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Abstract

The paper describes an algorithm to generate a triangulation of an implicit surface.

The generated triangles are close to equilateral and the triangle edge lengths vary

with local surface curvature (the user may choose the ratio of edge length to surface

curvature). The output of this algorithm is useful for applications that require high

quality triangulations, such as medical imaging, molecular modeling, computer aided

design, and finite element analysis.

Triangles are “grown” on the surface outward from a seed triangle. After the grow-

ing stops, the remaining gap in the triangulation is filled by a set of heuristics. Exper-

iments show that the algorithm consistently builds high quality triangulations which

compare favourably to those produced by cell–based and particle–based algorithms.

Key words: Implicit surface, adaptive triangulation

1 Introduction

Implicit surfaces appear in many applications including medical imaging, molecular mod-

eling, computer aided design, computer graphics, and finite element analysis. An implicit

surface is defined by a field function, f(x, y, z), which assigns a scalar value to each point

in space. The implicit surface consists of those points at which the field function takes on a

specific value, c. In other words the surface is {(x, y, z) | f(x, y, z) = c}.
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(a) surface of a snake venom molecule (b) surface of a human cortex

Figure 1: Examples of implicit surfaces. The blockiness of the molecule is due to the grid

upon which the electron densities were sampled. Sincere thanks to Dr. Paul Bourke of the

Swinburne University of Technology for the image of the human cortex, and to Dr. James

Rini of the University of Toronto for the snake venom data.

In molecular modeling, for example, the electron density takes on a specific value at the

Van der Waals surface of the molecule (e.g. [15]). This surface can give a good idea of the

structure of an unknown molecule whose electron density has been sampled. In medical

imaging, for example, a computed tomography (CT) scan produces a three dimensional

array of sampled density values from a patient. Anatomical features are distinguished by

their different densities and can be represented with implicit surfaces. In computer aided

design, for example, an offset surface can provide a smooth blend between two components

that meet at a sharp angle.

Despite their many advantages, implicit surfaces are difficult to render efficiently. To-

day’s real–time graphics systems are heavily optimized for rendering triangles, so an implicit

surface should be converted to a mesh of triangles before being rendered.

This paper describes an algorithm to polygonalize an implicit surface. The algorithm

generates a mesh of close–to–equilateral triangles with sizes dependent upon the local surface

curvature. The implicit surface is assumed to be connected and G1 smooth. The algorithm

requires an evaluator for the implicit function defined at all points in space, an evaluator

for the function gradient defined at points near the surface, and a bounding box around the
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surface.

The output of the algorithm is good for applications that require a “well behaved” trian-

gulation, such as rendering systems and finite element PDE solvers. For rendering systems,

curvature–dependent triangle sizing results in a accurate surface and silhouette (see the mid-

dle of the peanut in Figures 2(a) and 2(b)), while at the same time minimizing the number

of triangles, resulting in faster rendering. For finite element methods, the near–equilateral

triangles reduce the instability of the solution, and the curvature dependence keeps dis-

cretization error low while minimizing the number of triangle elements, leading to a faster

solution.

2 Related Work

The new algorithm falls into the class of “continuation methods” which operate by incre-

mentally extending a polygonization across the implicit surface. Following Bloomenthal [4],

these methods are divided into “piecewise linear” and “predictor–corrector” classes.

Piecewise linear continuation methods divide space into discrete cells (typically

cubes or tetrahedra) and polygonize each cell individually [1, 3, 26]. A cell is considered for

polygonization only if it is adjacent to another cell that already contains part of the surface.

The polygonization of a cell is determined from a lookup table which is indexed by the signs

of the implicit function at the cell’s vertices [26]. Cells may be adaptively sized according to

local surface features [3, 17].

These methods are very fast, but can result in polygonizations that contain high–aspect–

ratio triangles and tiny polygons, such as shown in Figure 2(b). There are a number of

post–processing methods that will eliminate these undesirable features (e.g. [7, 19, 22]).

Unlike these methods, the new algorithm does not require a separate post–processing step

to produce a high–quality triangulation: When each triangle is created, it is sized according

to the local surface curvature and is made to be close–to–equilateral, as shown in Figure 2(a).

Adaptive continuation methods [3, 17] devote considerable effort in joining polygons that

lie in adjacent cells of different resolutions. The new algorithm avoids this difficulty by

allowing the triangle sizes to vary continuously as the triangulation is extended.

The new algorithm is, however, slower than the piecewise linear methods described above.

It spends considerable time computing local surface curvature in order to generate triangles of

the appropriate size. (The curvature calculation requires many calls to the implicit function
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(b) Cell–Based Algorithm (c) Particle–Based Algorithm

Figure 2: Shown are triangulations of a peanut produced by (a) the algorithm of this paper

and (b) a cell–based algorithm [3]. The particle–based method (c) produces the same density

distribution of vertices as the new algorithm.
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evaluator, since we assume that the second derivative is not directly available.) This time

is not spent with the piecewise linear methods, most of which only evaluate the implicit

function at cell vertices.

Predictor–corrector continuation methods extend the polygonization by generating

new vertices on the border of the current polygonization. These vertices initially lie in the

tangent plane at the border (the predicted position) and are subsequently settled onto the

implicit surface (the corrected position). New polygons are added to join the vertex to

the current polygonization [18]. Alternatively, a disk centred on a boundary point may be

created, projected onto the surface, and merged with the current triangulation [11, 12].

The new algorithm is a predictor–corrector method which successfully addresses the

difficulties encountered with two dimensional surfaces. In particular, the new algorithm

avoids overlapping triangles, which can occur if two separate “branches” of the polygonization

converge as they are being extended. The new algorithm also fills in the narrow “gap”

between adjacent branches with well–shaped triangles that are sized according to the local

surface curvature.

Another approach [13] creates triangles of roughly uniform shape and size which are local-

ly Delaunay1. This approach handles open two–manifolds, while the new algorithm assumes

that the surface is closed. However, this approach does not size its triangles according to

the local curvature, which may lead to rendering artifacts, particularly on the silhouette.

The new algorithm is most similar to an algorithm of Hartmann [10] which iteratively

performs one of two operations: Either triangles are added to the current mesh boundary

(like our growing phase) or the closest pair of non–adjacent vertices on the mesh boundary are

joined (like our bridging operation). Both algorithms produce close–to–equilateral triangles,

but Hartmann’s algorithm does not appear to make triangle size dependent upon surface

curvature. The new algorithm uses a large set of heuristics (Section 3.3) which help to

produce better triangles in those areas where the triangle size changes rapidly.

Full–lattice methods assume that a full lattice of measured function values is avail-

able [14, 26]. These methods correctly treat surfaces of multiple connected components,

while the new algorithm (and other continuation methods) require a “seed polygon” in each

connected component.

Particle–based methods settle oriented particles to the implicit surface and maintain

1A triangle is locally Delaunay if its smallest circumscribing sphere does not contain any other point

of the triangulation that has the same surface orientation.
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them on the surface during editing operations [7, 21, 25, 8]. Using a set of particles requires

that the point set be triangulated in a postprocess using, say, a local Delaunay triangulation

or alpha shapes [9].

The triangulations produced by particle systems have the “Delaunay–like” property that

the triangles are close to equilateral, and particle–based methods can be modified to adapt

the particle density to local surface curvature. These methods have vertex distributions

that are qualitatively similar to those of the new algorithm. However, the particle–based

algorithm implemented for comparison (described in Section 4) took much longer to execute

than the new algorithm, likely because every particle continues to be processed as long as at

least one particle has not reached equilibrium.

The pre–tessellation method [6] considers implicit surfaces that are defined as a com-

bination of certain primitives surfaces, each of which has a known surface tesselation. Each

primitive’s surface tesselation is terminated where it enters a blending area with another

primitive, then the corresponding boundary curves of adjacent primitives are identified, and

finally a mesh is constructed in the gap between corresponding curves.

Like the pre–tessellation method, the new algorithm builds a mesh over part of the sur-

face and subsequently fills the gap which is left uncovered. However, the new algorithm

handles arbitrary implicit functions, which makes the structure of the gap much more com-

plicated. With the pre–tessellation method, the gap consists of relatively straight sections

that separate pairs of primitives, and each section can be meshed independently. The new

algorithm must handle general gaps, as shown in Figure 3. It is likely, however, that the

pre–tessellation method is much faster for the surfaces that it handles.

Gap filling is a problem also studied in the field of computational geometry [2] and is

somewhat related to the construction of meshes from range data [23].

The shrinkwrap method [5, 24] builds a surrounding polygonized mesh and incremen-

tally shrinks this mesh onto the implicit surface: The mesh vertices are moved along the in-

tegral lines of the implicit function and the mesh is refined as necessary. The new algorithm

polygonizes some surfaces that, we believe, cannot be polygonized with the shrinkwrap

method (e.g. the “cube” in Figure 8).
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3 The Algorithm

The algorithm operates in two phases: In the growing phase a seed triangle, which forms

the initial polygonization, is computed. The polygonization is extended by incrementally

growing triangles from its edges. Each new triangle is sized according to the local curvature,

and a triangle is not added if it would come too close to an already–existing triangle. At the

end of this phase, the polygonization is a connected region with long, narrow gaps between

its branches.

In the filling phase, the gap is subdivided into small pieces by finding “bridges” that

cross the gap. These bridges are good edges in the final triangulation. They separate the

gap into smaller, more manageable pieces. Each smaller piece is triangulated with a set of

heuristics.

3.1 Preliminaries

Some definitions are given before the algorithm is discussed in detail:

Triangles are sized according to a user–defined parameter, ρ, which is the desired ratio

of triangle edge length to local radius of curvature.

Two triangles are said to overlap if part of one, when projected onto the plane of the

other, lies inside the other. For non–overlapping triangles, the distance between them is

the minimum distance between a vertex of one and an edge of the other.

The radius of curvature at a point, x, is estimated by computing the radius of curvature

of several geodesics that pass through x, and taking the minimum. Geodesics are assumed

to locally lie in a plane through x and the surface normal at x, denoted nx. To compute one

such radius of curvature, the normal ny at a point y close to x is first computed. Let θ be

the angle between nx and ny, and let d be the distance between x and y. Then the radius of

curvature is estimated as

R(x) =
d

2 sin( θ
2
)
.

3.2 The Growing Phase

The bounding volume is first sampled until one point inside the surface and one point outside

the surface are found. Repeated bisection then finds a point that lies on the surface. This

point locates a seed triangle whose vertices lie on the implicit surface, and whose edge

lengths are a fraction ρ of the local surface curvature.
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The edges of the seed triangle are placed into an active edge list. Growing proceeds

by iterating over this list and applying to each edge the two operations described below:

“Isosceles Triangle Growing” and “Ear Cutting.” The growing phase terminates when no

operation can be applied to any edge in the list. Figure 3 shows some sample triangulations

at the end of the growing phase.

Isosceles Triangle Growing

Given a candidate active edge, (u, v), a new point, p, is placed in the tangent plane of the

active edge (to the side of the edge outside the current tiling) such that u, v, and p form an

equilateral triangle. Point p is settled to the implicit surface. The vertices u, v, and p are

used to estimate R, the radius of curvature. Then p is again placed in the tangent plane of

the active edge, but now positioned such that the lengths of the new edges, (u, p) and (v, p),

are ρR. Finally, p is again settled to the surface. This results in an almost–isosceles triangle

with at least two edges whose lengths are appropriate for the local surface curvature.

Two tests are performed: The first test checks that each new edge makes an angle of at

least 45 degrees with its neighbour in the old mesh. This ensures that later triangles will be

close to equilateral.

The second test checks that the new triangle, T , does not approach existing triangles too

closely. This ensures that the gap produced by the growing phase will not be too narrow to

triangulate in the subsequent filling phase.

For the second test, all triangles within a radius r of T ’s centroid are enumerated (r

is defined in the Appendix). This enumeration is performed efficiently by traversing an

octtree [16] which stores all vertices of the current mesh. If any one of those triangles, say

T ′, is closer to T than one–half the length of the longest edge in T and T ′, then the new

triangle is rejected.

As a result of this second test, the gap is typically “just wide enough” to contain a

triangle of the size appropriate to the local curvature. Note that the isosceles triangle

growing operation need be attempted at most once on each active edge.

Ear Cutting

Ear cutting is applied when two adjacent active edges have an external angle smaller than

70 degrees. The three vertices on these two edges are used to define a new triangle. Note

that, due to the second test above, it is not possible that a triangle from another branch
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intrudes into the area between these three vertices. The value of 70 degrees was chosen to

allow somewhat non–equilateral triangles. For angles larger than 70 degrees, the heuristics

of the next section are more likely to produce a good local triangulation.

Figure 3: A sphere and peanut after the growing phase.

3.3 The Filling Phase

Upon termination of the growing phase, a connected polygonal gap remains to be triangulat-

ed. The filling phase starts by associating each vertex of the gap with its closest neighbour

vertex. The closest neighbour relationship is carefully defined so as to make the line segment

between a vertex and its closest neighbour a good segment in the triangulation.

Closest Neighbours and Bridges

For a vertex v on the gap, let Nv be the normal to the implicit surface at v, let v1 be the

vertex preceding v on the boundary of the gap, and let v2 be the vertex succeeding v (vertices

are ordered counter–clockwise around the gap, as seen from above the surface).

Every vertex v on the gap has two associated planes, P 1
v and P 2

v . P 1
v embeds v, v1,

and Nv, and is oriented such that the normal to the plane points into the gap. P 2
v is defined

similarly except that it embeds v2 instead of v1 (see Figure 4).
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Figure 4: A concave vertex on the gap and its associated planes.

A vertex u is said to be above P 1
v if it is contained in the half–space into which the

normal of P 1
v points, and is farther from P 1

v than one–tenth the distance between v and

v1. The definition of “u is above P 2
v ” is similar. The value of one–tenth was chosen to

avoid extremely non–equilateral triangles, which would occur if, say, the triangle v v1 w was

formed with a vertex w that was closer to P 1
v than one-tenth the distance between v and v1.

A vertex v on the gap is convex if the interior angle (i.e. inside the gap polygon) that it

makes with v1 and v2 is less than π and concave otherwise.

Every vertex v has an associated set of neighbours which consists of other vertices on the

gap. If v is convex its neighbours are those vertices that are above P 1
v and P 2

v , and if it is

concave its neighbours are those that are above at least one of P 1
v and P 2

v .

The closest neighbour vc to a vertex v is the neighbour of v that has the shortest

Euclidean distance to v. This relationship is denoted v → vc. Note that the closest neighbour

may not exist, and that this relationship is not necessarily commutative.

A pair of vertices v1 and v2 is said to be bridge if v1 → v2 and v2 → v1. A bridge is

denoted v1 ↔ v2. See Figure 5.

To compute the nearest neighbours, all gap vertices are inserted into an octtree. For

each vertex v, a radius r is initialized to twice the distance between v and its predecessor.

The octtree is queried for vertices within distance r of v. If this set contains neighbours, the

nearest of these is selected. Otherwise, the radius is doubled and the procedure is repeated.

Filling the Gap

A gap is formally defined as a simple polygon (on the implicit surface) for which each vertex

stores its nearest neighbour as defined above. An initial gap is created from the polygon

produced by the growing phase. This initial gap is placed into an otherwise–empty gap
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Figure 5: The gap with the closest neighbour relationships on a sphere. The thick uniformly

coloured lines between two vertices u and v indicate u ↔ v. A dark line that fades to a

lighter colour from a vertex u to a vertex v indicates u→ v.
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queue.

The algorithm starts by removing the first gap from the queue. Heuristics are applied to

add triangles to this gap: If a heuristic causes a gap to be split into several disjoint gaps,

these gaps are placed at the tail of the queue. If the heuristic modifies the gap without filling

it, the modified gap is returned to the head of the queue. Otherwise, the gap has been filled

and the size of the queue decreases. (It is never that case that no heuristic applies.) The

algorithm iterates until the queue becomes empty, at which point the surface is completely

triangulated.

Note that when a gap is modified, some of its nearest neighbour relations are changed.

It is relatively easy to identify these changes, so they will not be described below. For a

particular gap, G, the following heuristics are attempted in the order presented. After one

heuristic is successfully applied, G is either completely filled or is returned to the queue.

1. Small Polygon Filling: If G contains three vertices then one triangle is created. If

G contains four vertices then two triangles are created. If the four vertices are convex,

the diagonal between the two triangles can be chosen to maximize the minimum of

the “qualities” of the two triangles, where the quality of a triangle is measured as the

ratio of the smallest to largest edge lengths. In any case, G has been filled and is not

returned to the queue.

2. Subdivision on Bridges: All bridges of G are collected. A bridge u ↔ v is then

discarded if vertices u and v are not separated on the boundary of the gap polygon

by at least two other vertices. The remaining bridges subdivide the original gap into

smaller gaps, which are placed at the tail of the queue. If a bridge u ↔ v is longer

than 150% of the optimal local edge length, the bridge is split by adding a vertex at

the midpoint of u and v, and settling this point to the surface. The value of 150% was

chosen because it is halfway between having one edge of the correct length (100%) and

two edges of the correct length (200%).

3. X Filling: An X–sequence (see Figure 6) is a sequence S = {v1, v2, v3, v4} of

adjacent vertices with the properties (1) v2 → v4, (2) v3 → v1, and (3) neither v2 nor

v3 is the closest neighbour of any vertex not in S.

If G contains an X–sequence, {v1, v2, v3, v4}, then the distance between v1 and v4 is

checked against the local optimal edge length. If the distance between the vertices is
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Figure 6: Gap X’s being filled with and without the addition of another vertex. The nearest

neighbour relationships are indicated with dashed lines.

more than 150% of optimal, a vertex v is generated on the midpoint between v1 and

v4. The X is then filled with either two or three triangles.

4. Ear Filling: An ear is a sequence {v1, v2, v3} of adjacent vertices such that v1 ↔ v3

and no vertex of G has v2 as its closest neighbour. If G contains an ear, {v1, v2, v3},
then the distance between v1 and v3 is split if it is more than 150% of the optimal local

edge length. The ear is then filled with one or two triangles.

5. Convex Polygon Filling: If every vertex of G is convex, a new vertex is placed at the

average of the vertices of G and is settled to the surface. A fan of triangles is created

around the new vertex. G has been filled and is not returned to the queue.

6. Relaxed Ear Filling: A relaxed ear, {v1, v2, v3}, has the same properties as an ear

except that either v1 → v3 or v3 → v1 is acceptable (whereas an “ear” has v1 ↔ v3).

The relaxed ear filling procedure is otherwise the same as ear filling.

7. Concave Vertex Bisection: If all of the preceding heuristics fail, G must necessarily

contain at least one concave vertex. The vertex v1 that has the largest interior angle

is selected from G, and a corresponding vertex v2 in the gap is found such that the

line segment (v1, v2) most closely bisects the interior angle at v1. G is split into two

components along this line segment. If the distance between these vertices is more

than 150% of the optimal local edge length the edge is split by settling the midpoint

to the surface. The two new gaps are placed at the tail of the queue.

After the gap queue becomes empty, each edge which separates a pair of adjacent triangles is
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“flipped” (so that it joins the other two vertices of the two adjacent triangles) if this results

in a better local triangulation. In order to avoid a cascade of flips, each edge is considered

only once. Typically, between zero and one percent of edges are flipped. Figure 7 shows a

triangulation after the filling phase.

An final improvement could be made by applying Laplacian smoothing (although we

didn’t implement this): Each vertex is moved to the geometric centre of its adjacent vertices

if and only if this results in an improvement to the local triangulation.

(a) after growing phase (b) after filling phase

Figure 7: A closeup of the peanut middle after each phase. In (a), no more triangles can

be extended into the gap without encroaching too closely to an already–existing triangle. In

(b), the light triangles were produced by the filling phase. Note that one triangle pair on

the right boundary of the gap has changed due to a diagonal flip which reduces the average

aspect ratio.

4 Experimental Results

Several meshes produced by this algorithm are shown in Figure 8. Two other polygonizers

were implemented for comparison: Bloomenthal’s cell–based polygonizer [3] and Witkin

and Heckbert’s particle–based modeller [25], which was modified to make particle density

proportional to the local surface curvature. The particle–based method is discussed in more

depth below.
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(a) Cube

(b) Pretzel (c) Spiral

(d) Cone (e) Torus

Figure 8: Meshes produced by the new algorithm
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Triangle Quality

The new algorithm consistently produces close–to–equilateral triangles, as shown in Figure 9.

The particle–based polygonizer produced somewhat less–equilateral triangles, and the cell–

based polygonizer produced fairly poor triangles.

The new algorithm also produces edges whose edge–length to surface–curvature ratios

are tightly clustered around the desired ratio set by the user, as shown in Figure 10. The

particle–based polygonizer had a qualitatively similar distribution of ratios.

Execution Times

Execution times are reported in Table 1, which shows: a point is settled to the surface about

5.6 times per triangle of the final mesh; between 4.8 and 9.0 implicit function evaluations

are required for each settling; and between 27 and 50 function evaluations are required for

each triangle of the final mesh.

The new algorithm was typically twenty times slower than the cell–based algorithm. But

it was typically five times faster than the curvature–dependent particle–based algorithm.

The particle–based algorithm must process every particle with each iteration, while the new

algorithm simply creates a new triangle or triangles, which thereafter remain fixed.

The new algorithm is easily fast enough for any application that builds the polygonization

in an offline, preprocessing step. The large number of implicit function evaluations per

triangle is principally due to curvature evaluations (70 % of all implicit function evaluations

are used for this). While we could have evaluated the curvature directly for some models,

this is not possible for general implicit functions represented as “black boxes,” so we chose

not to do so.

Failure Modes

It was found that accurate curvature measurement is critical to the triangle growing phase.

If the curvature is not measured accurately, small triangles may be placed close to large ones

and this situation will be handled badly by the filling phase, which implicity expects similar

triangles sizes on opposite sides of a narrow gap.

The same problem occurs if the rate of change of curvature is high or if the surface is not

G1. In this case there are almost–flat areas adjacent to highly curved areas and the growing

phase produces large triangles that are close to small triangles. Again, the filling phase has
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(a) Peanut with new algorithm

(c) Peanut with cell–based algorithm (b) Peanut with particle–based algorithm

Figure 9: The distributions of the ratio of shortest edge length to longest edge length of each

triangle, for the peanut model. Distributions for the other objects were qualitatively similar.

A ratio of 1.0 corresponds to an equilateral triangle.
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(a) Cube with new algorithm (b) Pretzel with new algorithm

(c) Peanut with particle–based algorithm

Figure 10: The distribution of actual edge–length to surface–curvature ratios, with a desired

ratio of ρ = 0.2 set by the user. Distributions for the other objects were qualitatively similar.
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Table 1: Execution results on a 500 MHz Pentium PC. These tests used a smaller setting of

ρ than that of Figures 2 and 8.

Model Time Triangles Settlings Func evals Func evals

(sec) per triangle per settling per triangle

peanut 10 6,546 5.7 6.2 35.3

spiral 102 18,072 5.6 9.0 50.3

cube 190 56,292 5.6 4.8 27.1

pretzel 587 40,924 5.7 5.8 33.3

difficuly in this situation. The pretzel and peanut were particularly stressful tests since they

have areas in which the curvature changes very rapidly (see Figure 7(a) for example).

One possible fix (which we haven’t yet implemented) is the following: This situation

is detected when the nearest neighbour of a vertex, v, is adjacent to a triangle of much

different size than a triangle adjacent to v. In this case, subdivide each large triangle into

four smaller triangles by adding a vertex at the midpoint of each triangle edge and joining

the new vertices (care must be taken to repair any ‘T’ vertices that occur). Next, attempt to

grow triangles from the new, subdivided edges that border the gap. Finally, continue with

the gap filling phase, which may involve further subdivisions of large triangles.

If the peanut model is changed so that it looks more like two spheres connected by a

thin strand, the area on one sphere from which the strand emanates can be triangulated

improperly during the triangle growing phase. When this happens, a triangle is created

which covers this area, so the strand and the other sphere are never reached. Note that cell–

and particle–based tilers that follow the surface instead of sampling all space can have the

same problems (but a topology–guaranteeing polygonizer [20] would not).

Details of the Particle–Based Algorithm

For comparison, the Witkin–Heckbert particle–based modeller [25] was implemented. This

modeller centres a Gaussian repulsion field around each particle and particles are moved

according to the forces exerted between them and neighbouring particles. A spatial grid was

used to efficiently determine the neighbouring particles. Particles are automatically created

in sparsely populated areas and are automatically deleted in densely populated areas. Once
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the particles achieve equilibrium (i.e. the maximum particle velocity falls below a threshold),

a triangulation can be performed. We built the triangulation by computing alpha shapes at

various resolutions and stitching together the resulting triangle meshes. We did not count

this step in the execution times of the particle–based method.

The modeller was modified to make the standard deviation of the Gaussian field around

a particle proportional to the local radius of curvature of the surface. Despite this, particles

in dense areas would repel particles in sparse areas, simply because there are more particles

in the dense areas pushing on the particles in the sparse areas. This resulted in particles

migrating from high curvature areas into adjacent low curvature areas and more particles

continually being created in the high curvature areas to replace those that left. To prevent

this migration, we gave more weight to the forces exterted by particles with larger Gaussian

repulsion fields (i.e. those particle in the sparser areas). Specifically, the force exerted by

particle j upon particle i was weighted by the apparent angle, as seen from i, of a disk

centred at j with radius equal to the standard deviation of j’s Gaussian repulsion field.

The output of the particle–based modeller might have been improved by adding a Lapla-

cian smoothing step after the particles had reached equilibrium. Also, Paul Heckbert has

suggested using an elliptical repulsion field having the axes of the ellipse aligned with the

directions of minimum and maximum curvature.

5 Conclusions and Future Work

The new implicit surface polygonizer produces close–to–equilateral, curvature–dependent

triangulations of G1 surfaces. It is well suited to applications for which the quality of

triangulation is important such as renderers and finite element solvers. However, the new

polygonizer is substantially slower than the classical cell–based polygonizer and is not suited

for interactive applications such as surface editing.

The algorithm should be extended to include non–manifold and non–G1 surfaces: Sharp

edges on the surface would have to be identified and triangles would have to be generated

around these features. These triangles would be joined to the rest of the mesh in the gap

filling phase. The sharp edges would be identified in the growing phase by detecting high

surface curvature and by following the line of maximum curvature along the surface.

The algorithm can be made much faster for surfaces for which the curvature can be

computed analytically. This is often the case, especially for surfaces constructed from a
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limited set of primitives. In these cases, the algorithm would directly evaluate the curvature

rather than use its slow numerical computation.

Finally, the gap filling technique might be used in other applications, such as building

models from laser range data: When making a model of an object, several data sets are

required in order to cover the object from all sides. These data sets are triangulated and

then stitched together. The gap filling technique could be used to perform the stitching.
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Appendix

Settling a Point

Many places in the algorithm use a procedure to settle a point v onto the implicit surface,

assuming that v is already near the surface. To do so, a point v′ on the other side of the

surface is determined. Repeated bisection of the interval between v and v′ yields a point on

the surface. To determine v′, the vector

n̂ = − f(v)5 f(v)

|| f(v)5 f(v) ||
,

which points from v to the surface, is computed. Then f is sampled at increasing distances

from v in the direction of n̂ until a point v′ is found such that the sign of f(v′) is opposite

that of f(v).

Computing Radius r

The radius r within which triangles are checked for the “Isosceles Triangle Growing” opera-

tion (Section 3.2) is chosen conservatively. Figure 11 shows the situation that generates the

maximum possible value of r: Let ` and `′ be the lengths of the longest edges in triangles
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Figure 11: The geometry that produces the highest ratio of proximity radius r to inter–

triangle proximity q. T is a narrow triangle with axis perpendicular to the closest and

longest edge of T ′.

T and T ′, respectively, and let q be the distance between T and T ′. If T ′ is too close to T ,

then

r2 <
(

2

3
`+ q

)2

+
(

1

2
`′
)2

.

Since `′ is unknown, the length of the longest edge of any triangle ever added to the mesh

is maintained by the algorithm, and is used in the place of `′ when calculating a maximum

r. This makes the test very conservative: Many triangles are needlessly checked in areas

of high curvature, since nearby triangles are small compared to the largest triangle in the

mesh.
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