Appendix A

Differential Geometry

Differential geometry is the mathematical study of intrinsic shape (Kreyszig, 1959;
Lord and Wilson, 1984; Koenderink, 1990; Farin, 1992; Gray, 1993). In this appendix
we introduce the differential geometry of three dimensional space curves and surfaces
embedded in three dimensions.

A.1 The Geometry of Curves

A three dimensional space curve can be thought of as the locus of a point moving
through space. The movement can be expressed as a function of a single parameter,
such as x(t) = (z(t),y(t), 2(t)) where ¢ is a real number, and z(t), y(t), and z(t) are
single valued functions. Instead of focusing on the parametrization of the curve we
will discuss the shape of the curve, that is the geometric properties of the curve, in
terms of the distance traveled along the curve.

A.1.1 Arc Length

The distance traveled in moving along a curve, from say t = a to ¢ =b, is given by

(Kreyszig, 1959)
1
b b fdx dx?
i / a (dt dt)

which can be written symbolically as

dx
dt

ds® = dx - dx. (A.1)

ds is called the arc element and s is the arc length. Note that arc length is independent
of the choice of parametric representation. Thus geometric measures based on the
arc length are invariant to parametrization.
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Figure A.1: The Frenet frame.

A.1.2 The Frenet Frame

The first derivative of a curve with respect to arc length defines the unit vector that
is tangent to the curve at the point under consideration

% = t,

where over-struck dot denotes a derivative with respect to s. We call this the unit
tangent vector. The second derivative with respect to arc length

X = Km

yields a vector with magnitude k. The unit vector m is called the principal normal and
k the curvature. The tangent and principal normal vectors are orthogonal. Taking
the vector product of the tangent and the principal normal yields the unit bi-normal
vector

b=txm

resulting in a frame at point x, as shown in Figure A.1. This frame, called the Frenet
frame, describes the local properties of the curve. The first derivative of the bi-normal
with respect to arc length

b=—rm

yields a vector in the direction of the principal normal with magnitude of 7. The
scalar 7 is the torsion. The curvature, and torsion describe the rotation of the Frenet
frame as it moves along the curve in direction s.

A.1.3 The Osculating Circle

The plane spanning the tangent and principal normal vectors is the osculating plane.
In this plane, there exists a unique circle that is tangent to the curve and with second
order continuity matching the curve at x(s). The circle is named the osculating circle
and its radius the radius of curvature. The fact that it is second order continuous
means that the rate of change of the circle’s and the curve’s tangent vectors, match.
This measure of change is the curvature x and is equal to the inverse of the radius p
of the circle, that is p = 1/k. Thus, for straight lines, the curvature is zero and the
radius of curvature is infinite. The osculating circle is shown in Figure A.2.
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where
C=X-+pm

Figure A.2: The osculating circle

As the frame moves along the curve the frame changes position and orientation.
One can think of the curvature as the angular velocity (Farin, 1992) of the rotation
of the tangent vector, per arc length. The rotation is in the osculating plane, in the
direction of the normal vector. The torsion 7 is the angular velocity of the bi-normal
vector, which twists about the tangent.

A.1.4 The Frenet-Serret formulas

The Frenet-Serret formulas (Kreyszig, 1959; Koenderink, 1990; Farin, 1992) describe
the changes in the Frenet frame in terms of the frame itself,

t 0 k 0 t
I:Il =| -k 0 T m |. (A.2)
b 0 -7 0 b

A.2 The Geometry of Surfaces in 3D

A surface may be described by a regular parametrization of position

where the coordinates z, y, and z are differentiable functions of the two real variables
u and v. To allow a succinct mathematical description of the geometrical properties
of the surface, we adopt the notation where subscripts denote partial derivatives with
respect to the parameters v and v. For the first partial derivatives we use the notation

Lo
T Ou YT o’

Xy
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For the second partial derivatives we use the notation

0°x 0°x _Oxox 0% 0°x

= o Xov = o2 Huw = Oudv  Oudv  Ovdu Xou-

XUU

A.2.1 The Arc Element

Given two points on the surface x(u,v). The vector dx connecting the two points is
given by

dx = x,du + X,dv.
The distance on the surface (Lord and Wilson, 1984) between two such points is
ds® = dx - dx = Edu® + 2Fdudv + Gdv?, (A.3)
where
E = (x,)* F=x,-%, G = (x,)"

This is a direct result of equation (A.1). The arc element, ds, is a geometric invariant
of the surface and thus does not depend on the chosen parametrization, similar to
the 3D curve analysis. Equation A.3 for the squared arc element is called the first
fundamental form of the surface in classical differential geometry.

A.2.2 Tangents and Normal

The vectors tangent to the surface in the directions of the parametrization v and v
are given by the partial derivatives x, and x, respectively. The vector

X, X Xy

is orthogonal to the tangent vectors and thus normal to the surface. The magnitude
of the normal vector (Kreyszig, 1959) is

[Ixu X X,|| = (Xu)Q(Xv)2 — (X4 'Xv)2 = EG — F2a

so the unit normal is given by

Xy X X,
(EG — F?)3

Figure A.3 shows a local portion of a parametric surface. The dashed lines indicate
curves on the surface of constant u and v value. The tangential vectors x, and x,
are the rate of change of the surface along the lines of constant v and u respectively,
and the vector n is normal to the surface.
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Figure A.3: Surface x(u,v) with partial derivatives and normal.

A.2.3 The Second Fundamental Form

The first fundamental form (A.3) determines the intrinsic geometrical properties of
the surface and is independent of the embedding space. To specify the embedding in
Euclidean 3-space requires additional information. That information is the way the
normal to the surface varies from surface point to surface point. The difference in
unit normal at two infinitesimally close points is

dn = n,du + n,dv.

The second fundamental form (Kreyszig, 1959; Farin, 1992) is

—dn - dx = Ldu® + 2Mdudv + Ndv?, (A.4)
where

L = —n, -xX,=4Nn Xy, =N-Xyy (A.5)

M = —n, -X,=-N, X, =1-Xy,, (A.6)

N = —n, -X,=+N Xy, =N - Xy (A.7)

The equality found in M comes from differentiating the identities n - x, = 0 and
n - x, = 0 with respect to v and v. The first and second fundamental forms together
determines the shape of the surface uniquely; however they do not specify global
position and orientation.

A.2.4 Normal Curvature

The first and second fundamental forms determine the shape of the surface local to
each point on the surface. Consider a 3D space curve on the surface passing through
the surface point x. The relation

—dn - dx

=— A.
K cosf 75 (A.8)



154 APPENDIX A. DIFFERENTIAL GEOMETRY

Figure A.4: Curve on sphere where m # n.

relates the curvature k of the curve to the angle # between the curve normal m to the
surface normal n. While at first one might expect the normals to match identically one
can easily see that this is not necessarily the case, as shown in Figure A.4. Consider a
circle as a space curve. The normal m of the curve is always pointing inward toward
the center of the circle. For a curve that is a circle, the osculating circle of the curve
is identically the curve. Now consider a sphere where the surface normal n is always
pointing inward to the sphere’s center. For circles lying on the sphere, only circles
that are great circles of the sphere have normals that match the normals of the sphere.
The angle between the curve normal and the surface normal is described by (A.8).
By Meusnier’s theorem (Farin, 1992), the osculating circles of all surface curves
passing through a point x and having the same tangent t form a sphere. This sphere
and the surface share a common tangent plane at x, and the sphere has a unique center
of curvature, its center. Thus to describe the shape of the surface it is sufficient to
study a subset of these curves; namely the curves at x for which m = n. There exists
one such curve for each tangent vector t. When the osculating plane of a surface
curve passing through point x is perpendicular to the surface tangent plane, then
f = 0 and m = n. Such curves are called normal sections and can be thought of as
the intersection of the surface with a plane normal to the surface and which contains
the desired tangent vector t, as shown in Figure A.5. The curvature of a normal
section at a point x is the normal curvature k, and is given by (A.8) with § =0

_ —dn-dx  Ldu®+ 2Mdudv 4+ Ndv®
T ds? Edu?+2Fdudv+ Gdv?®

Kn

A.2.5 More Curvature Measures

In differential geometry curvature is measured in a variety of ways. For completeness
we will quickly review some of the more common measures.
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Figure A.5: The normal section.

The extreme values of normal curvature, x; and ko, at a given point are called
the principal curvatures. The unit tangent vectors, e; and ey, for which the extreme
values occur are called the principal vectors. The corresponding directions are called
the principal directions. When the principal curvatures are non equal the principal
vectors are unique and perpendicular. A principal frame (Koenderink, 1990) is defined
as a frame with major axes matching the surface normal n and the principal vectors
e; and es.

The arithmetic mean of the principal curvatures, H = %(/{1 +Ky), is called the mean
curvature. The Gaussian curvature is the product of the extreme curvatures, K =
K1Ko. The measures K and |H| are invariant with respect to coordinate transform
(Kreyszig, 1959).
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Appendix B

Newtonian Dynamics

This appendix reviews the basic theory of Newtonian dynamics and the mathematics
necessary for both un-oriented and oriented particle systems. For completeness we
occasionally repeat material presented earlier in the dissertation.

A standard particle is described by its position x and mass m. An oriented
particle is described as a standard particle enhanced with an orientation R and an
inertia tensor I.

B.1 Rotation

Each oriented particle defines both a normal vector n; = z and a local tangent plane
defined by the local z and y vectors. More formally, we write the state of each particle
as (x;, R;), where x; is the particle’s position and R; is a 3 x 3 rotation matrix which
defines the orientation of its local coordinate frame (relative to the global frame
(X,Y,Z)). The third column of R; is the local normal vector n;.

While we use the rotation matrix R to convert from local coordinates to global
coordinates and vice versa, we use a unit quaternion q as the state to be updated.
The unit quaternion

= mnsin(6/2)
= cos(6/2)
represents a rotation of # about the unit normal axis n. To update this quaternion,

we simply form a new unit quaternion from the current angular velocity w and the
time step At, and use quaternion multiplication (Shoemake, 1985).

q = (w,s) with

B.2 Inertia Tensor

The inertia tensor I relates the angular momentum vector to the angular velocity
vector by a linear transformation. In general I is represented as a 3x3 matrix,

I=| I, I, I,
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The inertia tensor is symmetric; that is, I;; = I;;. The diagonal elements, I,;, I,
and [,,, are called the moments of inertia of the object. The off-diagonal elements
are known as the products of inertia.

The inertia tensor is defined with respect to an inertial frame; a set of coordinate
axes and an origin about which the object rotates. For any choice of origin, for any
body, there always exists a set of coordinate axes which diagonalizes the inertia tensor

(Marion, 1970). Thus we can write the inertia tensor as

Ly 0 0
I=| 0 I, 0 |,
0 0 I,

where the associated moments I,,, I, and I,, are the principal moments of inertia.
These axes are the principal azes of inertia.

For oriented particles we are interested in the property of angular momentum, but
are not interested in mimicking the inertia of a particular rigid body. Thus we choose
the simple inertia tensor of the form

100
I=c|0 10|, (B.1)
00 1

where ¢ is some scalar constant. We define our inertia tensor about the particle’s
local origin with respect to the world coordinate axes. Our choice of inertia tensor is
equivalent to a spherical object with its centroid at the particle origin. This choice
results in a tensor that is constant over change in particle position and orientation.
Using principal axes, as we do, allows us to represent the inertia tensor by a triplet
(like a vector) encoding the principal moments of inertia. Our choice simplifies the
equations of motion as well as the computation of angular momentum and rotational
kinetic energy.

B.3 Velocity

Since we are interested in animating a particle system, we must consider how the
position and orientation of the particles change over time. Thus, we write the position
and orientation as functions of time: x(¢) and R(¢).

The linear velocity is defined as the rate of change of the particle position over
time. At time ¢ the velocity of the particle is

The instantaneous angular velocity is defined as the rate of change of the orien-

tation over time dR( )
t

t) = —=.
w(t) ”
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The vector properties of addition and scalar multiplication hold for instantaneous
angular velocities (Hoffmann, 1966). For example, given two instantaneous angular
velocities w; and wy, the following holds

Wi+ Wy =ws + wi.

Thus, we can manipulate instantaneous angular velocities as vectors.

We could have derived angular velocity by differentiating the rotation matrix
or quaternion but it is simpler to describe it in terms of the rotation R(t) as shown
above. For matrix and quaternion derivations see Baraff (1991). Since we use angular
velocity to approximate a rotation over a given time interval, the derivation shown
above is ideal for our purposes.

After computing a change in rotation as a vector quantity we then convert it to a
quaternion. To update a particle’s orientation as a quaternion, we simply form a new
unit quaternion @ from the current angular velocity w and the time step At, and use
quaternion multiplication. Details on quaternions can be found in (Shoemake, 1989;
Shoemake, 1991).

B.4 Momentum

The linear momentum p of a particle with mass m and velocity v is
p(t) = mv(t).
The angular momentum of a particle with inertia I and angular velocity w is
L =1Iw.

The inertia tensor I relates the angular momentum vector to the angular velocity
vector by a linear transformation. The angular momentum simplifies to

Iwy
L=| lw,

Izwz

when the inertial coordinate frame is aligned with the principal moments. Since
we are using the inertia tensor for a spherical object (B.1) the angular momentum
simplifies to

L=cw

for all time values.

B.5 Force and Torque

The force on a particle is the change in momentum which is commonly written in
terms of mass and acceleration:

_ dp(?) _ dmv(t) _ mdv(t) —

£®) dt dt dt
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The torque 7 on a particle is the rate of change in angular momentum and can be
written in terms of inertia and angular acceleration:

= dL() = dlw(?) = gw(t) + Idw—(t) =w x Iw +Ib(?).

T(t)=—g . dt dt

For our system, the inertia tensor (B.1) is constant over time and thus the torque

reduces to
7(t) = Ib(t)

for all values of time ¢.

B.6 Potential Energy

We can derive both forces and torques from potential energy functions. This has the
advantage of allowing the design of energy functions which exhibit minimal energies
at desired particle configurations, and guarantees that the system will not diverge. A
force results from the gradient of the potential energy ¢ with respect to a particle’s
position x;,

fi = _vxid)a

and a torque results from the gradient of the potential energy with respect to the

particle’s orientation 6;,
T = —Vglqﬁ

As the energy of the system minimizes, the particles migrate to minimal energy
configurations.



Appendix C

Gradients of Potential

This appendix presents mathematical background and identities necessary to derive
the force and torque vectors from weighted scalar potential fields. The translational
force acting on a particle results from the loss in potential energy due to a change
in particle position. Likewise, an angular force, or torque, results from the loss in
potential energy due to a change in particle orientation. In three dimensions these
are written as the negative gradient of the potential energy function with respect to
the particle position and orientation, as follows:

fz' = _vxi¢a (Cl)
T, = —V0i¢, (02)

where 0; is the infinitesimal change in orientation of particle i.

The six sections discuss fundamental concepts and derive basic identities which
can be used to quickly derive the appropriate forces and torques from scalar potentials.
Section one presents the multiplication and chain rules of differential calculus applied
to the gradient operator. Section two derives the relationship between an infinitesi-
mal rotation and change of the parameters of the potential functions. Section three
presents differential identities for the gradient of the Euclidean norm with respect to
particle separation and differences in normal vectors. Section four presents differen-
tial identities for the gradient of scalar products with respect to combinations of the
particle normal and particle separation vectors. Section fives derives the gradient of
the weighting function with respect to particle position and orientation. Section six
presents identities for deriving the force and torque due to a scalar potential energy
function.

C.1 Gradient of Scalar Functions

The derivation of force and torque are based on the application of the multiplication
rule and chain rule of differential calculus. If f and g are scalar functions then by the
multiplication rule

V(fg) = fVg+gV. (C.3)

161
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When f is a function of a scalar variable a then by the chain rule,

Vf(a) = %VCL. (C.4)

C.2 Gradient with Respect to Orientation

In this section we derive the gradient with respect to change in infinitesimal orienta-
tion of a scalar function, that is Vg f.

Unlike general rotations, infinitesimal rotations behave as vectors. In particular
they follow the parallelogram law (addition law) of vectors. Given an infinitesimal
rotation about an axis, we can represent the rotation by a vector @, where the mag-
nitude of the vector represents the angle of rotation, and the direction of the vector
0 points in the direction of the axis of rotation.

C.2.1 The Change in Normal

To understand the relationship between a change in orientation and the corresponding
particle normal consider the following. A particle with fixed position and with a
vector n attached, is rotating about its center. As the particle rotates, the vector n
traces a circle about the axis of rotation. The infinitesimal variation in the vector’s
components may be written, to a first approximation, as the following vector product
(Goldstein, 1950)

dn =n x db, (C.5)

where d@ is an infinitesimal rotation.
We now introduce matrix-vector notation which allows one to write a vector prod-
uct as a matrix times a vector. Given two vectors a and b

axb=A"D

where A* is given by
0 —asg ag
as 0 —aj

—a9 ai 0

Note that b x a equals (A*)"b, but does not equal bA*.
Rewriting (C.5) in matrix-vector notation we have

0 —Il3 11 D)
dn=nxdf = ns 0 -1 df = N*d#.
—Ilo n; 0

Thus the change in vector n due to the infinitesimal rotation df is

dn
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C.2.2 Gradient of a Scalar Function

Now let us say we have a scalar function f(n). By the chain rule we can differentiate
f with respect to the infinitesimal rotation d@:

df (df) (dn

0= (an) (30) ©7)
In order to replace the second term on the right hand side N*, we apply the commu-
tative law of multiplication so that

df dn) /df

=) (2. C.8

w= (@) (&) o)
We can do this because the multiplication between the various components of the two
terms follow scalar product rules. We replace the first term of the product with (C.6)

(4
N (d_n)

By matrix-vector notation this is equivalent to the cross-product

df
o (2).

When computing the differential of a scalar function with respect to a vector, the
differential due to each component of the vector is computed separately. In three
dimensions, this can be written as the gradient of the function with respect to the
differentiating vector, such as, af

d_n:an

Thus we can write the change of a scalar potential function f due to rotation of a
particle as

Vof =nx (Vaf), (C.9)

where n is the particle normal. This is a valuable identity that we can use in the
derivation of torque due to an inter-particle potential function.

C.2.3 Directional Derivatives

The concise notation in the above derivation has hidden many of the details and may
be confusing to follow. We now show how we go from (C.7) to (C.8). The directional
derivative (Hay, 1953) of a function f(n) at x in the direction b is

of  Of On, N af on, N af on,

ds  On, Os on, Os on, 0s

where 0f /0s is the rate of change of f in the direction b.
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We now differentiate the scalar function f with respect to an infinitesimal rotation
6 = [Gwa Hwa Ow]T

- o
99
df of
a0 Vof_ 80,
of
L 90,

Each element of the vector represents a directional derivative. The derivatives are
with respect to a change in orientation about the three major axes. Expanding the
elements of the vector we have

r Of Ong _*_ﬂany of dn, T
Ong 00y ony 00z on, 00y

Of ong 4 Of Ony | Of dn.
dn, 06, ' on, 06, ' 0n, 06,

of Ong + Of Ony of on.
L Ong 06, ony 08, on, 06,

Each of the partial derivatives evaluates to a scalar value, thus the order of the product
can be interchanged. For example

af on,  On, Of
on, 00, 00, Ong’

Thus we can write the above vector as the product of a matrix and vector

[ Ong Ony 9n, 1 [ O8f 17
0, 00, 0b, Ong
Ong a_ng on; ﬁ
00, 060, 00y Ony
onz 9ny On, af

L 96, 20, 86, 1 L on,

The matrix is equivalent to dn/df, and the vector is equivalent to df /dn, which is
the gradient of f with respect to n. Thus

Vof(n) = (3—2) (%) — N*(Vaf) = 0 X Vaf.

C.3 Gradient of the Euclidean Norm

The Euclidean norm of a vector is defined as a measure of the magnitude of the
vector, and for any vector a is defined as

1 1
lall = (a-a)? = (a; +a, +a3)7.

A wunit vector is a vector with Euclidean norm of one. For any vector a, the unit

vector & is given by
. a
a=—.
all
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Differential Identities of Euclidean Norm

The gradient of the Euclidean norm of a vector, with respect to the vector of the
norm, is the corresponding unit vector,

Vala| = a. (C.10)

The proof, which is omitted, involves substituting s for (a2 + a2 + a?), applying the
chain rule, and then solving the partial differential of s with respect to each of a,,
a,, and a,.

Suppose the vector a is a vector separating any two points b and ¢. What then
is the gradient of the Euclidean norm of a, as the end points b and c are varied
respectively? If we define a = ¢ — b, then the gradient of ||al|, while varying c’s
position and keeping b constant, is

V.|la|| = a. (C.11)
And the gradient while keeping c constant and varying b’s position is
Vulla|| = —a. (C.12)

The proofs are similar to the proof of (C.10) except that as each partial derivative is
evaluated, then the chain rule is applied a second time. Again, proofs are omitted.

Gradient of Particle Separation Distance

The potential energy functions we use are defined in part as a function of particle
separation, so we now derive equations describing the gradient of the separation
distance with respect to change in position and to change in orientation. Let us
assume we have two particles x; and x;, and a separation distance vector defined as
ri; = X; — X;. Applying the general identities (C.11) and (C.12), we arrive at the
following equations for the gradient with respect to the change in positions of x; and
Xj,

Vi llrill = -1y, (C.13)

Vilrgll = 2. (C.14)

In deriving the torque equations we will need to evaluate the gradient with respect
to the particle normal vectors n; and n;. Since r;; is not a function of either normal
vector, we have,

Vallrill =0, (C.15)
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Gradient of the Difference of Normal Vectors

For the case of the co-normality potential we consider the gradient of the difference
between two normal vectors n; and n;. Applying the identities (C.11) and (C.12)
results in the following equations,

[ni — n,]
Vi lni —nyf| = ———= (C.17)

ni—nj

_lImi =yl

Vi lIms = | = (C.18)

n;, — Ilj
And since the Euclidean norm is constant as the particle positions change,

Ve lmi—n;| = 0, (C.19)
Vy|n; —n;| = 0. (C.20)

C.4 Variations of Scalar Products

The scalar product of any two vectors a and b is defined to be

a-b=a,b, +a,b,+a,b,.

Differential Identities of Scalar Products

For any two vectors a and b, the gradient of their scalar product is
Va(a-b)=b (C.21)

with respect to varying a. Given any three independent vectors a, b, and c, by the
distributive property of the scalar product and (C.21), we have

Ve(a-(b—rc)) = a, (C.22)
Ve(a-(b—c)) = —a (C.23)

Variations of the Scalar Product of the Normal and Separation Vectors

The co-planarity potential and the co-circularity potential functions are functions of
the scalar product of normal vectors and particle separation, that is V(n; - r;;). To
derive the gradient with respect to a particle position we apply identities (C.22) and
(C.23). The relevant equations are:

Vi, (n; - 155) n,, (C.24)
Vi (n;-1i5) = —ny, (C.25)
Vy;(ng-ry5) = n, (C.26)
Vy;(nj-ry) = ny. (C.27)
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To derive the gradient of the product with respect to a given particle normal, we
apply identity (C.21). The relevant equations are:

Vo, (m; - 155) = 1y,

I

=
A~ Y~ A~
Q a A

[\]

=)
~— N —

C.5 Variation of the Weighting Function

The scalar weighting function w(||r;;||) is a monotonically decreasing function used
to limit the range of inter-particle interactions, where r;; = x; — x; is defined as the
distance vector between points x; and x;. In evaluating the gradients of the weighting
function we apply the chain rule (C.4) and equations (C.13), (C.14), (C.15), and
(C.16). Using the following shorthand notation,

w = w(lryl),

d i

o du(lel)

dl|zs; |

we have,

inw w'sz.||rZ~j|| = —f‘ijw', (C32)
ijw = w'ij||rij||:f'ijw', (033)
Vaw = w'Vy|ri| =0, (C.34)
Vo = 'V [ty = 0. (C.35)

C.6 Forces and Torques from Weighted Potentials

In this section we use the results from the previous sections to show how to derive
force and torque vectors from weighted scalar potential fields.

Force from a Weighted Potential

The gradient of a weighted scalar potential is computed based on the application of
the multiplication and chain rules. Assuming we have two particles positioned at x;
and x;, the vector r;; separating the two particles is (x; — x;) and the separation
distance is 7;; = ||r;;||. Given a potential ¢(r) and a weighting w(r), both scalar
functions of distance, the gradient of their product is

g dw(r;;
Vi (w(ri)o(riz)) = w(ri;) 1 Vxrij + %M%‘)Vﬂ“z‘j-

Applying (C.1), (C.13) and (C.14) the resultant force acting on particle 7 is thus

fi= =V (0)00r) = 3 (1) 47 4 ) 47
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and the force acting on particle j is
f; = -V, (w(r)e(r)) = -1

It should be clear that these equations also hold for potentials that are a function not
only of particle separation but also of particle normals.

Torque from a Weighted Potential

Assuming we have two particles as above and with normals given by n; and n;,
and given a potential ¢(r;;, n;,n;) and a weighting w(r;;), then the gradient of their
product with respect to variation in normal is

Vi (w(rij)¢(rij, ni, nj)) = w(rij) Vad(rij, ni, nj) + ¢(rij, ni, n;) Vaw(ry;).
And since the gradient of the weighting function is zero this reduces to
Vi (w(ri)d(rij, 13, n5)) = w(ri;) Vad(rij, ni, ny).
By (C.2), (C.9), and (C.6) the torque vector acting on particle ¢ is
Ti = =V (w(rij)d(rij, i, n;)) = —10; X (Vi ¢(ri5, 03, 15)) w(rs).
Likewise the torque acting on particle j is

Ti = —I]_J X (anqs(rij; ni7 nj)) w(TU)



Appendix D

Computation of internal forces

Based on the identities and equations of Appendix C, we derive the inter-particle
forces and torques for the distance weighted versions of the co-planarity, the co-
normality, the co-circularity, and the Lennard-Jones potentials. For a pair of particles
1 and j we derive the forces and torques with respect to both particle ¢ and particle

VR

D.1 The Co-planarity Potential

The spatially weighted co-planarity potential is

d)P = (Il,‘ . I‘ij)Q’LU.

To derive the forces and torques, we first derive the gradients of the potential func-
tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle ¢’s position we
apply the multiplication rule (C.3) resulting in two parts to differentiate. To the left
side we apply equation (C.32), and to the right side we apply the chain rule (C.4)
and equation (C.24):

in¢P = (IIZ' - rij)2inw + wai (IIZ' . rij)2 = (Ilz' - rij)Qw'(—f'ij) + ’(UQ(IIZ - rij)(—ni).

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33) and (C.26) where appropriate:

Vy;¢p = (n; - rij)Qijw + wVy, (n; - r;;)? = (n; - 1;;)°w's;; + w2(n; - viy)n;.
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Variation in Normal

To derive the gradient with respect to the variation in particle ¢’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34) and (C.28):

Vni(ﬁp = (Il,‘ . rz-j)QVniw + ani(ni . rij)Z = 2’(1)(11z . rij)rij-

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35) and (C.30) where appropriate:

an(bP = (Ili . rij)2anw -+ anj (IIZ' . rij)2 =0.

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

V. ¢p = n; X Vy,dp = 20(n; - ry5) (n; X 135)w.

The gradient of the potential with respect to the change in orientation of particle j
is zero, because the potential is independent of the orientation of particle j:

Vg dp =1n; X Vp,dp =n; x 0= 0.

Forces and Torques

The forces and torques follow directly from the above derivations:

fo, = —Viobp = (0;-ry)’R5w' + 2(n; - ryj)nw
fpj = —ij d)P = —(IIZ' . I‘,‘j)2f'i]‘wl - 2(11, . rij)niw = —fpi
Tp, = —V01¢P = —2(1'11 . rij)(ni X rij)w
Tp, = —V '(]5}) = 0.
; ,

D.2 The Co-normality Potential

The spatially weighted co-normality potential is
éx = [[m; — nj|*w.
To derive the forces and torques, we first derive the gradients of the potential func-

tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.
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Variation in Position

To derive the gradient with respect to the variation in the particle ¢’s position, we
apply the multiplication rule (C.3) resulting in a left and right side to differentiate.
To the left side we apply equation (C.32), and to the right side we apply the chain
rule (C.4) and equation (C.19):

Vaodn = i = 0l Viw + 0V (I = 15°) = |mi — gl (—x5)e.

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33) and (C.20) where appropriate:

Visn = lIms = 0 Vigw + w Vs, (IIni — ml|*) = fIm; — n; iz’

Variation in Normal

To derive the gradient with respect to the variation in particle 7’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34) and (C.17):

Vadx = |Ini =15 Vaw + wVa, (I —1y)*) = w2(n; - ny).

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35) and (C.18) where appropriate:

Vi éx = i — 0]’V w + wVy, (|[n; = ny]°) = —w2(n; — n;).

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

V0i¢N =n; X Vp,on = 2w (n; X n;).

The gradient with respect to the infinitesimal change in particle j’s orientation is
derived by a similar process :

Vg ¢n =1nj X Vy dx = —2w (n; X n;).

Forces and Torques

The forces and torques follow directly from the above derivations:

fNi _vxi¢N = ”nz - njHQrijwl
fNJ- = —ijCﬁN = —||Ili - nj||2rijw, = _fNi
™, = —V01¢N = -2 (Ilj X 1’11') w

TNj = _VoquN =2 (l’lj X ni)w = —TN;-
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D.3 The Co-circularity Potential

The spatially weighted co-circularity potential is
o = ((mi +1y) - 1i5)" w.

To derive the forces and torques, we first derive the gradients of the potential func-
tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle i’s position, we
apply the multiplication rule (C.3) resulting in a left and right side to differentiate.
To the left side we apply equation (C.32), while we apply the chain rule (C.4) to the
right side:

Vido = ((mi+ny)-14)° Viw + wVy, (0; + 1) - 135)°
= ((m+my) - 1yy)” (—fy)w' + w2 (i + 1) - 1) Vo, (0 + 1) -155)
To solve the gradient on right hand side of the equation we apply the distributive

rule of scalar products, the identity V(a +b) = (Va) + (Vb), and equations (C.24)
and (C.25), thus the gradient is

Vi éc = ((n; +ny) - 135)° (—fi5)w’ — w2 ((n; + 1)) - 155) (n; + ny).

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33), (C.26), and (C.27) where appropriate:

Vasbc = (0 + 1) - 145)° Bijw’ + w2 (0 + 1y) - vy5) (0 + my).

Variation in Normal

To derive the gradient with respect to the variation in particle ¢’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34), (C.28), and
(C.29):

vni¢c = ((n, + l’lj) . rz’j)Q Vniw + ’U)Vni ((l’lz + l’lj) . rij)2 = w?2 ((Ilz + Ilj) . rij) rj.

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35), (C.30), and (C.31) where appropriate:

Vi, 6c = ((0; +15) - 155)” Vaw + wVa, (0 + 1) - 135)° = w2 ((n; + ny) - 135) 135
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Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

Vg.6c =1 x Vi, ¢ = 2w ((n; + 1) - ry5) (n; X r35) .

The gradient with respect to the infinitesimal change in particle j’s orientation is
derived by a similar process:

Vg, ¢c =1, X V¢ = 2w ((n; + ;) - 155) (0 X 155) .

Forces and Torques

The forces and torques follow directly from the above derivations:

e, ~Vxibe = (i +ny) - 15)° F0" + 2 (0 + 1y) - 135) (0 + ny)w

fo, = —Vxoc=—((mi+ny) 1)’ fw' —2((0; +0y) - xy) (i + nj)w = —f,
To, = —Vg.do=—2((m+mn)) i) (n; X 155) w

To; = —Vgéc=-2((n; +nj) i) (n; X 135) w

D.4 The Lennard-Jones Potential

The Lennard-Jones function is a scalar function defined in three-space as a function of
particle separation. Similar to the shorthand notation used for the weighting function,
we will use

by = ous(|ryl)
¢LI — dd)LJ
! d|[ri; |

in our derivations. To derive the forces and torques, we first derive the gradients
with respect to variation in particle positions, particle normals, and the infinitesimal
change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle positions we apply
the chain rule (C.4), and equations (C.13) and (C.14):

Viidrs = 6Ly Vyllryll = —Fi00s
V05 = ou1' Vyllrill = B0y’
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Variation in Normal

To derive the gradient with respect to the variation in the particle normals we apply
the chain rule (C.4), and equations (C.15) and (C.16):

Vn,¢LJ = (bLJIVni“rij“ = ¢LJ’(O) =0
Vi, oLy = ¢LJIan||rij|| = ¢1,'(0) = 0.

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

Voo = 1 X Vpory=n;x0=0
Voj(,bLJ = n; X Vy,0L5 =n; x 0=0.

Forces and Torques

The forces and torques follow directly from the above derivations:

fLJi = _in ¢LJ = f‘ij¢LJl
fLy, = —Vyou =Ty’ =—f;
T, = —VgoLy=0

Tuy; = —Vgor =0



Appendix E

Finite Element Analysis of Surface
Energies

To derive the local oriented particle interaction potentials, we analyze the deformation
energies of a triangular surface patch defined by three neighboring particles. For this
analysis, we assume that the particles are in an equilateral configuration with locations
(0,0), (h,0) and (1/2,/3/2) in the (, y) plane. We examine the small-deflection case
where the height from the plane, z = f(z,y), describes the local shape of the surface.
Both of these assumptions are reasonable for our surfaces, since the Lennard-Jones
forces favor locally hexagonal arrangements, and a sufficiently high sampling density
will ensure small deflections. For an analysis of the general parametric patch case,
see (Celniker and Gossard, 1991). We use a cubic function for f(z,y) since it can
be specified by the heights and gradients at the three corners {(z;,p;,¢;),7 =0...2}
and the height 23 of a “bubble” node in the middle of a triangle. We choose the
(x,y) plane to pass through the three particles, which gives us a height of 0 at all
three corners. To compute the deformation energies, we take integrals of squared
derivatives over the triangle. For example, we can compute the area of the triangle

from
V3., 1 2 2
A://,/1+f§+f5dxdyz7h +§//fm+fydxdy.
We can compute the average Gaussian curvature from
1 2 2 2

and the average variation in curvature from

1
Vo [ [ 382, + 385, + foy dudy.

These three integrals can be thought of as corresponding to the stretching, bend-
ing, and “undulation” energies of the surface. After some algebraic manipulation,
which we performed using Mathematica™ (Wolfram, 1988), we obtain formulas for
the above three equations in terms of the corner gradient values {(p;,¢;)} and the
bubble height 23 (the expressions are quadratic in these variables). In our oriented
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particle system, we desire to have interactions only between pairs of particles. Since
we are only interested in the energies involving two particles, say the particles which
control (pg,qo) and (p1,¢1), we minimize the quadratic energies with respect to the
Do, 2, and z3 variables (this results in lower energies than arbitrarily setting these
unknown quantities to 0, which would be the effect of ignoring these other terms).
To further simplify the energies, we express them in terms of averages and differences
of gradients

py = (po+p1)/2 4 = (@+aq)/2
p- = (po—p1)/2 - = (g —q)/2
Again, using Mathematica™, we obtain
Vo= h%6v3pi, (E.1)
_ \/3 2 2 2 2
C = 55e5(567p% +316p2 +8V3p_g, +48¢} +315¢%), (E.2)
V3 6003
A = Y (1 2 4. E.
71T 2g1gg0P+ T ) (E:3)

To compute these quantities given the state of two particles, i.e., their positions and
orientations, we must first write the scalar quantities pg, p1, o, and ¢; in terms of n;,
n; and r;;. We identify r;; with the z direction in our local plane, and thus compute

Po~ —n; - f'ij and P11~ —n; - f‘ij

for small values of py and p;. Choosing the y direction is more difficult if we wish
to keep the interactions pairwise, since we cannot use the location of the third point
defining the triangle. A simple choice is use the local z direction along the average
normal vector (n; + n;)/2, which leads to the equations

¢ = _(ni—i-nj)_ni—}-nj Xf‘ijZO, (E4)
2 2
¢ = - BTNy (E35)
N 2 2 W '
1
P2 4+¢ = Z||ni—nj||2. (E.6)

We are now in a position to relate the finite element based measures for curvature and
variation in curvature to the co-planarity, co-normality, and co-circularity measures.
The variation in curvature V' (E.2) corresponds directly to the co-circularity ¢¢ (4.17).
The curvature itself C' (E.3) can be written as a sum of the co-circularity potential
and the co-normality potential ¢ (4.14). The co-planarity potential is therefore not
needed to write a curvature-based energy measure. It is useful, however, when used
in isolation, since it corresponds to terms of the form

po+pl o< pl +p.
While the area-based measure A (E.3) is too complicated to warrant direct imple-

mentation, finite rest area behavior is simulated by the Lennard-Jones interaction
potential ¢r,j.



