Chapter 3

Particle Volumes

In order to develop a new model for shape representation and manipulation, we con-
struct synthetic materials that exhibit useful physical and geometric properties. We
do not try to simulate a given material accurately, but rather to imitate properties
that we find useful for sculpting, animation, and reconstruction tasks. The ability to
create large changes in the geometric structure and the ability to change the topology
of the shape at will, suggests the use of primitive shape elements, where individual
elements do not enforce a given topology, but rather the topology is an emergent prop-
erty of the the self-organizing system. As such, we have chosen to use an interacting
particle system that moves in accordance with the laws of Newtonian dynamics. The
physical properties of our system follows from our selection of inter-particle potential
energy functions. The geometry is derived from the relative positions of the particles.

3.1 Particle Systems

Each particle represents a primitive element with mass, volume, and physical prop-
erties defined between particles. A particle system is defined as a collection of point
masses, where each particle has a position and mass, and moves under the influences
of forces according to the principles of classical physics. Such a system is governed
by the set of ordinary differential equations of motion

m,x,+’)/,x,—|—fzmt :fiGXt izl,...,N, (31)

where the subscript 7 denotes an attribute of particle 7, N is the number of particles
in the system, over struck dots denote time derivatives, m,; is its mass, X; is its
acceleration, x; is its velocity, v; is a damping coefficient that controls the rate of
dissipation of the particle’s kinetic energy, £ is the sum of inter-particle forces and
fe** is the sum of external forces acting on the particle. Inter-particle force terms are
functions of the form

£ (%0, X1, . -, Xn) (3.2)

External forces are functions of single particle state and external state variables

£7(x;, S), (3.3)
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where S is a set of external state variables such as gravity, the positions of obstacles
or shaping tools, and volumetric data sets. A particle system can be tailored to a
specific application by choosing appropriate inter-particle and external forces.

3.1.1 Potential Energy

Potential energy functions provide an elegant method of describing inter-particle force
functions based on particle positions. For a potential function ¢, the force exerted on
particle 7 with position x;,

fi = _Vxlgb
is due to the gradient of the potential energy ¢
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with respect to the change in position.

A common practice, and one this dissertation adopts, is to define a particle’s
potential energy based on the pairwise additivity assumption. This assumption states
that the total potential energy of a particle is the sum of the pairwise potential energies
between that particle and every other particle. That is, the potential energy ¢; of
particle ¢ with respect to a system of NV particles is given by

N
i =2 bij» (3.4)
i#i

where ¢;; is the potential energy between particles 7 and j, and NV is the number of
particles in the system. Thus the net inter-particle forces acting on a particle 7 due
to the potential energy function is

N
J#i

The total potential energy of the system is the sum of the pairwise potential energies
for all pairs of particles

i j#i

3.1.2 Kinetic Energy

The kinetic energy of the system is a measure of particle movement. The kinetic
energy K; of a single particle ¢ is given by
1 1
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where m; is the mass of the particle, and v; is the scalar speed of the particle. The
kinetic energy of the system is the sum of the individual particle kinetic energies

Ex = iK (3.8)

3.1.3 System Energy

The total energy of the system, Eg, is simply a summation of the individual particles’
kinetic and potential energies,

N N N
i i j#i

Systems whose dynamics are governed by potential functions and damping will evolve

towards lower energy states. Differentiating the potential energy functions results in

forces acting on the particles. These forces move the particles over time resulting in

an increase in kinetic energy. Assuming no external forces, eventually the system will

come to rest as the kinetic energy is dissipated by velocity based damping.

3.2 Dynamic Coupling

The equations of potential energy from the previous section provide a generalized
framework from which to work, yet for practical purposes they are problematic. To
compute all inter-particle forces, without any restricting assumptions on the potential
energies, requires N? force computations. For a system with thousands of particles,
this is clearly a problem. Since we are not concerned with the long range effects
between particles, as astrophysicists are when studying the evolution of a galaxy,
we instead choose to limit the inter-particle interactions so that only neighboring
particles interact. We define neighboring particles to be pairs of particles that are
closer than a specified neighborhood distance. Thus we can reduce force computations
to O(N log N) for neighbor finding and O(N) to compute the forces. In Chapter 7
we discuss in more detail the choice to limit particle interactions, how we compute
the nearest neighbors, and how we derive the complexity measures.

Letting ; be the set of particles that neighbor particle 7, we can rewrite the force
and energy equations as follows. Particle i’s inter-particle potential energy (3.4) is
rewritten as

N
¢ = Y bij (3.10)
JEN;
and the corresponding inter-particle force (3.5) is rewritten as
N
f; = Vi = — > Vi (3.11)
JEN;

The kinetic energy equations (3.7) and (3.8) are unchanged. The total potential
energy of the system (3.6) and the total system energy (3.9) can be rewritten in a
similar manner, though we omit them for brevity.
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Figure 3.1: Potential weighting function.

3.2.1 Weighting Function

Ignoring distant neighbors, as described above, is sufficient under certain circum-
stances, but one must be careful. If at the neighborhood boundary, a given particle’s
contribution to the inter-particle force calculations result in a large enough discon-
tinuity, then undesirable artifacts, such as instabilities in the numerical integration
and visual artifacts, may occur. We present a solution to this problem now, and
defer a detailed discussion to Chapter 7. Instead of ignoring particles outside of the
neighborhood range, a better solution is to insure the inter-particle potentials, and
hence forces, tend to zero at the neighborhood boundary.

We can enforce this condition by appropriately weighting the potential. To main-
tain the nature of the original potential, desirable properties of such a weighting
function are that it be: monotonically decreasing from unity to zero; continuous and
smooth; and continuous and smooth in the first and second derivatives. The smooth-
ness and continuity conditions are important for well behaved numerical integration.
To meet these conditions, we designed the following piecewise continuous function,

1 ifr<r,
w(r) =1 g(s) ifry <r <y, letting s = o (3.12)
0 if r > 7.

where 7 is the distance between two particles, and 0 < r, < 7.
We implement ¢ as a fifth degree interpolating polynomial

g(s) = —6s° + 155" — 10s® + 1.0.

over the interval [0,1]. We designed the polynomial such that the first and second
derivatives of g(s) are zero for s = 0 and s = 1. Figure 3.1 shows the graph of
w(r). We generally set r, to be the standard spacing between particles and 7, to be
equal to the neighborhood boundary range. In essence, the weighted potentials have
compact support. Using such a weighting function we insure that summing weighted
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potentials over all particles is equivalent to summing weighted potentials over nearest
neighbors, that is,

N N
> w(rig)(rig) = 3 wiri)e(ry)
J#i JEN;

where 7;; = ||r;;|| = ||x; — xi|| is the distance between particles ¢ and j.

Having redefined the potential with a weighting function, the corresponding force
is also redefined. The new force is given by evaluating the gradient with respect to
the position

N do(ri;) | dw(ry)
fi= Vi (0lr)o0r) = 5 (02472 4 0 ) oy
where £;; is the unit vector in the direction of r;;, that is
o r;;
r,, = .
T eyl

The derivation of (3.13) can be found in Appendix C.6.

3.3 Creating Deformable Volumes

Deformable solids inspired by finite element theory have been modeled using hexa-
hedral assemblies of point masses, springs, and damping elements (Terzopoulos and
Fleischer, 1988a). In such spring-mass models the springs are structural elements that
hold the object together. As two particles connected by a spring are separated, the
force exerted by the spring steadily increases, pulling the point masses back together.
To model a material that fractures, one can “break” a spring when it is stretched
beyond a threshold distance. In general, spring-mass systems are good for modeling
solids with fixed structure exhibiting small deformations and fracturing. It is not
an adequate representation for modeling materials exhibiting large geometric defor-
mations or changes in genus. Instead of a spring potential energy that encourages
particles to maintain a fixed structure, we would like a potential energy that allows
groups of particles to be separated and joined back together in new and different
configurations.

Our goal is to provide an alternative model that allows for large changes in geom-
etry, topology, and genus. To do so, we use a inter-particle potential that is elastic for
small deformations, yet allowing for the rearrangement of elements over large defor-
mations. To allow for rearrangement, without manually redefining the connections,
the function is defined over all particle pairs, instead of a fixed set of pairs as in
mass-spring systems.

3.3.1 Lennard-Jones Potential

The Lennard-Jones potential energy function fulfills these criteria (Heyes, 1998). It
creates long-range attractive forces and short range repulsive forces which encourage
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Figure 3.2: 12-6 Lennard-Jones function

The potential function for n = 12 and m = 6 is shown in black and the corresponding
force shown in gray. The collision distance ¢,, the equilibrium separation r,, and the
dissociation energy e, are all labeled on the graph.

particles to maintain equal spacing. It also allows particles to be rearranged relative
to one another, and yet does not require the manual specification of inter-particle
connections. The Lennard-Jones energy function is defined as a function of separation
distance r between a pair of particles

B_ 4

brs(r) = pry (3.14)

r

In Figure 3.2, we show a Lennard-Jones function with n = 12 and m = 6, as
typically used in the molecular dynamics literature. When two particles are in equi-
librium, the potential energy between them is minimal and marked in Figure 3.2 at
—e,. The magnitude of this energy is known as the dissociation energy and is the
energy required to completely separate two particles. The distance between two par-
ticles when in equilibrium is known as the equilibrium separation distance, r,. The
Lennard-Jones potential goes to zero at two points, at infinity and at a distance de-
fined as the collision distance, c,. These three quantities (e,, 7, ¢,) are labeled in the
figure.

An alternate formulation, called the Lennard-Jones bi-reciprocal function

—€o To " To m
r) = m|—] —n|— , 3.15
o(r) m—n ( ( r ) ( r ) ) (3:15)
provides a convenient method of tailoring the potential function to a specific equi-

librium separation and dissociation energy. This formulation is equivalent to (3.14)
with

A= _CMo B = &M (3.16)

m-—-n m-—-n
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In this form it is easy to see that the collision distance is a function of the equilibrium
separation r, and exponents n and m. For the case of n = 2m it is

Co = To(271/™). (3.17)

Instead of using the typical molecular dynamic values of n, m, and r, which
correlate to the forces felt at the molecular level, we choose values which more closely
mimic behavior found at the macroscopic level. At the macroscopic level a first order
approximation of deformation can be modeled using a spring potential

$(r) = k(r —r,)*

between point masses (Terzopoulos and Fleischer, 1988a). In Figure 3.3 we compare
the spring potential to the weighted and unweighted Lennard-Jones potential with
n =4 and m = 2. We define the constants r, and r, of the weighting function to be
equal to r, and 2r, respectively. Close to the equilibrium separation, the Lennard-
Jones function has a parabolic shaped potential energy well similar to that of the
spring potential energy function.

Similar to increasing the value k to increase stiffness in the spring model, we can
increase the dissociation energy to increase stiffness in the Lennard-Jones particle
model. Varying the exponents n and m varies the width of the potential well while
keeping the minimum potential energy constant. Lower values result in wider poten-
tials and more compressible materials, while higher values result in thinner potential
wells and less compressible materials. A wide potential well will also result in flexible
materials while a thin potential well will result in more rigid materials. Like large
exponents, large dissociation energies will result in large forces and thus more rigid
materials. The difference is incompressibility (the degree of volume preservation) and
how “brittle” the material is. For equivalent forces, brittle materials (high exponents,
low dissociation energy), require less energy to break the inter-particle bonds than
non-brittle materials (low exponents, high dissociation energy).

3.3.2 Damping

The second term of (3.1) is a velocity based damping force, —vy;x;. When ~; > 0,
this term accounts for a loss of kinetic energy, thereby allowing our energy minimiz-
ing system to eventually come to rest. It also provides a measure of inelasticity to
collisions which is more typical of how we expect a synthetic material to behave. A
viscous damping unit force function is given by

=B (% — %5), (3.18)

where (; is the damping coefficient and x; and x; are particle velocities. This velocity
based damping force differs from damping with respect to the world reference frame,
—7;X;, because it is independent of rigid body motion. Instead of decreasing the
momentum of a single particle, it transfers momentum between neighboring particles.
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Figure 3.3: Spring and Lennard-Jones compared.

Potential energies and corresponding forces shown. Spring labeled SP. Weighted
Lennard-Jones labeled WLJ. Lennard-Jones is labeled LJ. The spring parameters
are r, = 1 and k£ = 8. The Lennard-Jones parameters are m = 2,n = 4,e, = 1, and
ro = 1. The weighting function parameters are r, = r,, and r, = 2r,.
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Figure 3.4: Longitudinal deformation

3.3.3 Rheology

Rheology is the science of the deformation and flow of matter. According to rheology,
all materials can be modeled as falling between the two extremes of pure elastic
(solid metal) and pure viscous (fluid) behavior (Houwink and de Decker, 1971). No
real materials exhibit ideally elastic or ideally viscous behavior, though there are
materials which come close. Some examples of elastic behavior are the steel spring
and vulcanized rubber. Examples of viscous behavior include liquids such as water
at room temperature, syrups, and molten glass. A few examples of mixed elastic and
viscous behavior are wood, silk, PVC, and nylon.

Elasticity

A material that behaves according to ideal elastic behavior means that the material
deforms under force and returns to its original form after release of the force. The
resistance to deformation is described by the Young’s modulus of elasticity £

F = Ee (3.19)
where F is the normal stress (force) and e is the relative elongation

-1,
=

€

as shown in Figure 3.4.

The modulus of elasticity E is a physical constant only when the deformation
is proportional to the stress. A linear approximation of Young’s modulus can be
computed using the Taylor series expansion. We compute it for small deformations
near the equilibrium separation
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Ignoring higher order terms we have

dF(r,
F(r) = F(r,)+ ﬁ(r —Ty)
dr
— —eo/:;m (T — 7'0).
For this case, Young’s modulus is
g _ _tonm
/rO

and we have derived the equation for ideal linear elastic deformation, that is Hooke’s
law

F(r)=k(r—r,),
where k = E/r,.

Yield limit

Real materials have definite limits beyond which deformations are no longer elastic.
For example, solid steel or glass wires do not yield elastically beyond 1% of their
length. Nylon fibers can yield 20% of their length at room temperature. An unusual
example, vulcanized rubber can yield 500% of its length (Houwink and de Decker,
1971). The limit after which materials are no longer elastic is known as the yield limit.
After this limit other mechanisms take over, such as plasticity or flow behavior. Under
some conditions there is no mechanism that takes over, in which case the material
breaks. The pieces of such a broken object can be fitted back together to reconstruct
the original shape. The breaking of ceramic coffee mugs or everyday drinking glasses
are examples.

The tensile strength of a material is a measure of the maximum force value exhib-
ited by a material in response to a stress. In the case of the Lennard-Jones function,
the force increases as the particles separate until the maximum force at the separation
value » = r; is reached and then it decreases until force goes to zero at infinity or the
distance 73, in the case of a weighted potential. The maximum force is when

d?¢ry(r) —0
dr? ’

which is equivalent to the condition

° m+1

The magnitude of the tensile strength is the depth of the well in the force function
as shown in Figure 3.3 (b). Under forces greater than the tensile strength, the bond
will fracture.
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Figure 3.5: Hexagonal packing.

Plasticity

Plastic or visco-elastic behavior is the response of materials that combine both elastic
and viscous responses to stress and can be characterized by the additivity of the
stress. The Voight model (Jaeger, 1969) of plasticity states

de
F=Fe+n—
Tat
where F' is the force and 7 is a viscous term. Our model is similar to the Voight
model with the elastic portion represented by the Lennard-Jones force and the viscous
portion represented by the viscous damping unit equation (3.18).

For stresses less than the maximum force value, the particles will separate by less
than the yield separation value of r; — r,, and will return to the equilibrium separa-
tion when the force is removed. For stresses greater than the tensile strength value,
particle bonds may be broken and permanent deformations may occur as particles
are rearranged relative to one another.

3.4 Packings

Since the Lennard-Jones function is defined in terms of the Euclidean distance from
a particle, it is a spatially symmetric potential energy function. Given two particles
i and j the set of minimum energy states (positions) for particle j relative to i is
the locus of points of a sphere centered at the position of particle i. When external
forces are insignificant, particles arrange into closely packed structures to minimize
their total energy.

For spherically symmetrical potential energy functions in 2-D, such as the Lennard-
Jones potential, the particles arrange into hexagonal orderings as shown in Figure 3.5.
In 3-D the particles arrange into hexagonal ordered 2-D layers, making Lennard-Jones
good for modeling volumes of material.
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3.4.1 Density

The dense packing of particles lets us ask “How many particles will it take to fill a
given volume?” We have found this to be a common question. The answer is also
used in computing the efficiency of neighboring finding techniques given in Section 7.2.
We can approximate the answer by considering the related question “How many solid
equal size spheres will it take to fill a given volume?” The volume packing factor is
defined as the ratio of the unit-sphere to the unit-enclosure (Gasson, 1983). For a
given packing, this is equivalent to the ratio of the volume of a sphere to the associated
3D Voronoi region, where the Voronoi diagram is computed over the center points of
the spheres. A hexagonal close packing of spheres has a volume packing factor of P,

™
Py = —=~0.74 3.20
373 (3.20)

In comparison, a cubic packing of spheres, where each sphere is positioned at the
corner of a cubic lattice, has a packing factor of 7/6 ~ 0.52 which is significantly less
than the hexagonal packing factor. Given the packing factor, the expected number
of spheres n, in a volume V, is given by

where V; = %7‘(7’3 is the volume of a sphere with radius r. For hexagonal packing this
reduces to

Vv
42y

In accordance to the Lennard-Jones force, at equilibrium two particles will be sepa-
rated by the equilibrium separation r,. Thus we approximate the volume of a particle

n

Ve  15°
V==, 3.21
p Pv \/i ( )

as the volume of sphere, with a radius of one half the equilibrium separation, divided
by the hexagonal packing factor. When the neighborhood range includes only parti-
cles of a distance r, this accurately represents the effective particle volume. However
when the neighborhood range includes more distant particles, the particles will be
packed more closely. The amount of compression depends on the strength of the
attractive forces and any external pressure on the system.

3.5 External Forces

Our model of volumetric shape becomes more interesting when we put it in an en-
vironment with external forces and obstacles. In this section we describe two such
external forces.
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3.5.1 Gravity

We add the force of gravity, f = gm,, where g is a gravitational acceleration in a
given direction and m; is the mass of particle 4, to our simulated world so that we
can drop objects and pour fluids.

3.5.2 Collisions

We introduce obstacles into our environment and create collision forces so that parti-
cles will not penetrate these objects. A repulsive force is defined between each particle
and object surface similar to the repulsive force between particles. The repulsive force
is limited to a short range so that particles are only repelled when they are very close
to the surface. The force is based on inverse powers of the distance between the object
and particle. As a particle and object collide, the particle will slow down due to the
repulsive force and gain potential energy relative to the obstacle.

For an object k and particle ¢ separated by a distance dy;, we define the collision
potential energy function as

\_ ) a/di;+ Bdri +~ when dy; < d,
e (dii) = { 0 otherwise, (3.22)
and the resulting force as
e — B when dy; < d,
c dz = dnj—l 3.23
Je () { Ok otherwise. (3.23)

The distance d, is the distance from the obstacle surface at which the particle gains
potential energy relative to the obstacle. By constraining e. (d,) = 0 and f, (d,) = 0,
the potential energy and force functions are continuous for dy; > 0. For a constant
value of 7, the user need only specify the distance d, > 0 and the scaling factor o > 0,
and the remaining constants are uniquely determined. This works for all obstacles
given there is a function for computing the shortest distance between a point and the
surface.

3.6 Examples

3.6.1 Deformations

Figures 3.6 and 3.7 shows an object modeled using volume particles. The parameters
of the Lennard-Jones potential are varied to make one version of the model rigid and
the other flexible. In both figures the bonds between particles are strong enough so
that the objects behave as solids, maintaining their structure under the influence of
external forces, in this case gravity and collision forces. In this example we varied
the exponents of the Lennard-Jones potential, thus increasing the maximum binding
force, without increasing the dissociation energy. That is it “sharpens” the potential
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Figure 3.6: Flexible solid

Figure 3.7: Rigid solid
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Figure 3.8: Beam colliding

A solid beam falling, colliding with obstacles. The frames were taken from an ani-
mation at the following times: ¢t = 0,3,4,5,9,12,25,70,83. In the second frame the
beam collides with the sphere, and floor (not shown), causing it to bounce back into
the air (frames 3 and 4). Note the slight flexing of the beam. In frames 6 and 7 it rolls
forward, further displaying rigid body motion. In the last two frames the magnitude
of the dissociation energy is reduced (see Chapter 6) and the initial structure of the
object is lost.
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well without “deepening” it. This creates rigid materials, but also ones that are
“brittle”.

Another approach to creating rigid solids is to increase the magnitude of the
dissociation energy. This also increases the maximum binding force, but creates
materials that are more durable and less likely to break under sudden external forces.
The bouncing beam in Figure 3.8 is an example using this approach. In this example,
a solid beam falls colliding with obstacles, exhibiting rigid body motion with slight
deformation. After striking a sphere and the floor plane the beam bounces back into
the air. After the second collision with the sphere it rolls forward coming to rest on
the ground plane. In the last few frames the dissociation energy is reduced and the
solid looses its initial structure much like the varying structure found in fluids.

For Figures 3.6 and 3.7 the Lennard-Jones parameters are equilibrium separation
r, = 1.192, dissociation energy of e, = 200, and the exponents values (n = 4, m = 2)
and (n = 8,m = 6) for the flexible and rigid solids respectively. The remaining
parameters are as follows. The particles have mass m; = 1. The gravitational constant
is g = 1.5. The collision force constants are § = 25, d, = 1, and n = 4. The velocity
based damping constant is v = 1.5 and the viscous based damping constant is #; = 0.
Each solid is composed of 69 particles. The numerical integration was performed
according to the Euler method (Chapter 7) and rendered as iso-surfaces (Chapter 7).

We have begun our development of a flexible shape model which allows the user
to create objects of arbitrary topology. The goal of the model is to provide a simple
yet powerful method of modeling objects whose local shape and geometry change
rapidly over time. An important criterion, implicit in this goal, is the ability to make
large changes at the global level, such as changes in topology. It is also important for
the user to be able to control the physical characteristics of the model, such as the
relative amount of deformation due to a given force. We have described a particle
based model suitable for representing volumes and in the next chapter we extend this
model to surfaces.

The approach taken to satisfy these requirements is to represent the object as
a collection of primitive elements, whose relative positions dictate the shape and
geometry of the object. That is, different shapes and geometries will have different
arrangements of the volume elements. Similar to the use of pixels (picture elements)
to portray an unlimited range of two dimensional images, the use of simple elements
can be used to describe an unlimited number of shapes.

The model, based on dynamically coupled particle systems, describes changes
in geometry and the movement of element volumes, as a consequence of external
forces and internal potential energies. By varying the internal potential energies we
can model a variety of physical properties ranging from stiff to fluid like behavior.
Timing results can be found in Section 7.3.5.



