
Tunneling for Triangle Strips in
Continuous Level–of–Detail Meshes

A. James Stewart

Dynamic Graphics Project
Department of Computer Science

University of Toronto

Abstract
This paper describes a method of building and maintain-
ing a good set of triangle strips for both static and contin-
uous level–of–detail (CLOD) meshes. For static meshes,
the strips are better than those computed by the classic
SGI and STRIPE algorithms. For CLOD meshes, the
strips are maintained incrementally as the mesh topology
changes. The incremental changes are fast and the num-
ber of strips is kept very small.

1 Introduction

A triangle strip is a sequence of triangles in which adja-
cent triangles share an edge and nonadjacent triangles are
interior–disjoint. Triangle strips are used to accelerate the
rendering of objects represented as triangle meshes: The
mesh is decomposed into a set of triangle strips, and each
triangle strip is rendered independently.

A strip of k triangles is sent to the graphics processor
as a sequence ofk+ 2 vertices: three vertices for the first
triangle and one for each additional triangle. The goal of
a stripification algorithmis to compute a small set of tri-
angle strips whose union covers the mesh. Fewer, longer
strips permit fewer vertices to be sent to the graphics pro-
cessor. This is quite important with current video cards,
where CPU–to–card bandwidth can be a limiting factor
in rendering speed.

This paper presents an algorithm to maintain a good
stripification of a triangle mesh whose topology changes
over time. Such meshes are used in many applications,
most commonly to control the level of detail in order to
balance rendering quality with rendering speed: Areas
of low perceptual importance are represented with a few
large triangles, while many small triangles are used in
areas of high perceptual importance. As the viewpoint
moves, the mesh changes topology.

Changes in the topology of a mesh require changes
in its stripification: A triangle inserted into the mesh
should be included in some triangle strip, to prevent it
from forming its own “singleton strip.” A triangle re-
moved from the mesh might be removed from the middle

4 strips for 270 triangles

22 strips for 270 triangles

Figure 1: Good and bad stripifications

of a strip, breaking that one strip into two. Repeated re-
movals and insertions can cause the number of strips to
increase dramatically, effectively negating the advantage
of the original stripification.

This paper describes a “tunneling operator” whose ap-
plication to a stripification can reduce the number of
strips. The operator does so by building a “tunnel”
through the mesh in order to join the endpoints of two
different triangle strips, thus reducing the total number of
strips by one (more on this in Section 3). This operator is
useful in several ways:

• For static meshes, repeated tunneling reduces the
number of triangle strips, optimizing a stripification.

• Continuous level–of–detail (CLOD) meshes[11,
16] do not require topological transformations to be
performed in a specific order, so it is not practical
to precompute stripifications of all possible topolo-
gies. Instead, the tunneling operator can be applied
on–the–fly in order to repair any damage caused by
the mesh transformations, thus maintaining a high–
quality stripification.

• With progressive meshes[10], a mesh is encoded
as a small, reduced mesh plus a sequence of “vertex
split” operations which, when performed in order
on the reduced mesh, reproduce the original mesh.
Each intermediate mesh is a reduced–detail version
of the original mesh.

In a similar manner, a stripification of the original
mesh can be encoded as a stripification of the re-
duced mesh plus a precomputed sequence of tun-
neling operations which, when performed in parallel
with the vertex splits, reproduce the original stripi-
fication. Each intermediate stripification is of high
quality, allowing the intermediate mesh to be effi-
ciently rendered.

The tunneling operator is quite simple to implement
and does not require much more than triangle adjacency
information. It can easily be tuned to trade execution
time for stripification quality, which is useful for real–
time applications that use CLOD meshes. Experiments
have shown that static mesh stripifications produced by
tunneling are of high quality, and that this high quality
stripification is maintained even in CLOD meshes.

The tunneling operator builds goodgeneralized strips
in which there is no constraint on the structure of the strip.
Sequential stripsare more restrictive: A triangle strip en-
ters each of its triangles at an “entry edge” and leaves that
triangle on the left or the right of the two remaining “exit
edges:” With sequential strips, the exit edge must alter-
nate between left and right with each successive triangle.

In the OpenGL rendering model, generalized strips re-
quire an extra vertex per triangle when such a constraint is
broken; no extra vertex is necessary in the SGI GL model.
Given the strong recent interest in improved video card
architectures (in particular, programmable strip construc-
tion [15], generalized triangle meshes [4], and transparent
vertex caching [12]) it will likely not be long before gen-
eralized strips have the same rendering cost as sequential
strips in the more popular rendering models.

2 Related Work

2.1 Stripifications of Static Meshes
A Hamiltonian path in a triangle mesh is a sequence of
pairwise adjacent faces in which each face is visited ex-
actly once. Such a sequence is an optimal stripifica-
tion. But testing whether a given triangle mesh admits
a Hamiltonian path is NP–complete [2], so researchers
have resorted to heuristics to build good stripifications:
The classic SGI algorithm [1] greedily constructs a strip
by extending it incrementally to the next adjacent node
of lowest valence, which tends to avoid short strips. The
widely used STRIPE algorithm [7] finds large areas
of quadrilaterals, triangulates them and stripifies them,
and greedily adds the remaining triangles. Other meth-
ods [21, 17] construct a spanning tree of the dual graph
and traverse it to form triangle strips.

The tunneling algorithm of this paper is also a heuris-
tic approach which can build a stripification or can im-
prove upon a given stripification. It can typically re-
duce the number of triangle strips produced by the SGI
and STRIPE algorithms (from 705 and 917 strips, re-
spectively, to 158 strips for the 69,000–triangle Stanford
bunny, for example).

2.2 Stripifications in CLOD Meshes
The real advantage of tunneling is that it can incremen-
tally repair triangulations that are damaged by changes
in mesh topology, such as occur in continuous level–
of–detail meshes. In CLOD meshes, the mesh topol-
ogy varies with the viewpoint in order to concentrate de-
tail in perceptually important areas, and to remove detail
(for faster rendering) in unimportant areas. As the view-
point moves, the mesh topology is changed with “edge
collapse” and “vertex split” operations (described in Sec-
tion 3.1). The variation is called continuous because the
mesh topologies differ by a single edge between suffi-
ciently close viewpoints.

The Skip Strip algorithm [6] maintains a stripifica-
tion of one type of CLOD mesh: the view–dependent
progressive mesh (VDPM). The VDPM and its highest–
resolution stripification are transmitted to the client,
which then builds a skip list structure on top of the VDPM
vertex hierarchy. For any topology of the mesh, the skip

list structure permits an efficient reconstruction of the un-
broken subsequences of the highest–resolution strips. But
where a highest–resolution strip is broken (e.g. where the
faces it traverses are not in the current mesh) there ap-
pears to be no provision to repair the break.

In contrast, the tunneling algorithm acts to repair any
broken strips, thus maintaining a high quality stripifica-
tion. It also does not need much extra memory, requiring
little more than the strip and triangle adjacency informa-
tion for the current mesh.

Other work has concentrated on stripification ofhier-
archical CLOD meshes. Such meshes have a very con-
strained structure which allows a good stripification to be
defined for all configurations of the mesh. The tunnel-
ing approach of this paper cannot compete with most of
the hierarchical methods, since it does not rely upon any
knowledge of the structure of the mesh.

A small sampling of hierarchical approaches is men-
tioned here: For CLOD terrains represented with a
quadtree, Lindstromet al [14] have an elegant recursive
algorithm for building generalized triangle strips. The
ROAM renderer [5] uses a fast incremental approach to
maintainsequentialstrips of four or five triangles each,
on average. Recursive space filling curves are used by
Velhoet al [20] to build generalized triangle strips.

2.3 Transmission of Stripifications

There has been much recent work on the compression of
triangle mesh connectivity [8, 18, 19], but it appears that
only one author has considered encoding a stripification
along with the connectivity: Isenburg [13] has described
such a method which uses only one or two additional bits
per triangle over the pure connectivity encoding methods.

As with the other connectivity methods, Isenburg’s
goal is not to provide a progressive mesh transmission,
but rather to minimize the total transmission cost. Our
tunneling approach has a much larger transmission cost
when used with progressive meshes. But, on the other
hand, it does allow intermediate meshes to be rendered
with high quality triangulations.

2.4 Cache–Optimizing Stripifications

Deering introducedgeneralized triangle meshes[4]
which use a vertex cache of more than two vertices to
decrease vertex transfers from the CPU to the graphics
card. The idea is to exploit those vertices that are cur-
rently in the cache in order to minimize the number of
times a given vertex is sent to the graphics card. Bar–
Yehuda and Gotsman [3] have shown that a cache of size
O(
√
n) is necessary to minimize vertex transmission in

a mesh of sizen. Hoppe [12] has described heuristics
to construct triangle strips that are optimized for a given
cache size.

A B

CD

A B

D C

edge collapse

vertex split

Figure 2: An edge collapse removes an edge and two
faces. A vertex split inserts an edge and two faces.

The tunneling algorithm does not consider cache co-
herence of triangle strips: Its only goal is to maintain
a minimum–size stripification. But tunneling can be
thought of as one rule in a grammar of graph transfor-
mations, and it might be possible (in future work) to add
more rules to the grammar to take into account cache
coherence and sequential — rather than generalized —
stripifications.

3 Triangle Strip Tunneling

The paper will discuss the tunneling algorithm in the con-
text of progressive meshes (PMs) and view–dependent
progressive meshes (VDPMs). The tunneling algorithm
is not limited to such meshes: It can be used with
any CLOD mesh, such as those formed by vertex re-
moval [16], for example.

3.1 Local Repairs Are Not Enough
Progressive meshes perform two operations to modify a
mesh: edge collapses and vertex splits. Shown in Fig-
ure 2, an edge collapse removes an edge and its two ad-
jacent faces from the mesh, while a vertex split does the
inverse to insert an edge and two faces into the mesh.

An edge collapse can cause a triangle strip to be broken
into two, and a vertex split can create a new triangle strip
of length two (see Figure 3). While these problems do not
occur with all collapses or splits, they occur in sufficient
number to quickly fragment a stripification, as will be
shown in Section 4.

In certain configurations (such as those in the top and
middle rows of Figure 3) there is no local modification
of the stripification that can reduce the number of strips.
It is clear that a more global modification is sometimes
required.

3.2 Tunneling
In thedual graph of a triangulation, there is a node cor-
responding to each mesh triangle and there is an edge
joining each pair of nodes whose corresponding mesh tri-
angles are adjacent (see Figure 4). Note that each non–
boundary node has three adjacent graph edges. There are
two types of graph edges:Strip edgesjoin nodes whose
corresponding triangles are adjacent on the same strip; all
others arenonstrip edges.

Figure 3: (top) An edge collapse can cause a strip that
crosses the collaped edge to be split into two. (middle) A
vertex split can create a new, isolated strip which joins the
two new triangles. (bottom) Some collapses and splits do
not cause any damage to the stripification.

A tunnel is an alternating sequence of strip and non-
strip graph edges, which starts and ends with nonstrip
edges and which connects two nodes that each have fewer
than two adjacent strip edges (i.e. nodes whose corre-
sponding triangles are at the ends of their strips). If a tun-
nel exists in the dual graph, the number of strips can be
reduced by one strip by complementing the status of each
edge on the tunnel: Strip edges become nonstrip edges
and vice versa.

Consider, for example, the graph fragment on the top
of Figure 5 which contains four triangle strips. Two of
the strips terminate at nodesA andB, between which a
tunnel is shown. On the bottom of Figure 5 the edges of
the tunnel are complemented, resulting in a stripification
of only three strips.

The tunneling algorithm is conceptually very simple:

Figure 4: (top) A triangle mesh with three strips.
(bottom) The dual graph with two types of edges: solid
strip edges and dashed nonstrip edges.

Start at a source node on the end of a strip. Perform a
breadth–first search in the graph to find the shortest path
of alternating edges to another node at the end of a strip.
Complement the edges of the tunnel.

The tunneling algorithm is repeated (starting at another
source node) as long as a tunnel can be found. When
no more tunnels can be found, the number of strips has
reached a local minimum. Since it is NP–hard to find an
optimal stripification, one cannot know (without a huge
amount of additional work) whether the number of strips
has also reached aglobal minimum. In fact, the final
stripification depends upon the sequence of source nodes,
so different sequences of source nodes typically yield dif-
ferent local minima.

There are some special cases which must be consid-
ered when performing the breadth–first search from one
source node:

A

B

A

B

Figure 5: (top) A graph containing four triangle strips. A
tunnel is highlighted between nodes A and B. (bottom)
The same graph, but with the tunnel edges comple-
mented. The graph now contains three triangle strips.

• A tunnel consisting of a single nonstrip edge is pos-
sible. Complementing that edge simply joins two
strips that end in adjacent triangles of the mesh.

• The tunnel can end at a node with zero adjacent strip
edges, which corresponds in the mesh to an isolated
triangle (i.e. a triangle on a strip containing only it-
self). Complementing the tunnel edges has the effect
of adding the isolated triangle to a strip.

• The last (nonstrip) edge of the tunnel cannot connect
two nodes belonging to the same strip (see Figure 6).

• Let each tunnel edge be directed outward from the
source node at which the breadth–first search starts.
If the ith edge on a tunnel is a nonstrip edge that
joins two nodes of the same triangle strip, thei+1st

edge (if it exists) must turn in the direction toward
the tail of theith edge (see Figure 7). Otherwise, a
loop of triangles will be created upon complement-
ing theith edge.

Figure 6: (left) A tunnel cannot end with an edge that
joins two nodes on the same triangle strip. (right) Com-
plementing such a tunnel introduces a triangle strip loop
and does not reduce the total number of strips.

e

e

i

i+1

e
i

e
i+1

Figure 7: (left) A nonstrip edge ei that joins nodes from
the same triangle strip must be followed by a strip edge
ei+1 that points toward the tail of ei. (right) If ei+1 points
away from the tail of ei, a triangle strip loop is created
upon complementing the edges.

The special cases described above require that each
node store the identifier of the triangle strip containing it.
When strips are broken or joined by complementing the
edges of the tunnel, all of the identifiers of these strips
must be updated, along with any pointers (used by the
renderer) to the ends of these triangle strips. This requires
(in the worst case) a complete traversal of all the affected
triangle strips.1 This is the expensive part of the algo-
rithm, but the experiments of Section 4 show that it is not
prohibitively expensive.

The tunneling operation bears a remarkable resem-
blance to the classic “shortest augmenting path” tech-
nique for the Maximum–Weight Bipartite Matching
problem [9]. That technique repeatedly finds paths of
alternating matching/nonmatching edges in a bipartite
graph and complements their status to increase the num-

1Up–trees may be used to join the triangle strips in (essentially) con-
stant time, but up–trees are not useful for breaking the triangle strips.

ber of matching edges. The idea of an augmenting path
is used in a variety of graph algorithms.

4 Applications of Tunneling

The tunneling operator can be used in several con-
texts: with static meshes to build or improve a stripifi-
cation; with progressive meshes to encode a multireso-
lution stripification along with the PM; and with view–
dependent progressive meshes to maintain a good stripi-
fication in the presence of an arbitrary sequence of edge
collapses and vertex splits.

4.1 Static Meshes
For static meshes, simply start with a mesh of single–
triangle strips and apply the tunneling operator repeatedly
until no more tunnels can be found. As discussed in Sec-
tion 3.2, this does not guarantee an optimal stripification
(otherwiseP = NP) but the experiments reported in Ta-
ble 1 show that it consistently produces stripifications of
high quality.

Experiments have shown that the speed of the tunnel-
ing algorithm can be increased with little effect on the
stripification quality, simply by bounding the length of
the tunnels. Each breadth–first search then runs inO(1)
time (compared withO(n) time for tunnels of unbounded
length). Figure 10 shows the tradeoff between tunnel
length and stripification quality for the Stanford bunny.
For the bunny, using a maximum tunnel length of 1000
took 198 seconds, while a maximum tunnel length of 75
took only 17.4 seconds.

4.2 View–Dependent Progressive Meshes
Good stripifications of view–dependent progressive
meshes, and of CLOD meshes in general, can be main-
tained by a run–time application of the tunneling opera-
tor. After an edge split or vertex collapse, the tunneling
operator is applied in two ways:

• Each of the four or six triangle faces in the immedi-
ate neighborhood of the collapse or split is checked.
If such a face is at the end of a triangle strip, the
tunneling algorithm is applied from that face. This
step attempts to repair any damage caused by the
collapse or split.

• In addition, a list is maintained of all mesh faces that
lie on the end of a triangle strip. With each collapse
and split, a small number of faces from that list are
used as starting points for the tunneling algorithm
(noted as “E 5” and “E 10” in Figure 11). This step
attempts to reduce the number of strips elsewhere
in the mesh. By only checking a few such faces
with each collapse or split, the computational load
is spread over time.

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

nu
m

be
r

of
 s

tr
ip

s

maximum tunnel length

Figure 10: The number of strips produced for the Stan-
ford bunny is shown for various maximum tunnel lengths.
As the maximum tunnel length increases, the number of
strips decreases as one would expect. There is some fluc-
tuation because the number of strips is a local minimum
dependent upon the sequence of tunnels, which varies.
From the graph, it appears that the tunnel length may be
bounded at about 75 edges without affecting the quality
of the stripification.

Figure 11 compares variants of this tunneling algo-
rithm to a non–tunneling approach which performs only
local repairs: The local repairs join pairs of strips that
both end at one of the four or six triangles involved in the
collapse or split, or at a triangle immediately adjacent to
one of those four or six triangles. The tunneling approach
does much better than the local approach, and maintains
a stripification of nearly–constant size.

The additional execution time required for tunneling is
very slight: For the sequence of 5000 collapse and split
operations reported on in Figure 11, the local–only algo-
rithm took 59 seconds and the least aggressive “T 10, E
5” tunneling algorithm took 61 seconds.

It is interesting to note in Figure 11 that the number of
strips increases as the maximum tunnel length decreases,
and that the number of strips settles around some constant
size which depends mainly upon the maximum tunnel
length. It is possible that this “steady–state” phenomenon
occurs when the maximum tunnel length and the triangle
strip density come into equilibrium: If the maximum tun-
nel length is less than the average distance between strip
endpoints, tunnels will not be found to join strips, and the
number of strips will increase. Conversely, if the maxi-
mum tunnel length is greater than the average distance
between strip endpoints, tunnels will be found and the
number of strips will decrease. At some point this pro-
cess reaches a state of equilibrium.

Tunneling algorithm – 1,798 strips SGI algorithm – 17,653 strips

Figure 8: The Stanford dragon consisting of 871,414 faces, with stripifications by the tunneling and SGI algorithms.
Each coloured area is covered by one strip.

60,000 faces 30,000 faces 15,000 faces

10,000 faces 5,000 faces 2,000 faces

Figure 9: A progressive stripification of the 69,451–face Stanford bunny. Each coloured area is covered by one strip.

Table 1: A comparison of stripifications and execution times for the tunneling algorithm (restricted to tunnels of
maximum length 75), the STRIPE 2.0 algorithm [7], and the SGI algorithm [1]. STRIPE failed for the two largest
meshes. The bunny and dragon models are from the Stanford 3D Scanning Repository, while the random meshes
are Delaunay triangulations of Poisson–distributed random point sets. Times are in seconds on a 750 MHz Pentium
processor.

Model Number Number of strips Execution time
of faces Tunneling STRIPE SGI Tunneling STRIPE SGI

Random I 1,874 13 44 39 0.1 0.2 0.1
Random II 19,598 82 401 404 4.0 1.9 1.5
Bunny 69,451 158 917 705 17.4 9.5 10.3
Random III 198,734 593 — 3,719 522.5 — 84.4
Dragon 871,414 1,798 — 17,653 3.75 hours — 0.45 hours

Number

of Strips

Number of Operations

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000

Local Only

T 10, E 5

T 20, E 5

T 50, E 10

Figure 11: A non–tunneling “local–only” algorithm is
compared to three variants of the tunneling algorithm
over a sequence of 5000 collapse and split operations in
a mesh of 20,000 faces, on average. The tunneling vari-
ants differ in the maximum allowed tunnel length (T 10,
T 20, and T 50 for lengths of 10, 20, and 50) and in the
number of strips from elsewhere in the mesh that are pro-
cessed with each operation (E 5 and E 10 for 5 and 10
elsewhere). The grey region shows the lower bound of
between 82 and 103 strips, achieved when the tunnel-
ing algorithm is run with no restrictions. As the tunnel
length and the number of strips from elsewhere increase,
the stripification approaches this lower bound.

4.3 Ordinary Progressive Meshes
A progressive mesh representation consists of a “base
mesh” plus a sequence of vertex split operations. Appli-
cation of the vertex splits to the base mesh recovers the
original, high–resolution mesh.

In a similar manner one can encode aprogressive
stripification , which consists of a stripification of the
base mesh plus a sequence of tunneling operations. The
tunneling operations are performed in concert with the
vertex splits to recover the original stripification of the
high–resolution mesh. The tunneling operations can be
chosen to yield high quality stripifications of the interme-
diate meshes. This is useful for progressive transmission,
where transmission delays may require that the client ren-
der an intermediate version of the mesh before receiving
the full sequence.

To create a progressive mesh representation, a se-
quence of edge collapses is computed which transforms
the original mesh into the base mesh. This sequence is re-
versed and each edge collapse operation is replaced with
its inverse vertex split operation, to yield the sequence of
vertex splits.

The progessive stripification is built along with the pro-
gressive mesh. Each edge collapse of the progressive
mesh is replaced by anaugmented edge collapse:

1. Each edge collapse in the progressive mesh trans-
forms a set of six nodes and five edges of the dual
graph into a set of four nodes and two edges (recall
Figure 2). Before the edge collapse is performed,
the status of each of the five dual graph edges is
recorded.

2. The edge collapse is performed.

3. After the edge collapse is performed, a tunneling op-
eration is applied from each of the four remaining

Table 2: Statistics for progressive stripifications of three models, showing the average number of tunnel edges stored
per PM edge collapse, and the average number of strips over all intermediate meshes.

Model Faces Collapses Edges per Initial Average
collapse strips strips

Random I 1874 996 2.91 18 12.3
Random II 19598 9996 3.51 104 76.8
Bunny 69451 34815 3.69 182 185.4

graph nodes, provided that the node is at the end of
a triangle strip. The tunnel necessarily consists of
a sequence of left and right turns through the graph
(i.e. the tunnel arrives at a graph node on one edge
and leaves the node on, alternately, the left or right
of the remaining two edges), and can be concisely
recorded.

To recover the original mesh and stripification from the
base mesh and stripification, the sequence of augmented
edge collapses is applied in reverse order. For each aug-
mented edge collapse in the sequence:

1. The status of each edge on the tunnels is comple-
mented.

2. The vertex split is performed.

3. The status of the five graph edges is restored.

The augmented edge collapse can be concisely repre-
sented: The status of the five graph edges requires five
bits, and the tunneling operations can be recorded as a
sequence of left and right turns through the graph, with a
number of bits proportional to the path length. The maxi-
mum tunnel length can also be bounded in order to reduce
the storage requirements.

Progressive stripifications were computed for three of
the models, limiting the maximum tunnel length to 29
edges in order to accelerate the computation. Figure 9
shows some samples from the progressive stripification
of the bunny. Table 2 shows that the extra storage re-
quired to represent the augmented edge collapses is rela-
tively small: For example, only 3.69 tunnel edges must be
stored per augmented edge collapse in the bunny model.
Also, the table shows that the tunneling operations main-
tain good intermediate stripifications: The average num-
ber of strips (over all intermediate representations) is
close to the initial number of strips, indicating that the
augmented edge collapses do not cause much fragmenta-
tion.

5 Discussion

The tunneling operation is simple to implement. It can
be used to build stripifications of static meshes, to main-
tain good stripifications of CLOD meshes, and to provide
space–efficient progressive stripifications.

For static meshes, tunneling builds much better stripifi-
cations than the SGI and STRIPE algorithms, although it
can take substantially longer in larger meshes, and should
only be done off–line. For CLOD meshes, tunneling is
the only method to date that maintains a good stripifica-
tion during unrestricted topological changes: Unlike the
Skip Strip approach, tunneling repairs triangle strips that
become broken in intermediate mesh representations. For
progressive meshes, tunneling permits the space–efficient
transmission of good stripifications of all intermediate
meshes.

6 Future Work

It is interesting to think of the tunneling operation as a
rule in a graph transformation grammar. One could imag-
ine further rules to improve stripifications. Such rules
might, for example, exploit vertex cacheing or give prece-
dence to sequential strips over generalized strips.

For generalized strips, a graph transformation rule
might be developed to exploit strip loops, which occur
occasionally within a stripification. Such loops are po-
tentially very useful, since they can be broken anywhere
with no increase in the number of strips. Breaking a loop
provides two strip ends which can be used to join other
triangle strips.

There are also situations in which multiple separate
graph transformations, none of them a tunneling opera-
tion and none of them an improvement by itself, can in
combination produce an improvement in the stripifica-
tion.

It seems that there is a lot of potential in creating good
stripifications by the application of graph transformation
rules.

Acknowledgements

The author wishes to thank the reviewers for their many
detailed and helpful comments, and wishes to thank the
Stanford 3D Scanning Repository for the bunny and
dragon models.

References

[1] K Akeley, P Haeberli, and D Burns. The tomesh.c
program. Technical report, Silicon Graphics, 1990.
Available on the SGI Developer’s Toolbox CD.

[2] E. Arkin, M. Held, J. S. B. Mitchell, and S. Skiena.
Hamiltonian triangulations for fast rendering.The
Visual Computer, 12(9):429–444, 1996.

[3] R. Bar-Yehuda and C. Gotsman. Time/Space trade-
offs for polygon mesh rendering.ACM Transactions
on Graphics, 15(2):141–152, April 1996.

[4] M. Deering. Geometry compression.Computer
Graphics (SIGGRAPH), 29:13–20, 1995.

[5] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller,
C. Aldrich, and M. Mineev-Weinstein. ROAMing
terrain: Real-time optimally adapting meshes. In
IEEE Visualization, 1997.

[6] J. El-Sana, E. Azanli, and A. Varshney. Skip strips:
Maintaining triangle strips for view-dependent ren-
dering. In IEEE Visualization, pages 131–138,
1999.

[7] F. Evans, S. Skiena, and A. Varshney. Optimizing
triangle strips for fast rendering. InIEEE Visualiza-
tion, pages 319–326, 1996.

[8] S. Gumhold and W. Straßer. Real time compression
of triangle mesh connectivity.Computer Graphics
(SIGGRAPH), 32:133–140, 1998.

[9] J. Hopcroft and R. Karp. An algorithm for maxi-
mum matchings in bipartite graphs.SIAM Journal
of Computing, 2:225–231, 1973.

[10] H. Hoppe. Progressive meshes.Computer Graphics
(SIGGRAPH), 30:99–108, 1996.

[11] H. Hoppe. View–dependent refinement of progres-
sive meshes. Computer Graphics (SIGGRAPH),
31:189–198, 1997.

[12] H. Hoppe. Optimization of mesh locality for trans-
parent vertex caching.Computer Graphics (SIG-
GRAPH), 33:269–276, 1999.

[13] M. Isenburg. Triangle Strip Compression. In
Graphics Interface, pages 197–204, 2000.

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges,
N. Faust, and G. Turner. Real-time continuous
level of detail rendering of height fields.Computer
Graphics (SIGGRAPH), 30:109–118, 1996.

[15] M. McCool. Smash: A next-generation API for pro-
grammable graphics accelerators, API version 0.2.
Technical Report CS-2000-14, University of Water-
loo, August 2000.

[16] W. Schroeder, J. Zarge, and W. Lorensen. Decima-
tion of triangle meshes.Computer Graphics (SIG-
GRAPH), 26:65–70, 1992.

[17] B. Speckmann and J. Snoeyink. Easy triangle strips
for tin terrain models. InCanadian Conference on
Computational Geometry, pages 239–244, 1997.

[18] G. Taubin and J. Rossignac. Geometric compres-
sion through topological surgery.ACM Transac-
tions on Graphics, 17(2):84–115, 1998.

[19] C. Touma and C. Gotsman. Triangle mesh compres-
sion. InGraphics Interface, pages 26–34, 1998.

[20] L. Velho, L. H. de Figueiredo, and J. Gomes. Hi-
erarchical generalized triangle strips.The Visual
Computer, 15(1):21–35, 1999.

[21] X. Xiang, M. Held, and J. S. B. Mitchell. Fast and
effective stripification of polygonal surface models.
In Interactive 3D Graphics, pages 71–78, 1999.

	Introduction
	Related Work
	Stripifications of Static Meshes
	Stripifications in CLOD Meshes
	Transmission of Stripifications
	Cache--Optimizing Stripifications

	 Triangle Strip Tunneling
	Local Repairs Are Not Enough
	Tunneling

	 Applications of Tunneling
	Static Meshes
	View--Dependent Progressive Meshes
	Ordinary Progressive Meshes

	 Discussion
	Future Work

