Chapter 2

Background

2.1 Surface Modeling

There exist a variety of techniques to solve the shape representation and manipulation
problem for specific sets of shapes. For example, piecewise spline patches have gained
wide spread acceptance in applications where controlling the degree of surface conti-
nuity is important. Constructive solid geometry is used in computer aided design and
manufacturing (CAD/CAM) to create solid volume descriptions of shape, where the
intrinsic properties of a solid object such as a continuous inside/outside boundary,
a closed surface, and volume constraints are important. Surfaces of revolution and
extruded two dimensional outlines create shapes with symmetry along a given dimen-
sion. Any faceted surface can be modeled using polygonal meshes, and subsequently
smoothed using subdivision methods. Implicit surfaces are easily defined as an iso-
value of a continuous scalar three dimensional field, and are easily manipulated when
the field is a function of a skeleton or set of control points. Free-form deformations
and parametric warping of space allow shapes to be deformed at global and local
levels. This section reviews the most common shape representations, and discusses
their advantages and limitations.

2.1.1 Polygonal Meshes

Polygonal meshes are perhaps the most widely used shape representation in com-
puter graphics. Geometrically this is the simplest shape representation technique
that allows the description of a wide variety of shapes and topologies. It is a natural
description for surfaces, and with appropriate, constraints a description for solid vol-
umes. Due to its simplicity it is included in virtually every modeling system, creating
a lowest common denominator for shape representation.

However, simplicity comes at a cost. Polygonal meshes are limited to accurately
describing surfaces composed of planar facets and thus are unable to accurately rep-
resent curved surfaces. Instead, curved surfaces are approximated by polygons which
linearly interpolate between points on the original surface. At a fine resolution, the
visual artifacts introduced by such approximations are negligible for rendering appli-
cations. At lower resolution, interpolating the vertex normals across the area of the
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polygon during the rendering phase results in the illusion of a smooth surface. For
other more demanding applications, the exact representation of curves are required
and the polyhedral model falls short.

One solution to generating smooth surfaces is to apply surface subdivision meth-
ods. Subdivision can be used to recursively approximate a polygonal mesh with finer
polygonal meshes, which in the limit results in a smooth surface (Catmull and Clark,
1978; Peters and Reif, 1997) except at a number of extraordinary points (Doo and
Sabin, 1978). As an alternative to approximating, one can use an interpolating sub-
division scheme which in the limit interpolates a smooth surface between the original
polyhedral vertices (Zorin, Schroder and Sweldens, 1996).

Still, to sculpt a shape, a designer must specify the location of each vertex, the
edges joining each vertex, and the series of edges and the order of edges belonging to
each polygon. In addition, some systems require that the outward facing polygons all
have the same “sign”, that is the sign of the plane normal defined by traversing edges
around the polygon, either clockwise or counterclockwise, must be the same. Even
with interactive tools to help specify the vertices and connections, this is a tedious
and time consuming process, especially for models containing thousands of polygons.

2.1.2 Parametric Representations

In a parametric representation, a shape is defined by a set of parameterized functions,
such as
z(u,v), y(u,v), 2z(u,v),

where u and v are parameters, and a surface point x = (z(u,v),y(u,v), z(u,v)) is
given by evaluating the parameterized functions. The parametric representation has
two distinct advantages. First, an arbitrary number of surface points are easily gener-
ated by sweeping the parameters v and v through their domain, thus facilitating the
rendering process. Second, different levels of curvature continuity can be controlled
by careful selection of the underlying parametric equations.

Shapes can be defined using either global parametric or piecewise parametric
patches. Quadrics and superquadrics (Barr, 1981) are examples of global parame-
terized primitives used to define complete surfaces such as spheres, ellipsoids, and
tori. For a wider range of parametric shapes, one usually applies a piecewise surface
construction approach.

Traditional spline techniques (Bartels, Beatty and Barsky, 1987; Farin, 1992)
model an object’s surface as a collection of piecewise-polynomial patches, with ap-
propriate continuity constraints between the patches to achieve the desired degree of
smoothness. Within a particular patch, a surface’s shape can be expressed using a
superposition of basis functions

s(uy, uy) ZVZ (w1, uz), (2.1)

where s(u1, us) are the 3D coordinates of the surface as a function of the underly-
ing parameters (uq,us), v; are the control vertices, and B;(uq,us) are the piecewise
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polynomial basis functions. The surface shape can then be created by interactively
positioning the control vertices or by directly manipulating points on an existing sur-
face (Bartels and Beatty, 1989). Areas of a surface can be locally refined using a
hierarchy of tensor-product B-splines (Forsey and Bartels, 1988).

2.1.3 Constructive Solid Geometry

Many applications, such as engineering and product design, require the representation
of solid volumes. In constructive solid geometry (CSG), a solid is represented as a
set-theoretic Boolean expression of primitive solid objects (Hoffman, 1989). Standard
primitives are parallelepipeds (blocks), triangular prisms, spheres, cylinders, cones,
and tori. Through a combination of simple primitives, complex shapes are easily
constructed. The advantage of the CSG representation is that valid volumes can
always be guaranteed.

To construct a shape, a user begins by instantiating a generic primitive by specify-
ing the parameters of the primitive, such as the length and width of a parallelepiped
or the radius of a sphere. Once instantiated, these primitives are combined using
rigid motions and regularized Boolean set operations. These operations are regu-
larized union, regularized intersection, and regularized difference. They differ from
the standard set-theoretic operations by operating on the interior of the two solids,
thereby eliminating lower dimensional geometric primitives which do not bound the
resulting volume. The volume resulting from a regularized Boolean operation can
then be combined with other volumes, until the final shape is realized.

2.1.4 Implicit Representation

In the implicit representation, a shape is defined as the locus of points that satisfy
an equation f(x) = 0, where x is a three dimensional point. For points inside of the
surface, f(x) > 0, and for points outside of the surface, f(x) < 0.

Implicit surfaces enjoy several benefits such as the ability to efficiently compute
inside/outside tests and the ability to easily build up complex shapes (Bloomenthal,
1989). For example, the standard set operations of union and intersection are easily
implemented. Surfaces can be defined directly from a function or constrained in term
of other geometric primitives. Skeletal surfaces can be defined in terms of distance
constraints from a geometric entity. For example, a sphere is defined as a fixed
distance from a point and a rounded cylinder is defined as a fixed distance from a line
segment. Alternatively an implicit surface can be constrained to be a fixed distance
from another surface, creating an offset implicit surface. The implicit formulation
also allows for the blending of surfaces at branch points, a difficult problem for piece-
wise parametric surfaces. Implicit surfaces are often defined by combining algebraic
functions based on control points, thus allowing surfaces to be easily deformed by
displacing the control points (Blinn, 1982; Wyvill, McPheeters and Wyvill, 1986a).

A considerable disadvantage of the implicit formulation is that, in general, surface
points cannot be directly computed as in the parametric representation. Algebraic
surfaces may be ray-traced or rendered using incremental scan line techniques, and
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though certain class of implicit surfaces can be ray-traced (Blinn, 1982; Tonnesen,
1989; Wyvill and Trotman, 1989), no similar incremental techniques exist for arbi-
trary implicit surfaces (Bloomenthal, 1989). As an alternative, the implicit surface
can be converted to a polygonal representation which can then be rendered with a
conventional polygon renderer (Bloomenthal, 1988; Bloomenthal, 1989; Velho, 1990;
Witkin and Heckbert, 1994). These techniques are discussed in more detail in Chap-
ter 5.

2.1.5 Geometric Deformations

Geometric deformations provide another method for modeling shape. Mapping from
one R? space domain to another R?® space provides a “warping of space” and the
geometry within that space, creating smooth deformations. By applying such a map-
ping Barr (1984) has shown the ability to bend, twist, and taper geometric objects.
The normal and tangent vectors of the deformed object, as well as the ratio of vol-
ume change, can be calculated from the Jacobian matrix of the point transformation
function. Deformations can also be realized by embedding a geometric object within
a lattice of trivariate polynomials (Sederberg and Parry, 1986; Coquillart, 1990). By
moving the control points of the lattice, one changes the R? to R? mapping and the
embedded geometry is deformed. With appropriate constraints, the deformations can
be defined both globally and locally, in a piecewise manner, and layered into a hier-
archy of deformations. For more intuitive control the user can directly move points
on the original surface to the desired deformed position (Hsu, Hughes and Kaufman,
1992), and then a least squares minimization is used to calculate the new lattice con-
trol point positions, thereby completing the mapping. While such mappings are very
powerful, they preserve the underlying structure and parametrization of the surface,
and thus do not allow the user to change topologies.

2.1.6 Variational Surfaces

By specifying “character lines”, one can outline the shape of a surface and use either
finite element (Celniker and Gossard, 1991) or variational techniques (Moreton and
Séquin, 1992; Welch and Witkin, 1992; Welch and Witkin, 1994) to fit smooth surfaces
between the character lines. The finite element approach provides physically realistic
surfaces by minimizing an energy functional that describes the resistance to stretching
and bending. Control of the final surface shape is achieved by first parameterizing the
shape, then applying loads and geometric constraints. Terzopoulos and Qin (1994;
1996) use finite element techniques to solve a physics based generalization of non-
uniform rational B-splines. Their model allows designers to sculpt shapes by applying
forces and shape constraints, in addition to the traditional method of adjusting control
points. The variational approach also uses geometric constraints and optimizes a
constrained surface functional to create smooth surfaces. By stitching curves together
the user can construct smooth shapes of arbitrary topology. Moreton and Séquin
(1992) perform a non-linear optimization to minimize a fairness functional of the
squared magnitude of the variation in principal curvatures. The result is a patchwork
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of Bézier patches which form a G' continuous surface. The variational surfaces of
Welch and Witkin (1992) differ from the finite element and physically based models
in that they “do not require the surface to respond in an intuitive or natural way
to direct control-point manipulation”. The variational surfaces of Welch and Witkin
(1994) minimize the squared magnitude of the principal curvatures and are similar
to implicit surfaces in that they allow the construction of arbitrary topology surfaces
and, in general, cannot be explicitly computed.

2.1.7 Discussion

Existing surface representation techniques allow users to specify any geometric shape
and any topology. However the specification of the shapes may be both time-consuming
and tedious. Polygon meshes can be used to represent any faceted shape, and linearly
approximate any curved surface. Piecewise parametric functions, such as spline sur-
face patches, can be used to represent any curved surface with tangent plane or higher
continuity conditions. Since polygons can be written as a parameterized equation,
both polygonal meshes and parameterized surfaces are easily rendered by incremen-
tally varying the parameters of the respective equations, thereby generating a stream
of surface points. Implicit surfaces also allow the generation of geometric shapes
of arbitrary topology, but do not possess a surface parametrization making it more
difficult to render. Solutions to rendering are found through ray-casting techniques
or by approximating with polygonal meshes or particles. However implicit surfaces
have other valuable properties such as the guarantee of a closed surface, the ability
to easily perform inside/outside tests, and the automatic blending of surfaces.

From a designer’s point of view, perhaps the most serious drawback is the difficulty
one has in creating and manipulating these complex shapes. The use of CSG allows
the designer to add and subtract shapes with the knowledge that the final shape
will always represent a closed solid volume. The use of free-form deformations allows
shapes of static topology to be deformed both locally and globally. Finite element
and variational techniques solve portions of the shape construction and manipulation
problem by allowing the user to outline the shape as a set of character lines which
the user then “skins” with a surface, which may then be locally deformed. These
techniques address the construction of a valid geometric shape, but do not address
the need to be able to manipulate the final shape at both the local and global level.
While in some applications the specification of a shape is all that is needed, other
applications such as animation require the ability to continually change the basic
shape and in some cases even the topology, with minimal user intervention. The
technique presented in this dissertation provides users a means to interactively shape
surfaces, modify the surfaces locally and globally, including topological changes, with
minimal user interaction.
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2.2 Surface Reconstruction

Many vision researchers have investigated the reconstruction of 21/, -D viewer-centered
surface representations (Terzopoulos, 1984; Boult and Kender, 1986). These represen-
tations are typically based on parametric spline models with internal strain energies.
Equally intense effort has gone into the development of 3-D object-centered surface
representations. These include generalized cylinders (Agin and Binford, 1973; Neva-
tia and Binford, 1977), superquadrics (Pentland, 1986; Solina and Bajcsy, 1990),
and triangular meshes (Boissonnat, 1984), as well as their physics-based generaliza-
tions, dynamic deformable cylinders (Terzopoulos, Witkin and Kass, 1988), spheres
(Miller et al., 1991; McInerney and Terzopoulos, 1993), superquadrics (Terzopoulos
and Metaxas, 1991), and meshes (Vasilescu and Terzopoulos, 1992). Physically based
models incorporate internal deformation energies and can be fitted through external
forces to visual data such as 2-D images or 3-D range points. The 21/5-D viewer cen-
tered and 3-D object centered representations both assume a given topology, usually
parameterized over a planar or spherical domain.

A common way to cope with unknown topological structure is to resort to a
“patchwork” surface representation (Sander and Zucker, 1990) which abandons a
global representation and describes the surface only locally in terms of planar, quadric,
or cubic patches. A drawback of such local surface representations compared to
globally parameterized geometric models is that they do not facilitate common surface
analysis tasks such as area, curvature, and enclosed volume computations. More
serious difficulties arise in the dynamic analysis of objects. Possible scenarios include
the incremental reconstruction of surfaces from sequential views around objects, or
the reconstruction, tracking, and motion estimation of dynamic non-rigid objects
such as a beating heart. A globally consistent surface model can provide powerful
constraints for solving these dynamic estimation problems.

Another approach to inferring topological structure is to construct a graph over
the sample points which reflects spatially adjacent points (Hoppe et al., 1992; Edels-
brunner and Miicke, 1994; Guo, Menon and Willette, 1997). If the data are not
sampled isotropically, that is with the same density in each dimension, then the
correct surface may not be realized (Hoppe et al., 1992). The alpha shapes of Edels-
brunner and Miicke (1994) encode the spatial proximity relationship of the point set
as a simplicial compler' overcoming the isotropic sampling restriction. In general,
the result is not a connected surface interpolating the sample points, but a collection
of points, lines, and surface patches with which the user is left to infer the shape.
In a post-processing phase, the exterior faces of an alpha shape can be converted
into a 2D-manifold surface (Guo, Menon and Willette, 1997), though due to the cho-
sen alpha parameter the exterior faces may not adequately represent the full set of
sample points, resulting in a loss of detail. To extract surfaces from medical images,
T-surfaces (McInerney and Terzopoulos, 1997) overcome the topology restriction by
continually recomputing a deformable surface based on an inside-outside classification

1A three-dimensional simplicial complex is a collection of k-simplices, 0 < k < 3: A 0-simplex is
a point, a 1-simplex is a line connecting two points, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron.



2.3. PHYSICALLY BASED MODELING 19

of a grid of voxels, analogous to the polygonization of implicit surfaces. A summary
of deformable models applied to medical image analysis can be found in (McInerney
and Terzopoulos, 1996).

Existing surface representations have limitations— viewer-centered methods make
no attempt to represent non-visible portions of object surfaces, while object-centered
methods make strong assumptions about object topology, and graph-theoretic meth-
ods make strong assumptions about the sampling density. This dissertation proposes
a new approach to surface modeling which overcomes these limitations. The ap-
proach leads to flexible reconstruction algorithms which are able to compute detailed
geometric descriptions that are not only inherently viewpoint invariant, but more
importantly, are sufficiently powerful to represent surfaces of arbitrary topology. The
algorithms can interpolate regular or scattered 3-D data acquired from an imaged
object, without any a priori knowledge of the object topology.

2.3 Physically Based Modeling

2.3.1 Deformable models

Physically based modeling provides the ability to generate animations of physical
phenomena through simulation. Starting with a parametric representation for the
surface s(uy, uy) and adding a physical level of abstraction, Terzopoulos et al. (1987)
create elastically deformable surfaces. To define the dynamics of the surface, they
use weighted combinations of different tensor (stretching and bending) measures to
define a deformation energy which controls the elastic restoring forces for the surface.
Additional forces to model gravity, external spring constraints, viscous drag, and
collisions with impenetrable objects can then be added. To simulate the movement
of a deformable surface, these analytic equations are discretized using either finite
element or finite difference methods. This results in a set of coupled differential
equations governing the temporal evolution of the set of control points. Physically-
based surface models can be thought of as adding temporal dynamics and elastic
forces to an otherwise inert geometric spline model.

Physically-based surface models have been used to model a wide variety of ma-
terials, including cloth (Breen, House and Getto, 1991; Terzopoulos and Fleischer,
1988b), membranes (Terzopoulos et al., 1987), and paper (Terzopoulos and Fleischer,
1988b). Viscoelasticity, plasticity, and fracture have been incorporated to widen the
range of modeled phenomena (Terzopoulos and Fleischer, 1988b). By adding muscles
and skin to an otherwise inert model, the movement of characters, such as worms
(Miller, 1988), fish (Tu and Terzopoulos, 1994), and human faces (Waters and Ter-
zopoulos, 1990; Lee, Terzopoulos and Waters, 1995), can be automatically generated.

The main drawback of both splines and deformable surface models is that the
rough shape of the object must be known or specified in advance (Terzopoulos, Witkin
and Kass, 1987). For spline models, this means discretizing the surface into a collec-
tion of patches with appropriate continuity conditions, which is generally a difficult
problem (Loop and DeRose, 1990). For deformable surface models, we can bypass
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the patch formation stage by specifying the location and interconnectivity of the
point masses in the finite element approximation. In either case, defining the model
topology in advance remains a tedious process. Furthermore, it severely limits the
flexibility of a given surface model.

2.3.2 Fluid Models

The complex nature of liquids is extremely fascinating and poses a number of prob-
lems for research in computer graphics. Liquids exhibit a wide range of phenomena,
such as conforming to the shape of containers, wave propagation, cresting and break-
ing as exhibited by ocean waves, splashing, sheeting, foam, and bubbles. Capturing
all of these in one model is difficult and hence a variety of techniques have been pro-
posed, each modeling a subset of the phenomena. Trigonometric functions have been
used to model ocean waves (Peachy, 1986; Fournier and Reeves, 1986). Individual
particles have been used to model the spray of water from boat wakes (Goss, 1990),
the spray of cresting waves (Peachy, 1986), splashes (O’Brien and Hodgins, 1995),
and waterfalls (Sims, 1989). Three approaches to modeling water as height fields
have been proposed: as a linearized approximation to the shallow water equation
(Kass and Miller, 1990), as columns of fluid where the volumes of fluid transferred
between columns is conserved (O’Brien and Hodgins, 1995; Mould and Yang, 1997),
and a solution of Navier-Stokes equations in two dimensions that is then mapped to
a 3D height field (Chen and Lobo, 1995). To model rapid changes in topology of vis-
cous liquids, coupled particle systems with attractive-repulsive forces have been used
(Miller and Pearce, 1989; Terzopoulos, Platt and Fleischer, 1989; Tonnesen, 1991;
Desbrun and Gascuel, 1995; Reynolds, 1997) as well as smoothed particle hydrody-
namics (Roy, 1995; Desbrun and Gascuel, 1996) (discussed in Section 2.4.1). The par-
ticle based models are discussed further in Section 2.4.2. Recent work has solved the
Navier-Stokes equations over a low resolution regular grid using a 3D finite-difference
approximation (Foster and Metaxas, 1996; Foster and Metaxas, 1997a; Foster and
Metaxas, 1997b).

2.4 Particle Systems

A particle system is a collection of point masses with associated forces whose move-
ment is governed by the laws of physics. To describe each particle, a set of attributes,
such as mass, position, velocity, and acceleration, are assigned to the particle. Poten-
tials are commonly used to generate forces acting on the particles, and the movement
of the particles is given by the laws of Newtonian physics,

mi | dt vill) = =g

where f;, v;, x;, and m; are the force acting on, the velocity, the position, and the
mass of particle 7. Given initial conditions, these systems can be simulated over
time by integrating the equations of motion. Depending on the forces applied, such
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systems can model a variety of complex and time dependent behavior. Rather than
modeling as an Eulerian dynamical system, where the system state is defined at fixed
grid samples, particle systems use a Lagrangian approach, where the samples of state
follow the movement of the system.

2.4.1 Particle Systems in the Physical Sciences

In the physical sciences, particle systems have been used by to model a variety of phe-
nomena including the evolution of galaxies, plasma, the properties of semiconductors,
magnetic fields, compressible gas flows, and the phase changes in matter (Hockney
and Eastwood, 1988; Heyes, 1998; Monaghan, 1992). Typically, each particle in the
system models a primitive element, such as a star or molecule, of the phenomena
under study. To predict the correct dynamic behavior, such simulations require the
computation of complex interactions with high numerical accuracy. This problem
is aggravated by the number of elements in the systems under consideration. For
example, on a microscopic scale, the number of molecules in an ounce of water is on
the order of 10%°. And on a cosmological scale, the number of stars in a galaxy? is on
the order of 10 to 10'? (Hockney and Eastwood, 1981).

Astrophysicists model the evolution of star systems based on the density of bodies
and gravitational fields (Hockney and Eastwood, 1988; Heggie, 1987). To maintain
accuracy, several approaches have been suggested. When modeling small clusters of
stars, on the order of a 1000, the system can be directly modeled as a particle system
with each particle representing a star, and forces computed directly. This requires
O(N?) operations for N particles. For coulombic interaction®, the computations can
be reduced to O(N) by using particle-mesh methods where short range forces are
computed directly between particles, and long range forces are computed over a mesh
(Greengard, 1988; Zhao, 1987). For larger systems, each particle models the mean
properties of density and gravitional fields for clusters of approximately 10° stars,
thus allowing a system of 10* particles to model a galaxy.

Molecular dynamicists have used particle systems to study solids, liquids, gases
and the phase changes between these states (Barton, 1974; Christy and Pytte, 1965;
Temperley, 1978; Trevena, 1975; Heyes, 1998). The concept of a pairwise inter-
molecular potential energy function has proven valuable in describing inter-molecular
interactions in a quantitative fashion. The short range repulsive forces can be modeled
by a potential energy function represented as an exponential expression ¢g(r) o< 7™,
where r is the distance between the two molecules. The long range attractive forces,
to a reasonable approximation, can be treated together as a single expression, and
modeled by the potential function ¢4(r) oc »~™. Higher body interactions (e.g. 3-
body interactions) can be computed for molecular systems, though the effects of
these interactions are usually incorporated into the model by modifying the values
of a pairwise potential (Heyes, 1998). In addition to modeling the phase transitions,
particle systems have also modeled the macroscopic properties of matter, such as

2The number of galaxies in the observable universe is estimated on the order of 10°.

3Coulombic potentials are inversely proportional to distance, that is r—'. Coulombic forces are

proportional to r~2.
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temperature, volume, and local geometry. Similar to modeling galaxies, modeling
large molecular systems with particles is computationally expensive. Simulations
which ignore distant particle forces have been used to reduce the computational cost,
although this approach has been found to contribute to sensitivities in the computed
phase diagram, especially close to critical points (Heyes, 1998). In modeling the phase
changes between states, physicists are in effect modeling changes in structure. It is
the ability to provide such fluid changes in structure that we wish to capture in our
approach to the volumetric modeling of deformable materials.

Smoothed particle hydrodynamics (SPH) is a Lagrangian method used to study
fluid flow in astrophysics (Monaghan, 1982; Monaghan, 1985; Monaghan, 1988; Mon-
aghan, 1992), in particular compressible fluids such as stellar gases. SPH is based on
the mathematical identity

A(r) = /A(s)é(T — s)ds

given here in one dimension, where ¢ is the Dirac delta function defined to be zero
for all non-zero values of (r — s). Any field A(r) can be approximated by replacing
the Dirac function with an interpolating kernel w(u, h) of compact support, such that
in the limit as the “smoothing length” h goes to zero, the kernel equals the delta
function. In three dimensions a discrete approximation of the continuous integral
is given by representing the volume as particles, and summing the kernel weighted
contributions from each particle. This formulation allows the density of the fluid at
any point in space to be approximated as a weighted sum of particle masses. Forces
on particles result from solving the gradients in pressure as functions of the density at
each particle. Over a set of uniformly ordered particles, the SPH method is equivalent
to finite-difference schemes, with the particular scheme dependent on the choice of
interpolating kernel. Error is minimal when the particles are equally spaced and
increases as the particles become disordered.

2.4.2 Particle Systems in Computer Graphics

In computer graphics, particle systems have been used to model visually complex
natural phenomena such as fire, foliage, and waterfalls; to model and reconstruct
both surfaces and volumes; and to emulate the physics of deformable, elastic, viscous,
and solid materials. To aid in the review of related work, we categorize particle
systems according to the interactions between particles. In systems of independent
particles, the forces on each particle are independent of other particles in the system.
Particle systems with fized connections interact with neighboring particles where the
set, of interactions is constant after the initial specification. In particle systems with
spatially coupled particle interactions, the interactions between particles evolve over
time due to their relative spatial state. This results in the ability to model both
varying geometry and topology as will be shown in the thesis.

Systems of independent particles have been used to model visually complex natural
phenomena such as fire, smoke, foliage, and the spray of splashing water (Reeves,
1983b; Reeves and Blau, 1985; Sims, 1990; Stam and Fiume, 1993; Stam and Fiume,
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1995; O’Brien and Hodgins, 1994; Goss, 1990; Sims, 1992). In these systems, forces
on each particle are independent of the other particles in the system. To create
complex behavior, these techniques use large numbers of particles reacting to forces
such as gravity, obstacles, wind fields, and turbulence. Particles are created and
deleted from the system using rules based on the phenomena being modeled. Most
of these approaches concentrate on creating a particular visual effect and make no
attempt to define either an object volume? or the corresponding surface.

The previously mentioned deformable models of (Terzopoulos and Fleischer, 1988b;
Haumann et al., 1991; Breen, House and Getto, 1991; Breen, House and Wozny, 1994)
and the surface reconstruction model of (Miller et al., 1991) can be categorized as
particle systems with fixed particle interactions. The forces felt by a particle are in
part due to the fixed inter-particle connections and in part due to external forces.
Shapes modeled by a system with fixed particle interactions can be deformed to
change the surface geometry, but are limited to the structure imposed by the original
connections.

In particle systems with spatially coupled particle interactions, the interactions
between particles evolve over time — connections are automatically broken and new
connections are automatically created. Replacing the fixed set of interactions with
interactions that dynamically evolve creates a flexible modeling paradigm in which
geometric and topological changes can occur as the underlying structure of the sys-
tem changes. We briefly mention work cited early to place them in context of particle
systems. The physically-based deformable volumes and fluids of (Miller and Pearce,
1989; Terzopoulos, Platt and Fleischer, 1989; Desbrun and Gascuel, 1995; Reynolds,
1997) are spatially coupled particle systems. The related volume models of Roy
(Roy, 1995) and Desbrun and Gascuel (Desbrun and Gascuel, 1996) have applied
Monaghan’s SPH model (Monaghan, Thompson and Hourigan, 1994) of nearly in-
compressible fluids. To approximate surfaces, spatially coupled particle systems have
been used to re-mesh polygonal models (Turk, 1992), to triangulate implicit sur-
faces (Witkin and Heckbert, 1994; Crossno and Angel, 1997) and variational surfaces
(Welch and Witkin, 1994). Spatially coupled particle systems have also been used to
distribute paint strokes for a painterly effect in rendering applications (Meier, 1996),
and to grow cellular based textures (Fleischer et al., 1995).

2.4.3 Discussion

Sculpting with particle systems does not fall cleanly into previous modeling paradigms.
It is neither a parametric representation, an implicit representation, nor a solid model-
ing primitive. However, we can construct such representations from our particle-based
model. For the oriented particle system, a natural continuous surface representation
is a triangulation interpolating the particle positions. From this, a subdivision sur-
face (Loop, 1987) or smooth piecewise parametric representation (Loop, 1994) can
be constructed. For the un-oriented particle system, an implicit surface is a natural

4An exception is (Stam and Fiume, 1993; Stam and Fiume, 1995) who use “blobs” to define a
volume.
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surface representation. As a sculpting metaphor, our work (Szeliski and Tonnesen,
1992) shares similarities to the recent work of (Welch and Witkin, 1994) and (Witkin
and Heckbert, 1994) in that both techniques relying on a triangulation of a particle
system to render the surface, though the origin of the surface is distinctly different. In
(Welch and Witkin, 1994), particles are used not to define the surface, but to quickly
approximate a variational surface. Instead of using a particle system as a basis for
continual changes in topology, as this dissertation does, they add “just enough struc-
ture to the particle system to unambiguously fix its topology”. Since their surfaces
cannot be explicitly computed, they approximate them via a triangulation, using a
particle system as a step in the triangulation process. In (Witkin and Heckbert, 1994)
they also present a coupling between particles and an smooth surface, but in this case
they use particles for both sampling and as control points of an implicit surface. The
sampling of the surface using repulsion forces is similar to (Welch and Witkin, 1994)
and (Turk, 1992). The computational expense of using particles as implicit surface
control points requires over O(N?3) time, where N is the number of control particles.
We also allow particles to act as control points, but we have designed our system to
execute in O(N log N) in the number of particles.

Lombardo and Puech (Lombardo and Puech, 1995) extended our oriented particles
to endow objects with memory of their original shape. In this case, particles prefer a
rest state matching originally specified curvature measures instead of a default zero
curvature measure as our method does. This allows them to create oriented particle
skeletons for modeling implicit surfaces with “shape memory”.

In surface reconstruction, it is the dynamic nature of our model that is important
to extracting the surface structure from a set of 3D data. By allowing our surfaces
to extend out from known surface samples we can extend the range of surface re-
construction. For example, this will allow us to overcome some problems associated
with the anisotropic sampling or random under-sampling in regions. In areas of high
sampling density, the samples will be sufficient to reconstruct the correct surface,
while the growth of new particles in low density sampled regions will approximate
the under-sampled area. As adjacent surface patches meet the particles, patches will
automatically join together, completing the interpolation. The energy based nature
of the particle system allows us to optimally fit surfaces to data based on minimizing
flatness and curvature functions. Our particles can be thought of as providing a finite
difference solution to a minimization problem, similar to deformable models. The
difference between this and an actual finite difference scheme is that our grid is not
fixed, but dynamic in nature.

The nature of our particle system has several advantages for animation. The
physical properties embedded in our model allow the animator to mimic a variety
of common real-world materials, reducing the amount of animator effort required to
create a sequence. Since the shape will be continually changing, we do not want to
impose unnecessary constraints on the animator. We would also like to point out that
animating a shape is closely related to sculpting a shape. In fact, animation could
be considered a continuous sculpting exercise, with each new image representing a
complete sculpture. We feel the flexibility our model provides for sculpting will be
directly applicable to animation.
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We apply particle systems to model volumes as do (Miller and Pearce, 1989;
Terzopoulos, Platt and Fleischer, 1989), extending their attractive-repulsive inter-
particle force model, based on the Lennard-Jones function, to create a thermoelastic
model in which the stiffness varies as a function of thermal energy. This provides a
mechanism by which the model can mimic the “melting” and “freezing” of objects.
Two recent papers suggest alternative attractive-repulsive forces. Lombardo and
Puech suggest a “cohesion” force which has a similar shape to the Lennard-Jones
force that we use, and assert this force reduces oscillations, allowing the system to
reach a rest state sooner. Reynolds (Reynolds, 1997) suggests using Boscovich’s law of
force which has multiple minimal energy states, which he states is better for modeling
inelastic deformations.

The recent work of Roy (1995) and Desbrun and Gascuel (1996) model fluids us-
ing the smoothed particle hydrodynamics model (Section 2.4.1). In the SPH model,
forces between particle pairs are a result of gradients in pressure over the volume.
As particles approach, the density and hence pressure increase, resulting in repul-
sive forces. As particles separate, the density and pressure becomes lower than the
surrounding areas, resulting in attractive forces which equalize pressure. In particu-
lar, one must be careful that particles do not become too close with respect to the
smoothing length; otherwise the particles tend to “clump” together in an unrealistic
fashion. This is an artifact of the gradient of the kernel and is discouraged by

e adding a velocity-based damping term (Monaghan, Thompson and Hourigan,
1994) which is analogous to the ideal viscous unit (3.18) that this thesis employs
for modeling visco-elastic materials,

e lowering the smoothing length (Roy, 1995),

e or defining a cusp-shaped smoothing kernel (Desbrun and Gascuel, 1996) such
that the magnitude of the derivative increases rather than decreases when ap-
proaching an inter-particle separation distance of zero.

A cusp-shaped kernel results in a force curve that is similar in shape to the Lennard-
Jones force curve (Desbrun and Gascuel, 1996)[Figure 3]. It differs in that the curve
converges to a constant slope for small separations, like an ideal spring does, rather
than to infinity as the Lennard-Jones model does. Thus the fluids SPH models are
more compressible than fluids modeled using the Lennard-Jones function.

All of the spatially coupled particle volume models share features in common:

e Each particle represents a small volume element.

e The equations defined over pairs of particles result in attractive and repulsive
forces in the direction of the vector separating neighboring particles.

e They can model elastic and visco-elastic materials.

e They are inadequate at accurately modeling incompressible materials, such as
liquids, but they can model nearly incompressible fluids.
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e Stiffer, less compressible materials require smaller time steps than more com-
pressible materials.

In summary, our model is based on previous particle systems work in computer
graphics and inspired by the physical sciences. The particles interact according to
pairwise potential energy functions. These potential energies, inspired by physics and
differential geometry, share similarities to the energy functions used for deformable
models and variational surfaces. The self-organizing nature of our system is distinctly
different than the traditional modeling techniques where one manually specifies the
connectivity of surface patches, as is done in spline, polygonal, and variational based
surface modeling. It allows for the ability to join and separate objects as do im-
plicit surface modeling and CSG methods. While our model is a point based sam-
pling description rather than a continuous description, we can generate full surface
descriptions. The surfaces generated are implicit surfaces for volumetric samplings
and triangulated polygonal models for surface samplings. The polygonal models can
then be converted to smooth surfaces using either surface subdivision techniques or
triangular based splines. Our model, like deformable models, allows us to create an-
imations of visco-elastic materials, e.g. cloth. In addition our synthetic materials
can be stretched, ripped, and joined back together automatically. Our model shares
similarities to previous particle based volume models and recent fluid based particle
models. We can also construct viewpoint invariant 3D surfaces that interpolate sparse
point data and fit optimal surfaces to 3D volumetric data. Unlike object centered
methods, the surfaces can be of arbitrary topology and genus without requiring prior
assumptions of the surface structure.



