. His method generates refined
triangular meshes at each iteration and the extraordinary points are limited to the
original mesh vertices. Zorin (1996) defines a subdivision scheme well suited for tri-
angulations. In the limit, it interpolates a C' smooth surface between the original
vertices .

For imaging purposes, increasing the resolution of the particle system can be as
effective as fitting a C' surface. As the area of each triangle approaches the area
of an image pixel, the visual difference between a C° surface and the corresponding
C! surface becomes negligible. With the ability to render over 1 million anti-aliased
texture mapped triangles per second on current low end graphics workstations to
80 million on high end systems®, rendering large quantities of triangles is a feasible
alternative.

6Statistics from SGI’s Silicon Surf world wide web site (October 1997) discussing the SGI 02 and
Onyz2 RealityMonster systems.
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For guaranteed continuity, there are spline based techniques for specifying C* and
G" surfaces over polyhedra of arbitrary genus. Most techniques require the polyhedron
to be a triangulated polyhedron, thus circumventing difficult cases. In the general
case, the problem reduces to transforming a polyhedron into a triangulation. In our
case this is not a problem, since our polygonization is already a triangulation. Guo
and Menon (1996) and Bajaj and Thm (1992) interpolate triangulations of arbitrary
topology with implicit spline patches. Both assume normal vectors are defined at
the vertices, and construct intermediate geometries as a precursor to constructing the
surface patch. Loop (1994) presents an algorithm for approximating a triangular mesh
of arbitrary topology with triangular surface patches that meet with G' continuity.
The drawback of such techniques is that the generation of high order polynomial
patches which are expensive to compute. A second, equally significant drawback in
many applications (such as character animation) is the lack of control compared to
hand crafted piecewise spline surfaces.

5.3 Summary

This chapter discussed methods of generating continuous surface descriptions from
the discrete description provided by our particle system. We break the continuous
surface description problem into two separate problems, one for volume particles and
one for surface particles.

For particle systems of volume elements, we recommend an implicit surface ap-
proach to surface description. In this model, each particle is associated with a mono-
tonically decreasing field in R?® as a function of distance from the particle. This field
corresponds to the volume of the particle. The summation of all particle fields defines
another scalar field in R® which is a scalar field defined for the particle system, and
iso-surface is defined by the locus of points in R® equal to a constant scalar “thresh-
old” value. For a given point in space, testing the value of the field at that point
against the threshold value computes whether the point is inside, outside, or on the
surface. Polygonal approximations to the iso-surface can be constructed by sampling
the field function on a regular grid and determining surface intersections between
pairs of adjacent inside/outside points. Direct surface sampling techniques, such as
ray-tracing, can also be used for rendering. For general field functions, iterative root
solving techniques can be used to find the surface-ray intersections. For field func-
tions defined by low order polynomials, analytic solutions can be found over discrete
segments of the ray.

For particle systems of surface elements, we present an algorithm to construct
triangulations over an even distribution of particle samples. Our algorithm is based
on spatial proximity information as encoded in the Voronoi diagram and its dual, the
Delaunay graph. However, neither 2D nor 3D Delaunay tests are directly applicable to
our problem. In 2D the three point circumscribing circle test identifies valid triangles,
and in 3D the four point circumscribing sphere test identifies valid tetrahedrons.
Instead we wish to identify valid triangles in 3D. To do so we extend the essence of
the 2D test to 3D. If no other points fall within the smallest sphere circumscribed by
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three points, these three points define a valid triangle of our surface. Note that in
this test, the smallest circle circumscribing the three points (the 2D test) is a great
circle of the sphere. To allow our surfaces to separate, we limit the lengths of triangle
edges. This has the secondary advantage of reducing the number of particle triplets to
test to be linear in the number of particles. For generating smooth surfaces from our
triangulations, either subdivision surfaces or interpolating triangular spline patches
can be used.
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