Chapter 4

Particle Surfaces

In this chapter we present a new model of elastic surfaces based on interacting particle
systems. Unlike previous surface models, the new model can be used to split, join,
or extend surfaces without the need for manual intervention. While particle systems
are much more flexible than deformable surface models in arranging themselves into
arbitrary shapes and topologies, they do suffer from one major drawback. In the
absence of external forces and constraints, 3-D particle systems prefer to arrange
themselves into volumes rather than surfaces. This is because traditional particles
are point masses with no preferred orientation along which surfaces might form. To
overcome this limitation, we introduce a distributed model of surface shape which we
call oriented particles, in which each particle represents a small surface element (which
we could call a “surfel”). In addition to having a position, an oriented particle also
has its own local coordinate frame, which adds three new degrees of freedom to each
particle’s state. The particles we use have long-range attraction forces and short-
range repulsion forces and follow Newtonian dynamics, like the models of volumes
presented in the previous chapter.

We begin by extending the mathematics of the particle systems presented in Chap-
ter 3 to include oriented particles. Based on concepts from differential geometry, we
derive inter-particle potential functions which encourage particles to form smooth
surfaces. A review of the relevant geometric concepts is provided in Appendix A.

4.1 Oriented Particle Systems

This section discusses the basic mathematics of oriented particle systems. We extend
the definition of a particle system given in Chapter 3 to include the concepts of
orientation, angular inertia, angular velocity, and torque. As such, we build upon our
previous presentation, redefining the properties of the system, such as the definitions
of a particle, the equations of motion, kinetic and potential energies, and the surface
density of particles.
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Figure 4.1: Oriented particles in global and local coordinate frames.

The global inter-particle distance r;; is computed from the global coordinates x; and
x; of particles 7 and j. The local distance d;; is computed from r;; and the rotation
matrix R;.

4.1.1 The Oriented Particle

An oriented particle, like the previously discussed volume based particle, has a po-
sition and mass. In addition, each oriented particle has an orientation and inertia
tensor. The orientation defines both a normal vector (z in Figure 4.1) and a local
tangent plane to the surface (defined by the local z and y vectors). More formally,
we write the state of each particle as (x;, R;), where x; is the particle’s position and
R, is a 3 x 3 rotation matrix which defines the orientation of its local coordinate
frame (relative to the global frame (X,Y,Z)). The third column of R; is the local
normal vector n;. While we define rotation as a matrix for conversion between local
and global coordinates and vice versa, we use unit quaternions to store the rotation
in practice. The unit quaternion

_ . = asin(6/2)
q = (w,s) with = cos(0/2)
represents a rotation of # about the unit normal axis a. To update this quaternion, we
simply form a new unit quaternion from the current angular velocity w and the time
step At, and use quaternion multiplication (Shoemake, 1985). Our use of rotations
is discussed in more detail in Appendix B.

The inertia tensor I relates the angular momentum to the angular velocity by
a linear transformation. The angular velocity of a particle describes the rotation
of a particle about the particle’s local origin. The inertia tensor is defined about
the particle’s local origin with respect to the world coordinate axes. Since we are
interested in the property of angular momentum but not a particular rigid body we
choose a simple inertia tensor, one that is a constant scaling of the identity matrix.
This is valid for all positions and orientations of a given particle. We discuss the
inertia tensor in more detail in Appendix B.
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4.1.2 Equations of Motion

A system of oriented particles is governed by the set of ordinary differential equations
of motion: equation (3.1) rewritten here

mzx,+’yzxz+fzmt :fieXt 1= 1,...,N
and for our choice of inertia tensor, the associated equation for angular motion

Izq,—{—gzqz—#'rzm:'rfwt ’L:1,,N (41)
where 7 is the particle index, N is the number of particles in the system, X; is the
acceleration of a particle, m; is its mass, x; is its velocity, ; is a translational damping
coefficient that controls the rate of dissipation of the particle’s translational kinetic
energy, £1™* is the sum of inter-particle forces, f£=* is the sum of external forces, q;
is the orientation of particle ¢ in three-space, q; is the angular acceleration, I; is
the angular inertia tensor (B.1), q; is the angular velocity, & is an angular damping
coefficient that controls the rate of dissipation of the particle’s rotational kinetic
energy, T\"" is the sum of inter-particle torques and 7¢** is the sum of external torques.

The inter-particle internal force term (3.2) is redefined

fiint(xlaqlax2aq25"'aXNan) (42)

as a function of position and orientation. The external force term (3.3) is redefined

as
£ (x;, G, S) (4.3)

a function of particle position, orientation, and and the set S of external state variables
such as gravity and collision objects. The inter-particle torque terms are defined in a

similar manner
j.nt

T; (X17q17x2aq2;'"7"';XN;qN)' (44)

External torques are functions of position, orientation, and external state variables

TZ?Xt (Xia q;, S) (45)

4.1.3 Potential Energy

Similar to the use of potential energies for un-oriented particle systems, potential
energies provide a convenient description of forces and torques between particles.
This formulation also guarantees that the system will not diverge. For a potential
function ¢, the force exerted on particle 7 with position x;

fi = _Vxl(ﬁ

is due to the gradient of the potential energy ¢ with respect to the change in position.
The torque exerted on particle ¢ with orientation q;

T; = _V97,¢
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is due to the gradient of the potential energy with respect to the incremental change
in orientation ;.

For oriented particle systems we also adopt the pairwise additivity assumption
which states that the total potential energy of a particle (3.4) is the sum of the pairwise
potential energies between that particle and every other particle. Equation (3.5)
describes the total inter-particle forces acting on a particle 7 due to the inter-particle
potential energy functions and

N
Ti = Vo = =) Voo (4.6)
J#i
describes the total inter-particle torques acting on a particle due to the inter-particle
potential energy functions. The equation for the total potential energy of the system
(3.6) is the same for oriented particles as for un-oriented particles.

4.1.4 Kinetic Energy

The kinetic energy of an oriented particle is a combination of translational and rota-
tional kinetic energies. The translational kinetic energy K; of a single oriented particle
i is given by equation (3.7). In order to compute the rotational kinetic energy sep-
arate from the translational kinetic energy, it is, in general, necessary to choose a
inertial coordinate system whose origin is the centroid of the object (Marion, 1970).
For a single particle, the rotational kinetic energy of a particle is given by

1
Kiop = 2 Z Ijkijk
Jik
where the subscripts j and k refer to individual elements of the interia tensor I. Our
choice of inertia tensor (B.1) allows us to simplify the rotational kinetic energy to be

1
Koo = 5 (Tastws® + Ly, + Loto.?) (4.7)

for the principal moments of inertia I,;, I,,, and I,,. For additional details see
Appendix B.2.

We write the total kinetic energy of the system as the sum of the individual particle
translational (3.7) and rotational kinetic energies (4.7),

N

EK = z (Kz + Krotz’) . (48)

2

This redefines the system kinetic energy equation (3.8).

4.1.5 System Energy

The total energy of the system, Fg, is simply a summation of the individual particle
kinetic and potential energies
ES = EK+EP, (49)

where Ep is given by equation (3.6) and Ff is given by equation (4.8).



4.1. ORIENTED PARTICLE SYSTEMS 47

4.1.6 Angular Damping

The second term of (4.1) is an angular velocity based damping force, —£;q;. When
& > 0 this term accounts for a loss of rotational kinetic energy. This is analogous to
the translational damping force —v,;%;. Analogous to the ideal viscous damping unit
between neighboring particles is the angular viscous damping unit function

—03 (4 — ;) , (4.10)

where (3 is the damping coefficient and q; and q; are the angular velocities of particles
7 and 7.

4.1.7 Dynamic Coupling

To compute all inter-particle forces and torques without restrictive assumptions on
the potential energies requires N? force computations. This is similar to the un-
oriented particle case. Assuming particles are uniformly distributed as a sampling of
a surface, each particle will have at on average a constant number of neighbors, and
by ignoring distant particles the inter-particle force calculations for the system are
reduced to O(N) computations. Thus we can rewrite the force and energy equations
in terms of the set of nearest neighbors. This is a straightforward procedure and since
we have already discussed this concept in Chapter 3, we omit deriving the equations
for the oriented case.

4.1.8 Weighting Function

In Section 3.2.1 we discussed a weighting function (3.12) which monotonically de-
creases to zero at the distance of the particle neighborhood range. We have experi-
mented with two other weighting functions. The first one

wo(r) = e~ 2

is based on the Gaussian distribution with o, = 1.0. The second weighting function

_z%4y? zQ)

ws(z,y,2) = Ke< 2% Wl b<a (4.11)

generalizes this to favor interactions between particles that lie close to their respective
tangent planes. We accomplish this by writing the function in terms of the particle’s
local coordinates, e.g., by replacing the inter-particle distance r;; by

dij = R;lrij = R;I(Xj — XZ’), (412)

where d;; = [z,y, 2]", and R, is the particle orientation. That is d;; is the position
of particle j in particle i’s local coordinate frame.
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11

Figure 4.2: Cross sectional view of a of surface

4.1.9 Density

Assuming that a set of particles present a uniform sampling of a surface we can
compute the density of particles over the surface. Similar to the volume case we
ask the question: “How many particles will it take to fill a given area?” We can
approximate the answer by considering the related question: “How many solid equal
size circles will it take to fill a given area?” The area packing factor is defined as
the ratio of the unit-circle to the unit-enclosure (Gasson, 1983). For a given packing,
this is equivalent to the ratio of the area of a circle to the associated 2D Voronoi
region, where the Voronoi diagram is computed over the center points of the circles.
A hexagonal close packing of circles has an area packing factor P4 of

Py=—_ ~0091.

2V/3

The expected number of circles n in a given area A, is given by

p A A
n = —_— =,
AAC 44/3r2
where A, is the area of the circle with radius r. We can approximate the area of a
surface particle A,
Ao V3,
= — = —7
Py 2°°
as the area of a circle, with a radius of one half the Lennard-Jones equilibrium sepa-
ration r,, divided by the hexagonal packing factor.

Ap

4.2 Surface Potentials

To encourage oriented particles to group themselves into surface-like arrangements, we
devise a collection of new inter-particle potential functions. These potential functions
can be derived from the deformation energies of local triangular patches using finite
element analysis, or from the differential geometry of surfaces. We begin with an
intuitive explanation based on analogies with physical surfaces. We follow with an
analysis correlating the potential functions to the geometric measures of differential
geometry. We defer the details of the finite element analysis to Appendix E.

We derive our potentials by considering an infinitesimally small section of a surface
as shown in Figure 4.2. Over a small section one can notice that adjacent points on
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n;
n;
Xi
ri; X; r 0O X;
X
Initial state, ¢p > 0. Possible new state, ¢p = 0.

Figure 4.3: Interaction due to co-planarity potential: ¢p = (n; - r;;)?

The original particle positions are drawn in black on left and in gray on right.

the surface have normals that are close to parallel and the points lie near the tangent
planes of adjacent points. One can also note that for circular arcs the normals diverge
with equal angles. We use these observations to define potential energy functions
between adjacent particles which encourage such configurations. We define three
potentials: a co-planarity potential to encourage particles to lie in neighboring particle
tangent planes, a co-normality potential to encourage particle normals to align, and
for surfaces with constant curvature, a co-circularity potential to encourage particle
normals to diverge with equal angle.

4.2.1 Co-planarity

For surfaces whose rest (minimum energy) configurations are flat planes, we would
expect neighboring particles to lie in each other’s tangent planes. We express the
co-planarity potential as

¢p (04, 155) = (n; - 1) (4.13)

The energy is proportional to the scalar product between the surface normal and the
vector to the neighboring particle. Recall that two nonzero vectors are perpendicular
if and only if their scalar product is zero.

We illustrate this in Figure 4.3. On the left side is a non-zero potential energy
state. On the right side the particles have obtained a zero potential energy state, by
moving in directions parallel to the normal vector n;. The forces acting on the two
particles are given by the gradient of the potential energy with respect to x; and x;:

fi = —Vyxoép =2(n; r;)n,
fj = —ijgbp = —2(1’12 . rij)ni

For the example given, the product n; - r;; is a negative scalar value. Thus particle 4
moves in the direction of —n; and particle j moves in the direction of +n;. The torques
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n; n; n;
o/ 1
X; X]' X; Xj
Initial state, ¢x > 0. Possible new state, ¢n = 0.

Figure 4.4: Interaction due to co-normality potential: ¢x = ||n; — n,|*

The original particle normals are drawn in black on left and in gray on right.

are given by the gradient of the potential energy with respect to the orientation:

Ti = —Vg,¢p=—2(n; 1y5)(n; x1;5) =155 x
T; = —Vg,¢p=0.

For the example given, the torque vector on particle ¢ would be into the page and
result in rotating the particle clockwise until n; and r;; form a right angle. There is
no torque on particle j7 because the potential is independent of j’s normal. However
when we evaluate the potential ¢p(n;,rj;) then the situation reverses, 7; will be zero
and 7; will be non-zero.

4.2.2 Co-normality

The co-planarity potential does not control the “twist” in the surface between two
particles. To limit this, we introduce a co-normality potential

on(n;,15) = [[n; — ny|” (4.14)

which attempts to line up neighboring normals, much like interacting magnetic dipoles.

We illustrate this in Figure 4.4. On the left side the normals are not parallel
resulting in a non-zero potential energy state. On the right side the particles have
obtained a zero potential energy energy state by rotating until their normals align.
The torques acting on the two particles is given by the gradient of the potential energy
with respect to orientation:

T; = —Vging = 2(nj X ni) (415)
T; = _V0j¢N = —2(nj X IIZ') (416)
The torque is about an axis orthogonal to n; and n;, applied equally to both particles.

For the example given it induces a clockwise rotation on particle ¢ and a counter-
clockwise rotation on particle j. This potential is independent of particle positions and
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n;
n; n,
n, \ /
X; r;; X X; ri; X;
Initial state, ¢c > 0. Possible new state, ¢c = 0.

Figure 4.5: Interaction due to co-circularity potential: ¢c = ((n; + n;) - r;;)?

The original particle normals are drawn in black on left and in gray on right. The
dashed line shows an arc of constant curvature matching the new normals and passing
through the particle positions.

thus the resulting forces are zero. By itself, the co-normality potential is not sufficient
to form surfaces as the tangent planes may not align, as seen in this example. However
in combination with the co-planarity potential, energy minimization will encourage a
set, of uniformly spaced particles to arrange into a continuous surface.

4.2.3 Co-circularity

An alternative to surfaces which prefer zero curvature (local planarity) are surfaces
which favor constant curvatures. This can be enforced with a co-circularity potential

¢c(ng,mj,155) = ((0; + ny) - 1;5)° (4.17)

which is zero when normals are anti-symmetrical with respect to the vector joining
the two particles. This is the natural configuration for surface normals on a sphere.
That is the energy is zero under the condition that the angle between particle i’s
normal and the separation vector r;; is equal to the angle between particle j’s normal
and the separation vector, or n;-r;; = rj;;-n;. Since rj = —r;; and the scalar product
is distributive we can rewrite the condition n; - r;; = r;; - n; to be (n; + n;) - r;; = 0.

We illustrate the co-circularity potential in Figure 4.5. On the left side the angles
between normals and the separation vector are unequal. On the right side the particles
have obtained a zero potential energy state by rotating until their normals are anti-
symmetric. The torques acting on the two particles is given by the gradient of the
potential energy with respect to orientation

T, = —Vgi(lsc = O!(Ili X rij) (418)
T; = —Vaj(bc = oz(nj X I'Z'j), (419)

where o = 2((n; + n;) - r;;) is a scalar. For each particle the torque is about an axis
orthogonal to the particle normal and the separation vector. For the example given it
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Osculating
circle

Tangent
plane

Figure 4.6: The osculating circle in the local coordinate frame of particle ¢

induces a counter-clockwise rotation on particle ¢ and a clockwise rotation on particle
j. The forces resulting from the change in potential are

fi = —Vxéc=2((n;+ny) - ry)(n; +ny)
fi = —Viéc=-2(m+ny) ry) (0 +ny) = —fc,.

For particle ¢, the term ((n; + n;) - r;;) is a scalar value that is zero when the particles
are anti-symmetric. The force on particle 7 is in the direction (n;+n;) and for particle
J in the opposite direction. This in effect rotates the line segment r;; in the plane
defined by r;; and (n; + n;). For the example given it rotates r;; clockwise.

4.3 Geometric Interpretation in Local Coordinates

Another viewpoint relating the potentials to the local geometry of the surface may
be found by considering the potentials in the context of a particle’s local reference
frame. This transformation results in simplified equations for the potentials.

We begin by writing the states of particles 7 and j in the local reference frame of
particle 7, where R, is the particle orientation, and where we denote local coordinates
by a prime ’:

x; = Ri'(x;—x)=0,0,0]" (4.20)
x; = Ri'(xj—xi) = [z, 95, 4] (4.21)
n; = Ri'm;=[0,0,1]" (4.22)
n;' - Rglnj = [nwanyanz]T (4.23)
r, = Ax=x-x=[z;,y5] (4.24)



4.4. CURVATURE 33

Figure 4.6 illustrates two particles in local coordinates with x} and xz- lying in the
osculating plane containing x;, xj, and n;. Note that x| is at the origin, the normal
n; is in the direction of the z axis and the tangent vector to the curve is orthogonal
to the normal. The osculating circle tangent at x; is also shown. In this example
the normal n;- lies in the osculating plane, although in other cases it may not. The
length of the curve segment from x; to x} is labeled as As. The chord of the segment
is the difference of positions and is labeled Ax. If we assume the particles maintain
a constant separation distance, then as the curvature varies the point x;- moves along
the gray arc. As the curvature goes to zero, x;; moves down to the tangent axis, and
As tends to the chord length ||Ax]|.

In local coordinates the co-planarity potential reduces to
¢p = (n; - 1;;)" = ()" (4.25)

Minimizing the potential, can be interpreted as encouraging particle j to reduce z;
or, in other words, to move to particle i’s tangent plane. Since we are in 4’s local
coordinate this can also be accomplished by rotating and/or moving particle i in the
world frame. These three possibilities correspond to the three effects (f;, f;, and ¢;)
that were derived in Section 4.2.1.

The co-normality potential reduces to

= |In} — nf|* = 2(1 — n,). (4.26)

By noting ||n%|| = 1, the minimum is clearly when n, = 1, or in other words when
particle j’s normal aligns with the z axis.
The co-circularity potential reduces to

b = ((0f +nf)-x)))" = () -x) +2) " (4.27)

For this case the interpretation is less apparent, yet with a little algebra it becomes
clear. Let a be the angle between n; and r;; and let 3 be the angle between n}; and

;,; where r{; = — ] The angle « is glven by n; = [|r};|| cosa = z;. The angle
B is given by n} - r; = ||r};|| cos § = —(n} - r};). The potentlal (4.27) is obviously at
its minimum (zero) When zj = —(nj- rZ]) or in other words when the angles o and
are equal.

4.4 Curvature

In this section we present a definition of discrete curvature for our oriented particle
system. We then show that minimizing the potential energy functions is equivalent to
minimizing the squared curvature defined for space curves between pairs of particles.
We will also prove that we minimize the magnitude of the sum of squared curvature
and torsion measures of space curves defined by pairs of particles. These space curves
can be thought of as approximating the normal sections embedded in a surface inter-
polating the particles. Furthermore as the particle separation goes to zero the space
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Figure 4.7: Discrete curvature tangent vector

curves between particles become osculating circles of normal sections embedded in the
surface. In the limit, we prove that minimizing our potential functions is equivalent
to minimizing the squared normal curvature over the surface.

We begin with a review of the basic definitions of normal sections, normal cur-
vature, curvature, and torsion. Given points on a surface and direction tangent to
the surface, there exists a unique plane that is defined by the tangent vector and
surface normal that includes the given point. The intersection of the plane and the
surface defines a space curve embedded in the surface. This curve is called a normal
section. The curvature of a normal section is the normal curvature k, and is defined
as being the curvature of the embedded space curve. The curvature of a space curve
is defined as the magnitude of the second derivative of position with respect to arc
length, x = ||t|| = ||%||. The torsion of a space curve is defined as the magnitude of
the derivative of the bi-normal with respect to arc length, 7 = ||b||. We defer a more
detailed discussion of differential geometry to Appendix A.

4.4.1 Discrete Curvature

We now define a discrete curvature measure k4 for our particle system. The discrete
curvature is defined for a given position and direction. The position is the position
x; of a given particle and the direction is in a tangent direction t;; of an adjacent
particle x;. The tangent direction is the vector formed by x; and the projection of x;
onto particle 7’s tangent plane, as shown in Figure 4.7.

Without loss of generality, we will work in the the local coordinates of particle
i, where ' indicates local coordinates as given in Section 4.3. The position of x| is
[0,0,0]", the normal nj is [0,0,1]", and the position of x} is [z, 1, 2]". The unit
tangent vector t; is given by [z;/t, y;/t,0]" where t = (22 + y?) 3

We now determine the circle with normal matching n at x; and passing through
the points x; and x;-. We do this in a 2D plane where the x axis of this plane aligns

]T

with the tangent vector Eij and the y axis aligns with the particle normal n}. We pick
the three points

(z1,31) = (0,0)
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(x27y2) = (t,Zj)
(z3,23) = (—t,%)

where (73, ys3) is the reflection of x}; about particle i’s normal. The equation
22+ +2r +2ey+ f=0 (4.28)

defines a circle of radius (d?+€? — f) "2 in the zy plane, when d2+¢? > f (Zwillinger,
1995). Three non-collinear points determine a unique circle. For the three such points

(951,3!1); ($27y2)7 and ($3,y3) the equation

(2 +y*) =z y 1

(@t +y7) o1 oy 1] _

(+u) = w 1|0 (4.28)
(23 +v3) 25 ys 1

defines the unique circle passing through the points. Expanding the determinant gives
2z;(z” +y°) — 2(t* + 23)y = 0.

as our equation of the circle. Writing in the form of (4.28)

d = 0
2 | .2
e - _Et7)
22_7'
f =20

and thus the radius R is

2 2 2
::rj—}-yj—i-zj.
22]'

R

We define the discrete curvature
22]'

=2 (4.30)
T3+ yi + 25

Ka
as the curvature of the unique circle passing through x} and xg-, such that at point x;

the tangent and normal of the circle match t;; and n}. In the global reference frame
the discrete curvature is given as

2

—
[lxi; |

Kqg = (l’li . rij)- (431)

4.4.2 Minimizing Discrete Curvature

We show that minimizing the co-planarity potential for a pair of particles, with par-
ticle spacing constrained by the Lennard-Jones potential, minimizes the squared dis-
crete curvature measure of that pair.
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Figure 4.8: Inter-particle spacings h; and hs.

In local coordinates, the co-planarity potential (4.25) is
¢p = 232
and the discrete curvature (4.30) squared is
42

= —7-
[

K,d2

Since infinite energies are excluded from our simulations, we can assume that
0 < 7min < [Jri5l-

If not, the Lennard-Jones potential energy would be infinite. For completeness we
mention that [|r;;|| = [[r};||. The minimum bound 7mi, on the separation distance
bounds the discrete curvature

422
4
(Tfnin < Irll ) = <’f§ < 4—J> :

Minimizing the co-planarity potential minimizes the squared discrete curvature be-
tween particle pairs

¢p — min = zf-—)O
= Kk3—0.

4.4.3 Normal Curvature

We show that our discrete curvature measure is equivalent to the normal curvature
of a surface in the limit of infinitesimal particle separation. Let us assume we have a
particle i surrounded by a set of symmetrically spaced particles N = {x1,Xz,... Xy}
as shown in Figure 4.8. Let h; be the distance between each particle pair x; and
x; € N. Let hy be the distance between adjacent neighboring particles.
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As the separating length hy approaches zero, N goes oo, and the particles sur-
rounding x; now form a continuous circle. Thus our discrete curvature measure kg is
defined for all tangent vectors in particle ¢’s tangent plane.

As the separating length h; goes to zero, we define the curvature measure

. .
Ky = lim ky.
d h1—0 d

It should be clear that the circle defined between our particle pairs (as in Figure 4.6)
becomes the osculating circle of some space curve passing through the two particles.
Thus the discrete curvature ) becomes the curvature x of the space curve.

We now relate x to the normal curvature measure. For any smooth surface, a
point on the surface, and a tangent direction, there exists a plane that is normal to
the surface and which also includes the point and tangent vector. The space curve
lying in that plane and embedded in the surface is the normal section with a curvature
called the normal curvature k,. Since the circle we define lies in the plane normal to
particle 7, in the limit as h; tends to zero, this circle becomes the normal section, and
our discrete curvature becomes the normal curvature, that is &)} = kK = K.

4.4.4 Minimizing Torsion

This proof shows that minimizing the co-normality potential, with particle spacing
constrained by the Lennard-Jones potential, minimizes the sum of the squared cur-
vature and squared torsion measures of a space curve. We consider a space curve
passing through the points x; and x;, such that the unit normal vectors of the curve
at x; and x; match the particle normal vectors n; and n; respectively.

An equation for the rate of change of the normal per unit arc length of a space
curve is given by the Frenet-Serret formulas (A.2)

th = —kt + 7b. (4.32)

For a discrete system, the change in normal is

n; —n;

n—-*,_ 4.33
where As is the unit arc length. We combine (4.32) and (4.33) to get
n p— n.
—kt +7b =L —.
Kt+ 7 As
We now take the scalar product of both sides
2
K2(t-t) — 267(t - b) + 72(b - b) = ““JAifZ”. (4.34)
s
The tangent and bi-normal are orthogonal and unit vectors so the following hold
t-t = 1
b-b =

t-b = 0.
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Equation (4.34) thus reduces to

2
2, 2 |my —ml
= ——. 4.35
K +T A (4.35)
We can now rewrite (4.35) in terms of the co-normality potential (4.14)
2 2
¢n = |ln; — ny[]” = [|n; — 0] (4.36)

to arrive at the equation

5, 2 On
K +7" = -—.
As?

As in to Section 4.4.2, we can assume
0 < Tmin < ||r4]l-
Since the As > ||r;;||, we have the relation
0 < rmin < As.

The bound on the arc length bounds the sum x2 + 72

(rﬁlin < A$2) = <H2 +7% < Td;—N> .

min
Thus minimizing the co-normality potential minimizes the sum of the squared curva-
ture and squared torsion measures

(¢ — min) = (K2+7'2 —>0).

4.4.5 Discussion

We have shown that a combination of co-planarity and Lennard-Jones minimizes the
squared curvature of space curves defined between particle pairs. Likewise, a combi-
nation of co-normality and Lennard-Jones minimizes the sum of the squared curvature
and squared torsion measures. We did not find a similar proof for the co-circularity
potential. The co-circularity potential’s goal is to encourage symmetric curvature be-
tween particle pairs, but in isolation this does not imply minimum curvature. Smooth
surfaces can be constructed using only the co-planarity and co-normality potentials,
and in fact many of the examples in the dissertation were created using only these
two potentials.

However, in the finite element analysis of Appendix E we show that the co-
circularity potential corresponds to an energy measure based on the variation in
curvature of a three particle patch. And we also show that an approximation of the
Gaussian curvature over the patch can be written as a sum of the co-circularity and
co-normality potentials. Thus, this analysis shows that the co-planarity potential is
not necessary needed to write a curvature-based energy measure. At first sight, these
two different analyses may suggest contradicting results. The observation we draw is
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that either the co-planarity or the co-circularity potential is required, but not both.
In fact the two potentials are closely related. The co-planarity potential is based on
the scalar product of particle normal and the separation vector, and the co-circularity
potential is based on the scalar product of the separation vector and sum of particle
normals. Another point to note is that the different analyses are minimizing different
curvature measures.

To summarize, minimizing co-planarity and co-normality minimizes the magnitude
of curvature and torsion of curves defined between particle pairs, and minimizing
co-circularity and co-normality minimizes the magnitude of the Gaussian curvature
integrated over a three particle patch. That is

¢p + Py = HZ
N+ ;g = nﬁ + 72
bc+odx+dLy = K

4.5 Dynamics

For practical considerations we limit particle interactions between nearest neighbors.
To do this we use a distance based weighting function w(r;;) which decays the energy
potential to zero at the neighborhood boundary. To control the bending and stiffness
characteristics of our deformable surface, we use a scalar weighted sum of potential
energies

Ey; = apgp(ny,rij)w(riy) + andn(ng, nj, ry;)w(ry) + acde(ng, ny, rij)w(ry)
+ apyori(rij)-

The first two terms control the surface’s resistance to bending, and the third term
controls the surface’s tendency towards uniform local curvature, and the last term
controls the average inter-particle spacing.

Having defined the internal energy associated with our system, we can derive its
equations of motion. By weighting our potential functions the corresponding forces
and torques are different than those given in Section 4.2. The differences are (1)
the weighting of the original potential terms found in Section 4.2, and (2) new force
terms based on the gradient of the weighting function. The derivation of the distance
weighted inter-particle forces and torques are given in Appendix D and listed below.
For convenience we use the short hand notation

w = w(||r;l]),
o = dw(ffri;|l)
d||ry;|]

For the spatially weighted co-planarity potential, ¢p(n;, r;;)w(r;;), we have:

fpi (n,- . rij)2f'ijw' + 2(1’11 . rij)niw
fpj = —(nz- - I'Z'j)Qf'ij’wl — 2(11, - rij)niw = —fpi
Tp, = —2(1’11 . rij)(ni X rij)w =TI X fpi

7p, = 0.
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For the spatially weighted co-normality potential, ¢x(n;, nj, r;;)w(r;;), we have:

fx; In; — n*rjo0’

fy, | — nyPriyw’ = —fy,
TN, = —2(n; xm)w

TN, = 2(n; xn))w = —7y;,.

For the spatially weighted co-circularity potential, ¢¢(n;, nj, r;;)w(r;;), we have:

fo, = ((mi+ny) 1) 8w +2((0; + 1)) - 15) (0 +nj)w
fo, = —((mi+mny)-ry)" f50 —2((0; +ny) - ry) (0 +ny)w = —fg,
Tc, = —2((ni+mny)-ry) (n; X rij)w

—2((n; +ny) - 135) (n; X 15) w.

For the Lennard-Jones potential we have:

fl, = —Viéu = tion)’

fr;;, = —Viou = —tou’ = —f;
TL;, = —Vgou =0

Tuy; = —Vg,or=0.

These forces have the following simple physical interpretations. The co-planarity
potential gives rise to a force parallel to the particle normal and proportional to
the distance between the neighboring particle and the local tangent plane. The first
term in the force, which can often be ignored, arises from the gradient of the spatial
weighting function. The cross product of this force with the inter-particle vector
produces a torque on the particle. The co-normality potential produces a torque
proportional to the cross-product of the two particle normals, which acts to line up
the normals. The force term for the co-normality potential arises from the weighting
function and can usually be ignored. The co-circularity force is similar to the co-
planarity force, except that the local tangent plane is defined from the average of the
two normal vectors. The Lennard-Jones force exerts a force parallel to the separation
vectors holding the particle system together. It effectively counteracts the forces due
to the gradient of the weighting function.

To compute the total inter-particle force and torque from all the potentials, we
use the formulas

fij = 2aLJfLJi (I‘ij) “+ ap (fpl (Ili, I‘ij) —+ fpi (Ilj, I'ji)) + 2aNfNi (Ilz', Ilj, I‘ij) —+ 20!(jfci (Ilz', Ilj, rij)
Ty = opTp,(ng,Ty) + 2087, (04, 0, 135) + 20T ¢, (03, 0y, T35)
Note that most forces and torques are doubled, i.e., actions generate opposite

reactions. The main exception to this is fp and 7p, which arise from an asymmetric
potential function. This can easily be changed by defining a new potential

dp* (04,04, 155) = ¢dp(ny, 135) + dp(ny, 135),
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although the results would be the same. The second exception is due to the co-
circularity potential which results in torques of equal magnitude but about different
axes; Tp, is about the axis (n; x ry;) and 7p, is about the axis (n; X ry;), which may
be different. However it does produce the desired result.

These forces and torques can be summed over all interacting particles to obtain

f; = Z f;; + foxt (xi) — Bovi — Z B1(v j— v;) (4.37)
JEN; JEN;

T o= Y Tij— Powi— ) Ba(w; —wi) (4.38)
JEN; FEN;

where N; are the neighbors of 7, v = x and w = . Here, we have lumped all external
forces such as gravity, user-defined control forces, and non-linear constraints into f.,
and added velocity dependent damping forces Gyv; and (ow; and the relative velocity
dependent damping forces f3;(v; — v;) and f5(w; — w;). The above force equations
are related to the equations of motion (3.1) and (4.1) given in Section 4.1.2. The
translational damping coefficient «y; in (3.1) is a function of 3y and ;. The rotational
damping coefficient &; in (4.1) is a function of f,, and fs.

4.6 Summary

We have presented a new distributed model of surface shape based on particle systems,
differential geometry, and physics. We extended the volume based particle model of
Chapter 3 to create oriented particles whose minimum energy configurations are sheets
of particles rather than tightly packed clusters of particles. Each particle represents
a local frame, a combination of position and orientation information. The particle’s
local XY plane represents the surface tangent plane at the particle’s position, and the
local Z axis represents the surface normal. Each frame can be thought of as a small
surface element or discrete surface sample.

To encourage particles to arrange into surfaces, we introduced three new poten-
tial energy functions. The co-planarity potential encourages neighboring particle
tangent planes to align. The co-normality potential encourages neighboring parti-
cle normals to align, controlling the “twist” in the surface between two particles.
The co-circularity potential encourages surfaces of constant curvature, e.g. a sphere,
rather than surfaces of zero curvature, e.g. a plane. We have also used differential
geometry (Appendix A) to show how these potentials minimize the squared curvature
for curves defined between particles. In the limit of zero inter-particle spacing, this
is equivalent to minimizing the squared normal curvature over the surface. We also
showed the co-normality potential minimize the sum of squared curvature and torsion
measures for curves defined between particles. In Appendix E we show how the sum
of the co-circularity and co-normality potentials minimizes the Gaussian curvature of
a triangular patch defined by three particles.

Forces and torques on the particles are derived from the change in energy with
respect to changes in the particle’s position and orientation, respectively. In addition
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the surfaces respond to external forces such as gravity and collisions with other ob-
jects. In Chapter 8 we present results from simulations which illustrate the behavior
of oriented particles.



